1
|
Xiao Y, Xiang W, Ma X, Zheng A, Rong D, Zhang N, Yang N, Bayram H, Lorimer GH, Wang J. Research Progress on the Correlation Between Atmospheric Particulate Matter and Autism. J Appl Toxicol 2024. [PMID: 39701085 DOI: 10.1002/jat.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/29/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by the interaction of genetic and complex environmental factors. The prevalence of autism has dramatically increased in countries and regions undergoing rapid industrialization and urbanization. Recent studies have shown that particulate matter (PM) in air pollution affects the development of neurons and disrupts the function of the nervous system, leading to behavioral and cognitive problems and increasing the risk of ASD. However, research on the mechanism of environmental factors and ASD is still in its infancy. On this basis, we conducted a literature search and analysis to review epidemiological studies on the correlation between fine particulate matter (PM2.5) and inhalable particulate matter (PM10) and ASD. The signaling pathways and pathogenic mechanisms of PM in synaptic injury and neuroinflammation are presented, and the mechanism of the ASD candidate gene SHANK3 was reviewed. Additionally, the different sites of action of different particles in animal models and humans were highlighted, and the differences of their effects on the pathogenesis of ASD were explained. We summarized the aetiology and mechanisms of PM-induced autism and look forward to future research breakthroughs in improved assessment methods, multidisciplinary alliances and high-tech innovations.
Collapse
Affiliation(s)
- Yaqian Xiao
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Wang Xiang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Xuerui Ma
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Aijia Zheng
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Dechang Rong
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Nimeng Zhang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Ning Yang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Department of Pulmonary Medicine, School of Medicine, Koc University, Istanbul, Turkey
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland, USA
| | - Jun Wang
- Cooperative Innovation Center of Industrial Fermentation, Ministry of Education & Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- International Center for Redox Biology & Precision Medicine of Hubei Province, Hubei University of Technology, Wuhan, Hubei, China
- Autism & Depression Diagnosis and Intervention Institute, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Hakizimana O, Hitayezu J, Uyisenga JP, Onohuean H, Palmeira L, Bours V, Alagbonsi AI, Uwineza A. Genetic etiology of autism spectrum disorder in the African population: a scoping review. Front Genet 2024; 15:1431093. [PMID: 39391062 PMCID: PMC11464363 DOI: 10.3389/fgene.2024.1431093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) characterized by significant impairments in social, communicative, and behavioral abilities. However, only a limited number of studies address the genetic basis of ASD in the African population. This study aims to document the genes associated with ASD in Africa and the techniques used to identify them. Additionally, genes identified elsewhere but not yet in Africa are also noted. Methods Online databases such as Wiley Online Library, PubMed, and Africa Journal Online were used. The review was conducted using the keyword related to genetic and genomic ASD study in the African population. Result In this scoping review, 40 genetic studies on ASD in Africa were reviewed. The Egyptian and South African populations were the most studied, with 25 and 5 studies, respectively. Countries with fewer studies included Tunisia (4), East African countries (3), Libya (1), Nigeria (1), and Morocco (1). Some 61 genes responsible for ASD were identified in the African population: 26 were identified using a polymerase chain reaction (PCR)-based method, 22 were identified using sequencing technologies, and 12 genes and one de novo chromosomal aberration were identified through other techniques. No African study identified any ASD gene with genome-wide association studies (GWAS). Notably, at least 20 ASD risk genes reported in non-African countries were yet to be confirmed in Africa's population. Conclusion There are insufficient genetic studies on ASD in the African population, with sample size being a major limitation in most genetic association studies, leading to inconclusive results. Thus, there is a need to conduct more studies with large sample sizes to identify other genes associated with ASD in Africa's population using high-throughput sequencing technology.
Collapse
Affiliation(s)
- Olivier Hakizimana
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Janvier Hitayezu
- Department of Pediatrics, University Teaching Hospital of Kigali (CHUK), Kigali, Rwanda
| | - Jeanne P. Uyisenga
- Department of Biology, College of Science and Technology, University of Rwanda, Kigali, Rwanda
| | - Hope Onohuean
- Biopharmaceutics Unit, Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Bushenyi, Uganda
| | - Leonor Palmeira
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Vincent Bours
- Center for Human Genetics, Centre Hospitalier Universitaire Sart-Tilman, University of Liege, Liege, Belgium
| | - Abdullateef Isiaka Alagbonsi
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Annette Uwineza
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
3
|
Nashaat NH, Elrouby I, Zeidan HM, Kilany A, Abdelraouf ER, Hashish AF, Abdelhady HS, ElKeblawy MM, Shadi MS. Childhood Apraxia of Speech: Exploring Gluten Sensitivity and Changes in Glutamate and Gamma-Aminobutyric Acid Plasma Levels. Pediatr Neurol 2024; 151:104-110. [PMID: 38154236 DOI: 10.1016/j.pediatrneurol.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Individuals with childhood apraxia of speech (CAS) were reported to have genetic variations related to gluten sensitivity and some neuroanatomic changes, which could be associated with alterations in neurotransmitters levels such as glutamate and gamma-aminobutyric acid (GABA). The aim was to measure the levels of antigliadin immunoglobulin A (IgA) antibody, glutamate, and GABA in the plasma of children with CAS compared with children with delayed language development (DLD) and neurotypical (NT) children. METHODS The participants (N = 120) were in three groups: Group I for CAS (N = 30), Group II for DLD (N = 60), and Group III for NT (N = 30). The abilities of children in Groups I and II were evaluated. The plasma levels of antigliadin IgA, glutamate, and GABA were determined by enzyme-linked immunosorbent assay. RESULTS The intelligence quotient and expressive language age in Group I were low compared with Group II (P = 0.001; 0.004). The levels of antigliadin IgA and glutamate in Group I were higher compared with the other two groups, whereas the level of GABA was lower (P < 0.0001). An imbalance between glutamate and GABA was found in Group I. In Group II, no measures differed from NTs except lower GABA levels (P = 0.0007). CONCLUSIONS The elevated levels of antigliadin IgA antibody and glutamate demonstrated high sensitivity and specificity, differentiating children with CAS from children with DLD and NT children. The low levels of GABA contributed to the imbalance between the excitatory and inhibitory neurotransmitters' levels detected in children with CAS.
Collapse
Affiliation(s)
- Neveen Hassan Nashaat
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt; Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.
| | - Iman Elrouby
- Phoniatrics Department, Hearing and Speech Institute, Giza, Egypt
| | - Hala M Zeidan
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Ehab Ragaa Abdelraouf
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt; Learning Disability and Neurorehabilitation Research Field, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Adel F Hashish
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Hebatallah Sherif Abdelhady
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mohamed M ElKeblawy
- Children with Special Needs Research Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Mariam S Shadi
- Unit of Phoniatrics, Otorhinolaryngology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
4
|
Lin P, Zhang Q, Sun J, Li Q, Li D, Zhu M, Fu X, Zhao L, Wang M, Lou X, Chen Q, Liang K, Zhu Y, Qu C, Li Z, Ma P, Wang R, Liu H, Dong K, Guo X, Cheng X, Sun Y, Sun J. A comparison between children and adolescents with autism spectrum disorders and healthy controls in biomedical factors, trace elements, and microbiota biomarkers: a meta-analysis. Front Psychiatry 2024; 14:1318637. [PMID: 38283894 PMCID: PMC10813399 DOI: 10.3389/fpsyt.2023.1318637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a multifaceted developmental condition that commonly appears during early childhood. The etiology of ASD remains multifactorial and not yet fully understood. The identification of biomarkers may provide insights into the underlying mechanisms and pathophysiology of the disorder. The present study aimed to explore the causes of ASD by investigating the key biomedical markers, trace elements, and microbiota factors between children with autism spectrum disorder (ASD) and control subjects. Methods Medline, PubMed, ProQuest, EMBASE, Cochrane Library, PsycINFO, Web of Science, and EMBSCO databases have been searched for publications from 2012 to 2023 with no language restrictions using the population, intervention, control, and outcome (PICO) approach. Keywords including "autism spectrum disorder," "oxytocin," "GABA," "Serotonin," "CRP," "IL-6," "Fe," "Zn," "Cu," and "gut microbiota" were used for the search. The Joanna Briggs Institute (JBI) critical appraisal checklist was used to assess the article quality, and a random model was used to assess the mean difference and standardized difference between ASD and the control group in all biomedical markers, trace elements, and microbiota factors. Results From 76,217 records, 43 studies met the inclusion and exclusion criteria and were included in this meta-analysis. The pooled analyses showed that children with ASD had significantly lower levels of oxytocin (mean differences, MD = -45.691, 95% confidence interval, CI: -61.667, -29.717), iron (MD = -3.203, 95% CI: -4.891, -1.514), and zinc (MD = -6.707, 95% CI: -12.691, -0.722), lower relative abundance of Bifidobacterium (MD = -1.321, 95% CI: -2.403, -0.238) and Parabacteroides (MD = -0.081, 95% CI: -0.148, -0.013), higher levels of c-reactive protein, CRP (MD = 0.401, 95% CI: 0.036, 0.772), and GABA (MD = 0.115, 95% CI: 0.045, 0.186), and higher relative abundance of Bacteroides (MD = 1.386, 95% CI: 0.717, 2.055) and Clostridium (MD = 0.281, 95% CI: 0.035, 0.526) when compared with controls. The results of the overall analyses were stable after performing the sensitivity analyses. Additionally, no substantial publication bias was observed among the studies. Interpretation Children with ASD have significantly higher levels of CRP and GABA, lower levels of oxytocin, iron, and zinc, lower relative abundance of Bifidobacterium and Parabacteroides, and higher relative abundance of Faecalibacterium, Bacteroides, and Clostridium when compared with controls. These results suggest that these indicators may be a potential biomarker panel for the diagnosis or determining therapeutic targets of ASD. Furthermore, large, sample-based, and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ping Lin
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianwen Zhang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Qingtian Li
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyuan Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomei Fu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhao
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengxia Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Lou
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Chen
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kangyi Liang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuxin Zhu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caiwei Qu
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renyu Wang
- Department of Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafen Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Hangzhou Calibra Diagnostics, Hangzhou, China
| | - Ke Dong
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaokui Guo
- Institute for Global Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Jing Sun
- School of Medicine and Dentistry, Institute for Integrated Intelligence and Systems, Griffith University, Gold Coast Campus, Gold Coast, QLD, Australia
- Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
5
|
Gai J, Xing J, Wang Y, Lei J, Zhang C, Zhang J, Tang J. Exploration of potential targets and mechanisms of Naringenin in treating autism spectrum disorder via network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e31787. [PMID: 36401485 PMCID: PMC9678605 DOI: 10.1097/md.0000000000031787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
Naringenin (NR) is a kind of flavonoid which plays a great role in the treatment of autism spectrum disorder (ASD). However, the underlying mechanism of NR in treating ASD still remains unclear. This study used network pharmacology and molecular docking to examine the potential targets and pharmacological mechanism of NR on ASD. Targets related to NR were screened from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), Encyclopedia of Traditional Chinese Medicine Database (ETCM), Traditional Chinese Medicine Integrated Database (TCMID), PharmaMapper database, and targets related to ASD were screened from Online Mendelian Inheritance In Man (OMIM), Disgenet, GeneCards, Therapeutic Target Database (TTD), Drugbank, and ETCM. Screened of the intersected gene targets. Then, we used the protein-protein interaction (PPI) networks to construct a PPI network and used Network Analyzer plug-in to perform topological analysis to screen out the core target. We used Metascape platform to perform gene ontology (GO) functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and used Chem draw, Pymol, AutoDock 1.5.6 software for molecular docking verification with core targets. A total of 149 targets of NR and 1594 potential targets of ASD were screened, and 43 intersected targets and 8 key targets were obtained and screened. A total of 176 GO items were obtained by GO enrichment analysis (P < .05), 153 entries on biological process (BP), 12 entries on BP and 11entries on cell composition (CC) were included. A total of 100 signaling pathways were obtained by KEGG pathway enrichment screening (P < .05).The pathways that are closely related to the pathogenesis of ASD are estrogen signaling, thyroid hormone signaling pathway, prolactin signaling pathway, and endocrine resistance pathway. Molecular docking results showed that NR had the best docking activity with the core target CASP3, and had good binding ability with AKT1, ESR1, ACTB and MAPK3. Taken together, our findings support that NR exerts therapeutic effects on ASD with multi-target, and multi-pathway characteristics, which provides a preliminary theoretical basis for clinical trials. The mechanism of anti-oxidative stress response, anti-apoptosis, regulation of cell growth and metabolism, anti-inflammatory, balance hormone levels may be important for the therapeutic effect.
Collapse
Affiliation(s)
- Jialin Gai
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinxiao Xing
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yangyang Wang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Junfang Lei
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chengdong Zhang
- College of Rehabilitation Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Jinfei Zhang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jiqin Tang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Role of JAK-STAT and PPAR-Gamma Signalling Modulators in the Prevention of Autism and Neurological Dysfunctions. Mol Neurobiol 2022; 59:3888-3912. [PMID: 35437700 DOI: 10.1007/s12035-022-02819-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/23/2022] [Indexed: 01/10/2023]
Abstract
The Janus-kinase (JAK) and signal transducer activator of transcription (STAT) signalling pathways regulate gene expression and control various factors involved in normal physiological functions such as cell proliferation, neuronal development, and cell survival. JAK activation phosphorylates STAT3 in astrocytes and microglia, and this phosphorylation has been linked to mitochondrial damage, apoptosis, neuroinflammation, reactive astrogliosis, and genetic mutations. As a regulator, peroxisome proliferator-activated receptor gamma (PPAR-gamma), in relation to JAK-STAT signalling, prevents this phosphorylation and aids in the treatment of the above-mentioned neurocomplications. Changes in cellular signalling may also contribute to the onset and progression of autism. Thus, PPAR-gamma agonist upregulation may be associated with JAK-STAT signal transduction downregulation. It may also be responsible for attenuating neuropathological changes by stimulating SOCS3 or involving RXR or SMRT, thereby reducing transcription of the various cytokine proteins and genes involved in neuronal damage. Along with JAK-STAT inhibitors, PPAR-gamma agonists could be used as target therapeutic interventions for autism. This research-based review explores the potential involvement and mutual regulation of JAK-STAT and PPAR-gamma signalling in controlling multiple pathological factors associated with autism.
Collapse
|
7
|
Zhang L, Xu Y, Li H, Li B, Duan G, Zhu C. The role of probiotics in children with autism spectrum disorders: A study protocol for a randomised controlled trial. PLoS One 2022; 17:e0263109. [PMID: 35202432 PMCID: PMC8870536 DOI: 10.1371/journal.pone.0263109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurological and developmental condition that begins in infancy or earlier and lasts through the individual’s lifetime. The aetiology and mechanisms of ASD are not yet fully understood, and current treatment comprises mainly education and rehabilitation, without significant improvement in the core symptoms. Recent studies suggest that microbiota change in children with ASD after the ingestion of probiotics may improve the balance of microbiota and thus ASD symptoms. Objective The objectives of this study are to evaluate the efficacy of probiotics on the symptoms of children with ASD and the possible mechanisms involved. Methods This is a prospective controlled trial. A total of 160 children with ASD will be stratified and allocated to placebo and probiotics groups randomised according to the severity of their ASD symptoms. The probiotics group will be given probiotics supplements orally twice a day for 3 months and the control group will be given a placebo at the same amount, in addition to the baseline therapy of education and rehabilitation. All the children will be evaluated systematically by using different scales, questionnaires before, during, and after 3 months’ treatment, as well as 3 months after discontinuation. The potential impact of probiotics on immunity and inflammation, metabolism, and metagenome will also be investigated. Discussion Our previous study showed that the abundance of intestinal flora was greatly different in children with ASD, and that Bifidobacterium was associated with the severity of ASD. In the present study, we will investigate the impact of probiotics supplementation on the symptoms of Children with ASD, with the purpose of evaluating the possible therapeutic effects of additives on ASD and of providing a reference for clinical treatment. The results will help to disclose as yet unknown relationship between probiotics and ASD. Trial registration This study has been registered with Chinese Clinical Trial Registry (ChiCTR-2000037941).
Collapse
Affiliation(s)
- Lingling Zhang
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bingbing Li
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiqin Duan
- Center for Child Behavioral Development, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Clinical Research Center for Child Neurological Disorders, Institute of Neuroscience and The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
8
|
Mohammed FZ, Abd El-Aziz RM, El-Deen IM, Abd-Rahman MS, AlGhannam SM. In vivo biological evaluation of sodium salt of ethyl (E)-2-cyano-3-(7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-yl)-3-(4-hydroxyphenyl) acrylate as anticancer agent. Clin Exp Pharmacol Physiol 2021; 49:145-174. [PMID: 34536310 DOI: 10.1111/1440-1681.13592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
Nowadays, quinoline scaffold is among the most vital construction compounds for the development of new drugs. The purpose of this research is to evaluate the anti-cancer activity of sodium salt of ethyl (E)-2-cyano-3-(7-hydroxy-4-methyl-2-oxoquinoline-1(2H)-yl)-3-(4-hydroxyphenyl) acrylate against Ehrlich ascites carcinoma (EAC) cells residing in female mice's peritoneal cavity. The docking study exhibited a favourable interaction between the compound and the receptors 1MOY and 3KJF of osteopontin and caspase 3, respectively. The compound's sodium salt showed potential antioxidant and anti-cancer effects against Ehrlich ascites carcinoma (EAC) cells in vivo. Herein, the results elucidated that treatment with the compound's sodium salt exerted significant chemopreventive and chemotherapeutic effects, which reduced both EAC cell volume and count. Our results revealed that treatment with the sodium salt of the compound demonstrated a remarkable in vivo apoptotic effect through elevation of the expression of caspase 3 and reduction of osteopontin levels. Histopathological examination confirmed that the compound's sodium salt improved liver and kidney tissues without any apparent adverse effects.
Collapse
Affiliation(s)
- Faten Z Mohammed
- Chemistry Department (Biochemistry Branch), Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rahma M Abd El-Aziz
- Chemistry Department (Biochemistry Branch), Faculty of Science, Port Said University, Port Said, Egypt
| | - Ibrahim M El-Deen
- Chemistry Department (Biochemistry Branch), Faculty of Science, Port Said University, Port Said, Egypt
| | - Marwa S Abd-Rahman
- Faculty of Technology and Development, Zagazig University, Zagazig, Egypt
| | - Sheikha M AlGhannam
- Chemistry Department, Faculty of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
9
|
Balachandar V, Rajagopalan K, Jayaramayya K, Jeevanandam M, Iyer M. Mitochondrial dysfunction: A hidden trigger of autism? Genes Dis 2021; 8:629-639. [PMID: 34291134 PMCID: PMC8278534 DOI: 10.1016/j.gendis.2020.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Autism is a heterogeneous neurodevelopmental and neuropsychiatric disorder with no precise etiology. Deficits in cognitive functions uncover at early stages and are known to have an environmental and genetic basis. Since autism is multifaceted and also linked with other comorbidities associated with various organs, there is a possibility that there may be a fundamental cellular process responsible for this. These reasons place mitochondria at the point of interest as it is involved in multiple cellular processes predominantly involving metabolism. Mitochondria encoded genes were taken into consideration lately because it is inherited maternally, has its own genome and also functions the time of embryo development. Various researches have linked mitochondrial mishaps like oxidative stress, ROS production and mt-DNA copy number variations to autism. Despite dramatic advances in autism research worldwide, the studies focusing on mitochondrial dysfunction in autism is rather minimal, especially in India. India, owing to its rich diversity, may be able to contribute significantly to autism research. It is vital to urge more studies in this domain as it may help to completely understand the basics of the condition apart from a genetic standpoint. This review focuses on the worldwide and Indian scenario of autism research; mitochondrial abnormalities in autism and possible therapeutic approaches to combat it.
Collapse
Affiliation(s)
- Vellingiri Balachandar
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Kamarajan Rajagopalan
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| | - Madesh Jeevanandam
- Human Molecular Genetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- Department of Biochemistry, PSG College of Arts and Sciences, Coimbatore, Tamil Nadu 641014, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India
| |
Collapse
|