1
|
Zuo X, Han P, Yuan D, Xiao Y, Huang Y, Li R, Jiang X, Feng L, Li Y, Zhang Y, Zhu P, Wang H, Wang N, Kang YJ. Implantation of Adipose-Derived Mesenchymal Stromal Cells (ADSCs)-Lining Prosthetic Graft Promotes Vascular Regeneration in Monkeys and Pigs. Tissue Eng Regen Med 2024; 21:641-651. [PMID: 38190095 PMCID: PMC11087433 DOI: 10.1007/s13770-023-00615-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Current replacement procedures for stenosis or occluded arteries using prosthetic grafts have serious limitations in clinical applications, particularly, endothelialization of the luminal surface is a long-standing unresolved problem. METHOD We produced a cell-based hybrid vascular graft using a bioink engulfing adipose-derived mesenchymal stromal cells (ADSCs) and a 3D bioprinting process lining the ADSCs on the luminal surface of GORE-Tex grafts. The hybrid graft was implanted as an interposition conduit to replace a 3-cm-long segment of the infrarenal abdominal aorta in Rhesus monkeys. RESULTS Complete endothelium layer and smooth muscle layer were fully developed within 21 days post-implantation, along with normalized collagen deposition and crosslinking in the regenerated vasculature in all monkeys. The regenerated blood vessels showed normal functionality for the longest observation of more than 1650 days. The same procedure was also conducted in miniature pigs for the interposition replacement of a 10-cm-long right iliac artery and showed the same long-term effective and safe outcome. CONCLUSION This cell-based vascular graft is ready to undergo clinical trials for human patients.
Collapse
Affiliation(s)
- Xiao Zuo
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Pengfei Han
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Ding Yuan
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
- Division of Vascular Surgery, Department of General Surgery, Sichuan University West China Hospital, Chengdu, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Yushi Huang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Rui Li
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Xia Jiang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Li Feng
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Yijun Li
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Yaya Zhang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Ping Zhu
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Hongge Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China
| | - Ning Wang
- Sichuan 3D Bioprinting Institute, Chengdu, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, 610093, China.
- Sichuan 3D Bioprinting Institute, Chengdu, China.
| |
Collapse
|
2
|
Koch SE, Verhaegh FLP, Smink S, Mihăilă SM, Bouten C, Smits A. Donor Heterogeneity in the Human Macrophage Response to a Biomaterial under Hyperglycemia in vitro. Tissue Eng Part C Methods 2022; 28:440-456. [PMID: 35658619 DOI: 10.1089/ten.tec.2022.0066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Macrophages have a commanding role in scaffold-driven in situ tissue regeneration. Depending on their polarization state, macrophages mediate the formation and remodeling of new tissue by secreting growth factors and cytokines. Therefore, successful outcomes of material-driven in situ tissue vascular tissue engineering depends largely on the immuno-regenerative potential of the recipient. A large cohort of patients requiring vascular replacements suffers from systemic multifactorial diseases, like diabetes, which gives rise to a hyperglycemic and aggressive oxidative inflammatory environment that is hypothesized to hamper a well-balanced regenerative process. Here, we aimed to fundamentally explore the effects of hyperglycemia, as one of the hallmarks of diabetes, on the macrophage response to 3D electrospun synthetic biomaterials for in situ tissue engineering, in terms of inflammatory profile and tissue regenerative capacity. To simulate the early phases of the in situ regenerative cascade, we used a bottom-up in vitro approach. Primary human macrophages (n=8 donors) and (myo)fibroblasts in mono- or co-culture were seeded in 2D, as well as in a 3D electrospun resorbable polycaprolactone bisurea (PCL-BU) scaffold and exposed to normoglycemic (5.5 mM glucose), hyperglycemic (25 mM glucose) and osmotic control conditions (5.5 mM glucose, 19.5 mM mannitol). The results showed that macrophage polarization by biochemical stimuli was effective under all glycemic conditions and that the polarization states dictated expression of the receptors SCL2A1 (glucose transporter 1) and CD36 (fatty acid transporter). In 3D, the macrophage response to hyperglycemic conditions was strongly donor-dependent in terms of phenotype, cytokine secretion profile, and metabolic receptor expression. When co-cultured with (myo)fibroblasts, hyperglycemic conditions led to an increased expression of fibrogenic markers (ACTA2, COL1, COL3, IL-1β). Together, these findings show that the hyperglycemic and hyperosmotic conditions may indeed influence the process of macrophage-driven in situ tissue engineering, and that the extent of this is likely to be patient-specific.
Collapse
Affiliation(s)
- Suzanne E Koch
- Eindhoven Univeristy of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands;
| | - Franka L P Verhaegh
- Eindhoven Univeristy of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands;
| | - Simone Smink
- Eindhoven Univeristy of Technology, Department of Biomedical Engineering, Eindhoven, Netherlands;
| | - Silvia M Mihăilă
- Utrecht University Department of Pharmaceutical Sciences, 84898, Utrecht, Utrecht, Netherlands;
| | - Carlijn Bouten
- Eindhoven University of Technology, Biomedical Engineering, Eindhoven University of Technology, Department of Biomedical Engineering, P.O.Box 513, Eindhoven, Netherlands, 5600MB.,Netherlands;
| | - Anthal Smits
- Eindhoven Univeristy of Technology, Department of Biomedical Engineering, Den Dolech 2, Gemini-Zuid 3.116, Eindhoven, Netherlands, 5612AZ;
| |
Collapse
|
3
|
Lee IS, Kim CS, Kim J, Jo K, Hyun SW, Zhang H, Noh M, Kwon YG, Kim M, Kim JS. Extract of Moutan radicis cortex and Cinnamomi ramulus ameliorates laser-induced choroidal neovascularization in Brown-Norway rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153794. [PMID: 34775362 DOI: 10.1016/j.phymed.2021.153794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 05/17/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Moutan radicis cortex (MRC) and Cinnamomi ramulus (CR) are commonly used in eastern Asian traditional medicine to treat various diseases including cerebrovascular and cardiovascular, and have wide spectrum of pharmacological activities. However, the effect against laser-induced choroidal neovascularization (CNV) of extract of MRC and CR (1:1) (MRCCR) has not yet been studied. PURPOSE Our aim was to investigate the inhibitory effect of MRCCR on pathological CNV in laser-treated Brown-Norway (BN) rats. METHODS MRCCR (60, 90 mg/kg) was orally administered twice per day for 15 days from the day of CNV formation in laser-treated BN rats. Effects of MRCCR or its constituents on cell migration, tube formation, hyperpermeability and phosphorylation of FAK/p38 MAPK were confirmed in humane retinal microvascular endothelial cells or human retinal pigment epithelial cells. RESULTS MRCCR significantly reduced the CNV lesions areas and the extent of fluorescein leakage. MRCCR and its constituents such as ellagic acid, paeonol or gallic acid decreased cell migration, tube formation or hyperpermeability. MRCCR inhibited the phosphorylation of FAK and p38 MAPK. CONCLUSION Combining the oral MRCCR and intravitreal injection of anti-VEGF medicine may result in a more potent therapeutic effect and consequently bring the reduction in eye injection numbers for patients with wet AMD.
Collapse
Affiliation(s)
- Ik Soo Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Chan-Sik Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Junghyun Kim
- Department of Oral pathology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kyuhyung Jo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Soo Wang Hyun
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Practical Research Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | | | - MinYoung Noh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120749, Republic of Korea
| | - Young-Guen Kwon
- Curacle Co. Ltd, Seongnam 13449, Republic of Korea; Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120749, Republic of Korea
| | - MyungHwa Kim
- Curacle Co. Ltd, Seongnam 13449, Republic of Korea
| | - Jin Sook Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
4
|
Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering - Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev 2021; 178:113960. [PMID: 34481036 DOI: 10.1016/j.addr.2021.113960] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
In situ tissue engineering using bioresorbable material implants - or scaffolds - that harness the patient's immune response while guiding neotissue formation at the site of implantation is emerging as a novel therapy to regenerate human tissues. For the cardiovascular system, the use of such implants, like blood vessels and heart valves, is gradually entering the stage of clinical translation. This opens up the question if and to what extent patient characteristics influence tissue outcomes, necessitating the precision engineering of scaffolds to guide patient-specific neo-tissue formation. Because of the current scarcity of human in vivo data, herein we review and evaluate in vitro and preclinical investigations to predict the potential role of patient-specific parameters like sex, age, ethnicity, hemodynamics, and a multifactorial disease profile, with special emphasis on their contribution to the inflammation-driven processes of in situ tissue engineering. We conclude that patient-specific conditions have a strong impact on key aspects of in situ cardiovascular tissue engineering, including inflammation, hemodynamic conditions, scaffold resorption, and tissue remodeling capacity, suggesting that a tailored approach may be required to engineer immuno-regenerative biomaterials for safe and predictive clinical applicability.
Collapse
|
5
|
Manduteanu I, Simionescu D, Simionescu A, Simionescu M. Aortic valve disease in diabetes: Molecular mechanisms and novel therapies. J Cell Mol Med 2021; 25:9483-9495. [PMID: 34561944 PMCID: PMC8505854 DOI: 10.1111/jcmm.16937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Valve disease and particularly calcific aortic valve disease (CAVD) and diabetes (DM) are progressive diseases constituting a global health burden for all aging societies (Progress in Cardiovascular Diseases. 2014;56(6):565: Circulation Research. 2021;128(9):1344). Compared to non‐diabetic individuals (The Lancet. 2008;371(9626):1800: The American Journal of Cardiology. 1983;51(3):403: Journal of the American College of Cardiology. 2017;69(12):1523), the diabetic patients have a significantly greater propensity for cardiovascular disorders and faster degeneration of implanted bioprosthetic aortic valves. Previously, using an original experimental model, the diabetic‐hyperlipemic hamsters, we have shown that the earliest alterations induced by these conditions occur at the level of the aortic valves and, with time these changes lead to calcifications and CAVD. However, there are no pharmacological treatments available to reverse or retard the progression of aortic valve disease in diabetes, despite the significant advances in the field. Therefore, it is critical to uncover the mechanisms of valve disease progression, find biomarkers for diagnosis and new targets for therapies. This review aims at presenting an update on the basic research in CAVD in the context of diabetes. We provide an insight into the accumulated data including our results on diabetes‐induced progressive cell and molecular alterations in the aortic valve, new potential biomarkers to assess the evolution and therapy of the disease, advancement in targeted nanotherapies, tissue engineering and the potential use of circulating endothelial progenitor cells in CAVD.
Collapse
Affiliation(s)
- Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Dan Simionescu
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Agneta Simionescu
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
6
|
Dunham C, Havlioglu N, Chamberlain A, Lake S, Meyer G. Adipose stem cells exhibit mechanical memory and reduce fibrotic contracture in a rat elbow injury model. FASEB J 2020; 34:12976-12990. [PMID: 33411380 PMCID: PMC8745456 DOI: 10.1096/fj.202001274r] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is driven by a misdirected cell response causing the overproduction of extracellular matrix and tissue dysfunction. Numerous pharmacological strategies have attempted to prevent fibrosis but have attained limited efficacy with some detrimental side effects. While stem cell treatments have provided more encouraging results, they have exhibited high variability and have not always improved tissue function. To enhance stem cell efficacy, we evaluated whether mechanical memory could direct cell response. We hypothesized that mechanically pre-conditioning on a soft matrix (soft priming) will delay adipose-derived stem cell (ASC) transition to a pro-fibrotic phenotype, expanding their regenerative potential, and improving healing in a complex tissue environment. Primary ASCs isolated from rat and human subcutaneous fat exhibited mechanical memory, demonstrated by a delayed cell response to stiffness following two weeks of soft priming including decreased cell area, actin coherency, and extracellular matrix production compared to cells on stiff substrates. Soft primed ASCs injected into our rat model of post-traumatic elbow contracture decreased histological evidence of anterior capsule fibrosis and increased elbow range-of-motion when evaluated by joint mechanics. These findings suggest that exploiting mechanical memory by strategically controlling the culture environment during cell expansion may improve the efficacy of stem cell-based therapies targeting fibrosis.
Collapse
Affiliation(s)
- Chelsey Dunham
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Necat Havlioglu
- Department of Pathology, John Cochran VA Medical Center, St. Louis, MO, USA
| | - Aaron Chamberlain
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Spencer Lake
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
| | - Gretchen Meyer
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO
- Program in Physical Therapy, Washington University in St. Louis, St. Louis, MO
| |
Collapse
|
7
|
Patnaik SS, Simionescu DT, Goergen CJ, Hoyt K, Sirsi S, Finol EA. Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics. Ann Biomed Eng 2019; 47:39-59. [PMID: 30298373 PMCID: PMC6318003 DOI: 10.1007/s10439-018-02145-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/28/2018] [Indexed: 02/08/2023]
Abstract
Pentagalloyl glucose (PGG) is an elastin-stabilizing polyphenolic compound that has significant biomedical benefits, such as being a free radical sink, an anti-inflammatory agent, anti-diabetic agent, enzymatic resistant properties, etc. This review article focuses on the important benefits of PGG on vascular health, including its role in tissue mechanics, the different modes of pharmacological administration (e.g., oral, intravenous and endovascular route, intraperitoneal route, subcutaneous route, and nanoparticle based delivery and microbubble-based delivery), and its potential therapeutic role in vascular diseases such as abdominal aortic aneurysms (AAA). In particular, the use of PGG for AAA suppression and prevention has been demonstrated to be effective only in the calcium chloride rat AAA model. Therefore, in this critical review we address the challenges that lie ahead for the clinical translation of PGG as an AAA growth suppressor.
Collapse
Affiliation(s)
- Sourav S Patnaik
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA
| | - Dan T Simionescu
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shashank Sirsi
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ender A Finol
- Vascular Biomechanics and Biofluids Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249-0670, USA.
| |
Collapse
|
8
|
Dhulekar J, Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater 2018; 70:25-34. [PMID: 29396167 PMCID: PMC5871600 DOI: 10.1016/j.actbio.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Hyperglycemia and dyslipidemia coexist in diabetes and result in inflammation, degeneration, and impaired tissue remodeling, processes which are not conducive to the desired integration of tissue engineered products into the surrounding tissues. There are several challenges for vascular tissue engineering such as non-thrombogenicity, adequate burst pressure and compliance, suturability, appropriate remodeling responses, and vasoactivity, but, under diabetic conditions, an additional challenge needs to be considered: the aggressive oxidative environment generated by the high glucose and lipid concentrations that lead to the formation of advanced glycation end products (AGEs) in the vascular wall. Extracellular matrix-based scaffolds have adequate physical properties and are biocompatible, however, these scaffolds are altered in diabetes by the formation AGEs and impaired collagen degradation, consequently increasing vascular wall stiffness. In addition, vascular cells detect and respond to altered stimuli from the matrix by pathological remodeling of the vascular wall. Due to the immunomodulatory effects of mesenchymal stem cells (MSCs), they are frequently used in tissue engineering in order to protect the scaffolds from inflammation. MSCs together with antioxidant treatments of the scaffolds are expected to protect the vascular grafts from diabetes-induced alterations. In conclusion, as one of the most daunting environments that could damage the ECM and its interaction with cells is progressively built in diabetes, we recommend that cells and scaffolds used in vascular tissue engineering for diabetic patients are tested in diabetic animal models, in order to obtain valuable results regarding their resistance to diabetic adversities. STATEMENT OF SIGNIFICANCE Almost 25 million Americans have diabetes, characterized by high levels of blood sugar that binds to tissues and disturbs the function of cardiovascular structures. Therefore, patients with diabetes have a high risk of cardiovascular diseases. Surgery is required to replace diseased arteries with implants, but these fail after 5-10 years because they are made of non-living materials, not resistant to diabetes. New tissue engineering materials are developed, based on the patients' own stem cells, isolated from fat, and added to extracellular matrix-based scaffolds. Our main concern is that diabetes could damage the tissue-like implants. Thus we review studies related to the effect of diabetes on tissue components and recommend antioxidant treatments to increase the resistance of implants to diabetes.
Collapse
|
9
|
Yu Y, Song EM, Lee KE, Joo YH, Kim SE, Moon CM, Kim HY, Jung SA, Jo I. Therapeutic potential of tonsil-derived mesenchymal stem cells in dextran sulfate sodium-induced experimental murine colitis. PLoS One 2017; 12:e0183141. [PMID: 28854223 PMCID: PMC5576698 DOI: 10.1371/journal.pone.0183141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 07/23/2017] [Indexed: 02/06/2023] Open
Abstract
The therapeutic potential of tonsil-derived mesenchymal stem cells (TMSC) prepared from human tonsillar tissue has been studied in animal models for several diseases such as hepatic injury, hypoparathyroidism, diabetes and muscle dystrophy. In this study, we examined the therapeutic effects of TMSC in a dextran sulfate sodium (DSS)-induced colitis model. TMSC were injected in DSS-induced colitis mice via intraperitoneal injection twice (TMSC[x2]) or four times (TMSC[x4]). Control mice were injected with either phosphate-buffered saline or human embryonic kidney 293 cells. Body weight, stool condition and disease activity index (DAI) were examined daily. Colon length, histologic grading, and mRNA expression of pro-inflammatory cytokines, interleukin 1β (IL-1β), IL-6, IL-17 and tumor necrosis factor α, and anti-inflammatory cytokines, IL-10, IL-11 and IL-13, were also measured. Our results showed a significant improvement in survival rates and body weight gain in colitis mice injected with TMSC[x2] or TMSC[x4]. Injection with TMSC also significantly decreased DAI scores throughout the experimental period; at the end of experiment, almost complete reversal of DAI scores to normal was found in colitis mice treated with TMSC[x4]. Colon length was also significantly recovered in colitis mice treated with TMSC[x4]. However, histopathological alterations induced by DSS treatment were not apparently improved by injection with TMSC. Finally, treatment with TMSC[x4] significantly reversed the mRNA levels of IL-1β and IL-6, although expression of all pro-inflammatory cytokines tested was induced in colitis mice. Under our experimental conditions, however, no apparent alterations in the mRNA levels of all the anti-inflammatory cytokines tested were found. In conclusion, our findings demonstrate that multiple injections with TMSC produced a therapeutic effect in a mouse model of DSS-induced colitis.
Collapse
Affiliation(s)
- Yeonsil Yu
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Eun Mi Song
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Ko Eun Lee
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Yang-Hee Joo
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Seong-Eun Kim
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Sung-Ae Jung
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
- * E-mail: (IJ); (SAJ)
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, South Korea
- * E-mail: (IJ); (SAJ)
| |
Collapse
|