1
|
Das JM, Upadhyay J, Monaghan MG, Borah R. Impact of the Reduction Time-Dependent Electrical Conductivity of Graphene Nanoplatelet-Coated Aligned Bombyx mori Silk Scaffolds on Electrically Stimulated Axonal Growth. ACS APPLIED BIO MATERIALS 2024; 7:2389-2401. [PMID: 38502100 PMCID: PMC11022174 DOI: 10.1021/acsabm.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Graphene-based nanomaterials, renowned for their outstanding electrical conductivity, have been extensively studied as electroconductive biomaterials (ECBs) for electrically stimulated tissue regeneration. However, using eco-friendly reducing agents like l-ascorbic acid (l-Aa) can result in lower conductive properties in these ECBs, limiting their full potential for smooth charge transfer in living tissues. Moreover, creating a flexible biomaterial scaffold using these materials that accurately mimics a specific tissue microarchitecture, such as nerves, poses additional challenges. To address these issues, this study developed a microfibrous scaffold of Bombyx mori (Bm) silk fibroin uniformly coated with graphene nanoplatelets (GNPs) through a vacuum coating method. The scaffold's electrical conductivity was optimized by varying the reduction period using l-Aa. The research systematically investigated how different reduction periods impact scaffold properties, focusing on electrical conductivity and its significance on electrically stimulated axonal growth in PC12 cells. Results showed that a 48 h reduction significantly increased surface electrical conductivity by 100-1000 times compared to a shorter or no reduction process. l-Aa contributed to stabilizing the reduced GNPs, demonstrated by a slow degradation profile and sustained conductivity even after 60 days in a proteolytic environment. β (III) tubulin immunostaining of PC12 cells on varied silk:GNP scaffolds under pulsed electrical stimulation (ES, 50 Hz frequency, 1 ms pulse width, and amplitudes of 100 and 300 mV/cm) demonstrates accelerated axonal growth on scaffolds exhibiting higher conductivity. This is supported by upregulated intracellular Ca2+ dynamics immediately after ES on the scaffolds with higher conductivity, subjected to a prolonged reduction period. The study showcases a sustainable reduction approach using l-Aa in combination with natural Bm silk fibroin to create a highly conductive, mechanically robust, and stable silk:GNP-based aligned fibrous scaffold. These scaffolds hold promise for functional regeneration in electrically excitable tissues such as nerves, cardiac tissue, and muscles.
Collapse
Affiliation(s)
- Jitu Mani Das
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
| | - Jnanendra Upadhyay
- Department
of Physics, Dakshin Kamrup College, Kamrup, Mirza, Assam 781125, India
| | - Michael G. Monaghan
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
- CÚRAM,
Centre for Research in Medical Devices, National University of Ireland, Galway H91 W2TY, Ireland
| | - Rajiv Borah
- Life
Sciences Division, Institute of Advanced
Study in Science & Technology, Guwahati 781035, India
- Department
of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin D2, Ireland
- Advanced
Materials and BioEngineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons
in Ireland, Dublin D2, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D2, Ireland
| |
Collapse
|
2
|
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3D bioprinting technology. NANO CONVERGENCE 2023; 10:52. [PMID: 37968379 PMCID: PMC10651626 DOI: 10.1186/s40580-023-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
In the field of tissue engineering and regenerative medicine, various hydrogels derived from the extracellular matrix have been utilized for creating engineered tissues and implantable scaffolds. While these hydrogels hold immense promise in the healthcare landscape, conventional bioinks based on ECM hydrogels face several challenges, particularly in terms of lacking the necessary mechanical properties required for 3D bioprinting process. To address these limitations, researchers are actively exploring novel nanomaterial-reinforced ECM hydrogels for both mechanical and functional aspects. In this review, we focused on discussing recent advancements in the fabrication of engineered tissues and monitoring systems using nanobioinks and nanomaterials via 3D bioprinting technology. We highlighted the synergistic benefits of combining numerous nanomaterials into ECM hydrogels and imposing geometrical effects by 3D bioprinting technology. Furthermore, we also elaborated on critical issues remaining at the moment, such as the inhomogeneous dispersion of nanomaterials and consequent technical and practical issues, in the fabrication of complex 3D structures with nanobioinks and nanomaterials. Finally, we elaborated on plausible outlooks for facilitating the use of nanomaterials in biofabrication and advancing the function of engineered tissues.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hohyeon Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
- Institute of Convergence Science, Yonsei University, Seoul, South Korea.
| |
Collapse
|
3
|
Pro-Myogenic Environment Promoted by the Synergistic Effect of Conductive Polymer Nanocomposites Combined with Extracellular Zinc Ions. BIOLOGY 2022; 11:biology11121706. [PMID: 36552216 PMCID: PMC9774464 DOI: 10.3390/biology11121706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
A new strategy based on the combination of electrically conductive polymer nanocomposites and extracellular Zn2+ ions as a myogenic factor was developed to assess its ability to synergically stimulate myogenic cell response. The conductive nanocomposite was prepared with a polymeric matrix and a small amount of graphene (G) nanosheets (0.7% wt/wt) as conductive filler to produce an electrically conductive surface. The nanocomposites' surface electrical conductivity presented values in the range of human skeletal muscle tissue. The biological evaluation of the cell environment created by the combination of the conductive surface and extracellular Zn2+ ions showed no cytotoxicity and good cell adhesion (murine C2C12 myoblasts). Amazingly, the combined strategy, cell-material interface with conductive properties and Zn bioactive ions, was found to have a pronounced synergistic effect on myoblast proliferation and the early stages of differentiation. The ratio of differentiated myoblasts cultured on the conductive nanocomposites with extracellular Zn2+ ions added in the differentiation medium (serum-deprived medium) was enhanced by more than 170% over that of non-conductive surfaces (only the polymeric matrix), and more than 120% over both conductive substrates (without extracellular Zn2+ ions) and non-conductive substrates with extracellular Zn2+. This synergistic effect was also found to increase myotube density, myotube area and diameter, and multinucleated myotube formation. MyoD-1 gene expression was also enhanced, indicating the positive effect in the early stages of myogenic differentiation. These results demonstrate the great potential of this combined strategy, which stands outs for its simplicity and robustness, for skeletal muscle tissue engineering applications.
Collapse
|
4
|
Fu Y, Chen C, Li C, An Q, Zhang W, Zhang Y, Li D. Photothermal properties of PLGA/graphene composite nanofiber membrane for potential anti-tumor application. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
6
|
Aleemardani M, Zare P, Seifalian A, Bagher Z, Seifalian AM. Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury. Biomedicines 2021; 10:73. [PMID: 35052753 PMCID: PMC8773001 DOI: 10.3390/biomedicines10010073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerve injury is a common medical condition that has a great impact on patient quality of life. Currently, surgical management is considered to be a gold standard first-line treatment; however, is often not successful and requires further surgical procedures. Commercially available FDA- and CE-approved decellularized nerve conduits offer considerable benefits to patients suffering from a completely transected nerve but they fail to support neural regeneration in gaps > 30 mm. To address this unmet clinical need, current research is focused on biomaterial-based therapies to regenerate dysfunctional neural tissues, specifically damaged peripheral nerve, and spinal cord. Recently, attention has been paid to the capability of graphene-based materials (GBMs) to develop bifunctional scaffolds for promoting nerve regeneration, often via supporting enhanced neural differentiation. The unique features of GBMs have been applied to fabricate an electroactive conductive surface in order to direct stem cells and improve neural proliferation and differentiation. The use of GBMs for nerve tissue engineering (NTE) is considered an emerging technology bringing hope to peripheral nerve injury repair, with some products already in preclinical stages. This review assesses the last six years of research in the field of GBMs application in NTE, focusing on the fabrication and effects of GBMs for neurogenesis in various scaffold forms, including electrospun fibres, films, hydrogels, foams, 3D printing, and bioprinting.
Collapse
Affiliation(s)
- Mina Aleemardani
- Biomaterials and Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield S3 7HQ, UK;
| | - Pariya Zare
- Department of Chemical Engineering, University of Tehran, Tehran 1417935840, Iran;
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK;
| | - Zohreh Bagher
- ENT and Head and Neck Research Centre, Hazrat Rasoul Akram Hospital, The Five Senses Health Institute, Iran University of Medical Sciences, Tehran 16844, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (NanoRegMed Ltd.), London BioScience Innovation Centre, London NW1 0NH, UK
| |
Collapse
|
7
|
Ławkowska K, Pokrywczyńska M, Koper K, Kluth LA, Drewa T, Adamowicz J. Application of Graphene in Tissue Engineering of the Nervous System. Int J Mol Sci 2021; 23:33. [PMID: 35008456 PMCID: PMC8745025 DOI: 10.3390/ijms23010033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Graphene is the thinnest two-dimensional (2D), only one carbon atom thick, but one of the strongest biomaterials. Due to its unique structure, it has many unique properties used in tissue engineering of the nervous system, such as high strength, flexibility, adequate softness, electrical conductivity, antibacterial effect, and the ability to penetrate the blood-brain barrier (BBB). Graphene is also characterized by the possibility of modifications that allow for even wider application and adaptation to cell cultures of specific cells and tissues, both in vitro and in vivo. Moreover, by using the patient's own cells for cell culture, it will be possible to produce tissues and organs that can be re-transplanted without transplant rejection, the negative effects of taking immunosuppressive drugs, and waiting for an appropriate organ donor.
Collapse
Affiliation(s)
- Karolina Ławkowska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Krzysztof Koper
- Department of Clinical Oncology and Nursing, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland;
| | - Luis Alex Kluth
- Department of Urology, University Medical Center Frankfurt a.M., 60590 Frankfurt am Main, Germany;
| | - Tomasz Drewa
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| | - Jan Adamowicz
- Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Curie-Skłodowskiej 9, 85-094 Bydgoszcz, Poland; (M.P.); (T.D.); (J.A.)
| |
Collapse
|
8
|
Talebi A, Labbaf S, Atari M, Parhizkar M. Polymeric Nanocomposite Structures Based on Functionalized Graphene with Tunable Properties for Nervous Tissue Replacement. ACS Biomater Sci Eng 2021; 7:4591-4601. [PMID: 34461017 DOI: 10.1021/acsbiomaterials.1c00744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electroconductive scaffolds can be a promising approach to repair conductive tissues when natural healing fails. Recently, nerve tissue engineering constructs have been widely investigated due to the challenges in creating a structure with optimized physiochemical and mechanical properties close to the native tissue. The goal of the current study was to fabricate graphene-containing polycaprolactone/gelatin/polypyrrole (PCL/gelatin/PPy) and polycaprolactone/polyglycerol-sebacate/polypyrrole (PCL/PGS/PPy) with intrinsic electrical properties through an electrospinning process. The effect of graphene on the properties of PCL/gelatin/PPy and PCL/PGS/PPy were investigated. Results demonstrated that graphene incorporation remarkably modulated the physical and mechanical properties of the scaffolds such that the electrical conductivity increased from 0.1 to 3.9 ± 0.3 S m-1 (from 0 to 3 wt % graphene) and toughness was found to be 76 MPa (PCL/gelatin/PPy 3 wt % graphene) and 143.4 MPa (PCL/PGS/PPy 3 wt % graphene). Also, the elastic moduli of the scaffolds with 0, 1, and 2 wt % graphene were reported as 210, 300, and 340 kPa in the PCL/gelatin/PPy system and 72, 85, and 92 kPa for the PCL/PGS/PPy system. A cell viability study demonstrated the noncytotoxic nature of the resultant scaffolds. The sum of the results presented in this study suggests that both PCL/gelatin/PPy/graphene and PCL/PGS/PPy/graphene compositions could be promising biomaterials for a range of conductive tissue replacement or regeneration applications.
Collapse
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mehdi Atari
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Parhizkar
- School of Pharmacy, University College London, Torrington Place, London WC1E 7JE, U.K
| |
Collapse
|
9
|
Fernández-Álvarez F, García-García G, Arias JL. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021; 13:1232. [PMID: 34452193 PMCID: PMC8401782 DOI: 10.3390/pharmaceutics13081232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
A (core/shell)/shell nanostructure (production performance ≈ 50%, mean diameter ≈ 330 nm) was built using maghemite, PLGA, and chitosan. An extensive characterization proved the complete inclusion of the maghemite nuclei into the PLGA matrix (by nanoprecipitation solvent evaporation) and the disposition of the chitosan shell onto the nanocomposite (by coacervation). Short-term stability and the adequate magnetism of the nanocomposites were demonstrated by size and electrokinetic determinations, and by defining the first magnetization curve and the responsiveness of the colloid to a permanent magnet, respectively. Safety of the nanoparticles was postulated when considering the results from blood compatibility studies, and toxicity assays against human colonic CCD-18 fibroblasts and colon carcinoma T-84 cells. Cisplatin incorporation to the PLGA matrix generated appropriate loading values (≈15%), and a dual pH- and heat (hyperthermia)-responsive drug release behaviour (≈4.7-fold faster release at pH 5.0 and 45 °C compared to pH 7.4 and 37 °C). The half maximal inhibitory concentration of the cisplatin-loaded nanoparticles against human lung adenocarcinoma A-549 cells was ≈1.6-fold less than that of the free chemotherapeutic. Such a biocompatible and tri-stimuli responsive (maghemite/PLGA)/chitosan nanostructure may found a promising use for the effective treatment of lung cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
10
|
Liu H, Wang Y, Yang Y, Wang A, Huang C, Zhao Z, Li P, Liu M, Fan Y. Aligned graphene/silk fibroin conductive fibrous scaffolds for guiding neurite outgrowth in rat spinal cord neurons. J Biomed Mater Res A 2020; 109:488-499. [PMID: 32515161 DOI: 10.1002/jbm.a.37031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Graphene, as a highly conducting material, incorporated into silk fibroin (SF) substrates is promising to fabricate an electroactive flexible scaffold toward neural tissue engineering. It is well known that aligned morphology could promote cell adhesion and directional growth. The purpose of this study was to develop aligned conductive scaffolds made of graphene and SF (G/SF) by electrospinning technique for neural tissue engineering applications. The physicochemical characterization of scaffolds revealed that the mechanical and electrochemical property of aligned G/SF scaffolds continually raised with the increasing contents of graphene (A0% G/SF, A1% G/SF, A2% G/SF, and A3% G/SF), but the mechanical property descended when the graphene concentration reached to 4% (the A4% G/SF group). The results of the cell experiment in vitro indicated that all the aligned G/SF scaffolds were no neurotoxic to primary cultured spinal cord neurons. In addition, the neurite elongation in all aligned groups was significantly enhanced by the upregulation of Netrin-1 expression compared to them in the control group. Thus, A3% G/SF scaffolds not only possessed the optimal property based on the mechanical and electrochemical performances but also displayed the beneficial capability to neurite outgrowth, which might perform a suitable candidate to successfully scaffold electrically active tissues during neural regeneration or engineering.
Collapse
Affiliation(s)
- Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yuqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yi Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Anqing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chongquan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Zhijun Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Ping Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meili Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
11
|
Pahlevanzadeh F, Emadi R, Valiani A, Kharaziha M, Poursamar SA, Bakhsheshi-Rad HR, Ismail AF, RamaKrishna S, Berto F. Three-Dimensional Printing Constructs Based on the Chitosan for Tissue Regeneration: State of the Art, Developing Directions and Prospect Trends. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2663. [PMID: 32545256 PMCID: PMC7321644 DOI: 10.3390/ma13112663] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
Chitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages, and drawbacks can open doors to optimize CS-based constructions for biomedical applications. The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers for different applications are also discussed. This review article will act as a roadmap aiming to investigate chitosan as a new feedstock concerning various 3D printing approaches which may be employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D printing coupled with the challenges associated with materials should be recognized to help make this method feasible for wider clinical requirements. This strategy is currently gaining substantial attention in terms of several industrial biomedical products. In this review, the key 3D printing approaches along with revealing historical background are initially presented, and ultimately, the applications of different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition of essential complications and technical problems related to numerous 3D printing techniques and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive investigation will be required to encounter those challenges and to completely understand the possibilities of 3D printing in the foreseeable future.
Collapse
Affiliation(s)
- Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - Ali Valiani
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; (F.P.); (R.E.); (M.K.)
| | - S. Ali Poursamar
- Biomaterials, Nanotechnology, and Tissue Engineering Group, Advanced Medical Technology Department, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Johor, Malaysia;
| | - Seeram RamaKrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
12
|
Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. MATERIALS 2020; 13:ma13071687. [PMID: 32260385 PMCID: PMC7178673 DOI: 10.3390/ma13071687] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
Abstract
The scope of this article is to develop composite membranes using chitosan (CS) and graphene oxide (GO) as adsorbents for the removal of inorganic pollutants such as heavy metal ions, particularly Pb2+, from aqueous solutions. GO was obtained by modified Hummers method and blended with CS solution. The introduction of ethylenediaminetetraacetic acid (EDTA) compound to CS/GO suspension lead to an increased adsorption capacity of CS/GO for the elimination of heavy metals by forming stable chelates with them. The synthesized membranes were examined by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), and the adsorption behaviour of Pb2+ from aqueous solutions using CS/EDTA/GO membranes was evaluated using inductively coupled plasma mass spectrometry (ICP-MS). The adsorption performance of Pb2+ ions was studied by monitoring the concentration of Pb2+ against the adsorption period at an initial content of the adsorbent. The maximum adsorption efficiency of Pb2+ metal ions reached 767 mg·g−1 for CS/EDTA/GO 0.1%, 889 mg·g−1 for CS/EDTA/GO 0.3%, 970 mg·g−1 for CS/EDTA, 853 mg·g−1 for CS and 1526 mg·g−1 for GO. These findings show promising potential for CS/EDTA/GO membranes as effective adsorbent materials for the removal of heavy metal ions in water.
Collapse
|
13
|
Correa E, Moncada ME, Gutiérrez OD, Vargas CA, Zapata VH. Characterization of polycaprolactone/rGO nanocomposite scaffolds obtained by electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109773. [PMID: 31349438 DOI: 10.1016/j.msec.2019.109773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
Abstract
The incorporation of nanoparticles inside polymeric matrices has led to the development of multifunctional composites necessary to repair human tissues. The addition of nanoparticles may improve the properties of the composite materials such as surface area, mechanical properties, flexibility, hydrophilicity, electrical conductivity, etc. These properties can help in cellular growth, proliferation and/or differentiation. In this work, scaffolds of polycaprolactone (PCL) and reduced graphite oxide (rGO) were built by electrospinning technique. The ratios of rGO/PCL employed were 0.25, 0.5, 0.75 and 1 wt%. Two different voltage setup (10 and 15 kV) and distance of 10 cm were used for electrospinning. Thermal, mechanical, morphological, electrical, porosity and absorption water tests were made to the scaffolds. Samples electrospun at 10 kV with rGO showed improvement in mechanical properties with an increase of 190% of Young's Modulus in comparison with sample without rGO. Furthermore, samples electrospun at 15 kV showed an important deterioration with the addition of rGO but had an increase in the electrical conductivity and porosity. Overall, the addition of 0.75 and 1 wt% of rGO led to a detriment on properties due to formation of aggregates. The voltage on the electrospinning process plays a very important role in the final properties of the nanocomposites scaffolds of PCL-rGO.
Collapse
Affiliation(s)
- E Correa
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Calle 54A No. 30 - 01, 050013, Grupo de Investigación en Materiales Avanzados y Energía - MATyER, Colombia.
| | - M E Moncada
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Calle 54A No. 30 - 01, 050013, Grupo de Investigación en Materiales Avanzados y Energía - MATyER, Colombia
| | - O D Gutiérrez
- Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín, Colombia, Grupo de Investigación Química Básica, Aplicada y Ambiente - ALQUIMIA
| | - C A Vargas
- Facultad de Ingenierías, Instituto Tecnológico Metropolitano, Medellín, Calle 54A No. 30 - 01, 050013, Grupo de Investigación en Materiales Avanzados y Energía - MATyER, Colombia
| | - V H Zapata
- Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia, Grupo de Óxidos Avanzados
| |
Collapse
|
14
|
Wu X, Zheng S, Ye Y, Wu Y, Lin K, Su J. Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit. Biomater Sci 2018; 6:1147-1158. [PMID: 29561031 DOI: 10.1039/c8bm00127h] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reconstruction of bone defects by guiding autologous bone tissue regeneration with artificial biomaterials is a potential strategy in the area of bone tissue engineering. The development of new polymers with good biocompatibility, favorable mechanical properties, and osteoinductivity is of vital importance. Graphene and its derivatives have attracted extensive interests due to the exceptional physiochemical and biological properties of graphene. In this study, poly(lactic-co-glycolic acid) (PLGA) films incorporated by graphene nanoplates were fabricated. The results indicated that the incorporation of proper graphene nanoplates into poly(lactic-co-glycolic acid) film could enhance the adhesion and proliferation of rat bone marrow-derived mesenchymal stem cells (rBMSCs). The augmentation of alkaline phosphatase activity, calcium mineral deposition, and the expression level of osteogenic-related genes of rBMSCs on the composite films were observed. Moreover, the incorporation of graphene might activate the PI3K/Akt/GSK-3β/β-catenin signaling pathway, which appeared to be the mechanism behind the osteoinductive properties of graphene. Moreover, the in vivo furcation defect implantation results revealed better guiding bone regeneration properties in the graphene-incorporated group. Thus, we highlight this graphene-incorporated film as a promising platform for the growth and osteogenic differentiation of BMSCs that can achieve application in bone regeneration.
Collapse
Affiliation(s)
- Xiaowei Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Shang Zheng
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Yuanzhou Ye
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Yuchen Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| | - Kaili Lin
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China and Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China.
| |
Collapse
|
15
|
Hokmabad VR, Davaran S, Aghazadeh M, Alizadeh E, Salehi R, Ramazani A. A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering. Tissue Eng Regen Med 2018; 15:735-750. [PMID: 30603592 DOI: 10.1007/s13770-018-0140-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 11/29/2022] Open
Abstract
Background The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(ɛ-caprolactone)-poly(ethylene glycol)-poly(ɛ-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica (n-SiO2) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. Methods We evaluated the effect of n-HA and n-SiO2 incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. Results All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with n-SiO2. While the hydrophilicity of n-SiO2 incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to n-SiO2 incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and n-SiO2. Conclusion Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
| | - Soodabeh Davaran
- 2Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Marziyeh Aghazadeh
- 3Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran.,4Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Effat Alizadeh
- 3Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran.,5Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Roya Salehi
- 2Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, 51666-14733 Iran
| | - Ali Ramazani
- 1Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
16
|
Reddy S, Xu X, Guo T, Zhu R, He L, Ramakrishana S. Allotropic carbon (graphene oxide and reduced graphene oxide) based biomaterials for neural regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Zargar Kharazi A, Dini G, Naser R. Fabrication and evaluation of a nerve guidance conduit capable of Ca 2+ ion release to accelerate axon extension in peripheral nerve regeneration. J Biomed Mater Res A 2018; 106:2181-2189. [PMID: 29637737 DOI: 10.1002/jbm.a.36425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/16/2018] [Accepted: 03/28/2018] [Indexed: 11/11/2022]
Abstract
In this study, biodegradable nanocomposites consisting of poly (glycerol sebacate) (PGS) elastomeric matrix and the reinforcing phase of calcium titanate (CaTiO3 ) nanoparticles were fabricated as a nerve guidance conduit (NGC) for peripheral nerve regeneration. CaTiO3 nanoparticles were synthesized via the sol-gel method and calcined at 800°C for 60 min. PGS elastomer was synthesized via the polycondensation reaction of glycerol and sebacate (1:1) and 2.5 and 5 wt. percentages of the synthesized CaTiO3 nanoparticles were added to the PGS prepolymer solution. The composites obtained were heated in order to make crosslinks in the pre-polymer. CaTiO3 nanoparticles, PGS elastomer, and the composites fabricated were characterized in terms of their structural, chemical, physical, mechanical, and cell response properties to evaluate the feasibility of using the nanocomposite for NGC applications. The results indicated that CaTiO3 nanoparticles were 50 nm in size. When the nanoparticles were added to the PGS, the elastic modulus and tensile strength of the nanocomposite reached values of about 1 and 0.5 MPa, respectively that are near those of natural nerves. The degradation behavior and swelling of the nanocomposites, as compared with those of the PGS elastomer, were controlled by introducing CaTiO3 into the PGS, which swelling limitation could prevent nerve compression. It was observed that Ca2+ ions established chemical bonds with PGS, which led to high crosslink densities that, in turn, contribute to improved mechanical properties of the composite. The Ca2+ ions released from the nanocomposite samples were in the nontoxic range. The PC12 cell line on the surface of the nanocomposite specimens showed good cell adhesion and proliferation with improved axon outgrowth and extension. Based on the results obtained the fabricated PGS/CaTiO3 nanocomposite may be recommended as a suitable NGC with desirable effects on peripheral nerve regeneration. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2181-2189, 2018.
Collapse
Affiliation(s)
- Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| | - Ghasem Dini
- Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Reza Naser
- Biomaterials Nanotechnology and Tissue Engineering faculty, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran
| |
Collapse
|
18
|
Gu BK, Park SJ, Kim CH. Beneficial effect of aligned nanofiber scaffolds with electrical conductivity for the directional guide of cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:1053-1065. [DOI: 10.1080/09205063.2017.1364097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Bon Kang Gu
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Korea
| |
Collapse
|