1
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Wang Y, He X, Chen S, Weng Y, Liu Z, Pan Q, Zhang R, Li Y, Wang H, Lin S, Yu H. Annulus Fibrosus Repair for Lumbar Disc Herniation: A Meta-Analysis of Clinical Outcomes From Controlled Studies. Global Spine J 2024; 14:306-321. [PMID: 37068762 PMCID: PMC10676185 DOI: 10.1177/21925682231169963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2023] Open
Abstract
STUDY DESIGN Meta-analysis. OBJECTIVES This study aimed to summarize the clinical efficacy and safety of the various annular defect repair methods that have emerged in recent years. METHODS A meta-analysis of randomized and non-randomized controlled trials was conducted. Articles from PubMed, Embase, and the Cochrane Library (CENTRAL) on Lumbar disc herniation treatment with annular repair published from inception to April 2, 2022 were included. We summarized the clinical efficacy and safety of annular repair techniques based on a random-effects model meta-analysis. RESULTS 7 randomized controlled studies and 8 observational studies with a total of 2161 participants met the inclusion criteria. The pooled data analysis showed that adding the annular repair technique reduced postoperative recurrence rate, reoperation rate, and loss of intervertebral height compared with lumbar discectomy alone. Subgroup analysis based on different annular repair techniques showed that the Barricaid Annular Closure Device (ACD) was effective in preventing re-protrusion and reducing reoperation rates, while there was no significant difference between the other subgroups. The annulus fibrosus suture (AFS) did not improve the postoperative Oswestry Disability Index (ODI). No statistically significant difference was observed in the incidence of adverse events between the annular repair and control groups. CONCLUSIONS Lumbar discectomy combined with ACD can effectively reduce postoperative recurrence and reoperation rates in patients with LDH. AFS alone was less effective in reducing recurrence and reoperation rates and did not improve postoperative pain and function.
Collapse
Affiliation(s)
- Yangbin Wang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xiaoyu He
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shupeng Chen
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yiyong Weng
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhihua Liu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qunlong Pan
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Rongmou Zhang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yizhong Li
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hanshi Wang
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Royal National Orthopaedic Hospital NHS Trust, Quanzhou, Fujian, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia
| | - Haiming Yu
- Department of Orthopaedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
3
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
4
|
Cyril D, Giugni A, Bangar SS, Mirzaeipoueinak M, Shrivastav D, Sharabi M, Tipper JL, Tavakoli J. Elastic Fibers in the Intervertebral Disc: From Form to Function and toward Regeneration. Int J Mol Sci 2022; 23:8931. [PMID: 36012198 PMCID: PMC9408956 DOI: 10.3390/ijms23168931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite extensive efforts over the past 40 years, there is still a significant gap in knowledge of the characteristics of elastic fibers in the intervertebral disc (IVD). More studies are required to clarify the potential contribution of elastic fibers to the IVD (healthy and diseased) function and recommend critical areas for future investigations. On the other hand, current IVD in-vitro models are not true reflections of the complex biological IVD tissue and the role of elastic fibers has often been ignored in developing relevant tissue-engineered scaffolds and realistic computational models. This has affected the progress of IVD studies (tissue engineering solutions, biomechanics, fundamental biology) and translation into clinical practice. Motivated by the current gap, the current review paper presents a comprehensive study (from the early 1980s to 2022) that explores the current understanding of structural (multi-scale hierarchy), biological (development and aging, elastin content, and cell-fiber interaction), and biomechanical properties of the IVD elastic fibers, and provides new insights into future investigations in this domain.
Collapse
Affiliation(s)
- Divya Cyril
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Amelia Giugni
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saie Sunil Bangar
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Melika Mirzaeipoueinak
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dipika Shrivastav
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mirit Sharabi
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
5
|
Yu Q, Han F, Yuan Z, Zhu Z, Liu C, Tu Z, Guo Q, Zhao R, Zhang W, Wang H, Mao H, Li B, Zhu C. Fucoidan-loaded nanofibrous scaffolds promote annulus fibrosus repair by ameliorating the inflammatory and oxidative microenvironments in degenerative intervertebral discs. Acta Biomater 2022; 148:73-89. [PMID: 35671874 DOI: 10.1016/j.actbio.2022.05.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
Tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD). However, implantation of tissue engineered constructs may cause foreign body reaction and aggravate the inflammatory and oxidative microenvironment of the degenerative intervertebral disc (IVD). In order to ameliorate the adverse microenvironment of IDD, in this study, we prepared a biocompatible poly (ether carbonate urethane) urea (PECUU) nanofibrous scaffold loaded with fucoidan, a natural marine bioactive polysaccharide which has great anti-inflammatory and antioxidative functions. Compared with pure PECUU scaffold, the fucoidan-loaded PECUU nanofibrous scaffold (F-PECUU) decreased the gene and protein expression related to inflammation and the oxidative stress in the lipopolysaccharide (LPS) induced annulus fibrosus cells (AFCs) significantly (p<0.05). Especially, gene expression of Ill 6 and Ptgs2 was decreased by more than 50% in F-PECUU with 3.0 wt% fucoidan (HF-PECUU). Moreover, the gene and protein expression related to the degradation of extracellular matrix (ECM) were reduced in a fucoidan concentration-dependent manner significantly, with increased almost 3 times gene expression of Col1a2 and Acan in HF-PECUU. Further, in a 'box' defect model, HF-PECUU decreased the expression of COX-2 and deposited more ECM between scaffold layers when compared with pure PECUU. The disc height and nucleus pulposus hydration of repaired IVD reached up to 75% and 85% of those in the sham group. In addition, F-PECUU helped to maintain an integrate tissue structure with a similar compression modulus to that in sham group. Taken together, the F-PECUU nanofibrous scaffolds showed promising potential to promote AF repair in IDD treatment by ameliorating the harsh degenerative microenvironment. STATEMENT OF SIGNIFICANCE: Annulus fibrosus (AF) tissue engineering holds potential in the treatment of intervertebral disc degeneration (IDD), but is restricted by the inflammatory and oxidative microenvironment of degenerative disc. This study developed a biocompatible polyurethane scaffold (F-PECUU) loaded with fucoidan, a marine bioactive polysaccharide, for ameliorating IDD microenvironment and promoting disc regeneration. F-PECUU alleviated the inflammation and oxidative stress caused by lipopolysaccharide and prevented extracellular matrix (ECM) degradation in AF cells. In vivo, it promoted ECM deposition to maintain the height, water content and mechanical property of disc. This work has shown the potential of marine polysaccharides-containing functional scaffolds in IDD treatment by ameliorating the harsh microenvironment accompanied with disc degeneration.
Collapse
Affiliation(s)
- Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhuang Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Changjiang Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Zhengdong Tu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Runze Zhao
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315000, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215000, China.
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
6
|
Lumbar Intervertebral Disc Herniation: Annular Closure Devices and Key Design Requirements. Bioengineering (Basel) 2022; 9:bioengineering9020047. [PMID: 35200401 PMCID: PMC8869316 DOI: 10.3390/bioengineering9020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lumbar disc herniation is one of the most common degenerative spinal conditions resulting in lower back pain and sciatica. Surgical treatment options include microdiscectomy, lumbar fusion, total disc replacement, and other minimally invasive approaches. At present, microdiscectomy procedures are the most used technique; however, the annulus fibrosus is left with a defect that without treatment may contribute to high reherniation rates and changes in the biomechanics of the lumbar spine. This paper aims to review current commercially available products that mechanically close the annulus including the AnchorKnot® suture-passing device and the Barricaid® annular closure device. Previous studies and reviews have focused mainly on a biomimetic biomaterials approach and have described some mechanical and biological requirements for an active annular repair/regeneration strategy but are still far away from clinical implementation. Therefore, in this paper we aim to create a design specification for a mechanical annular closure strategy by identifying the most important mechanical and biological design parameters, including consideration of material selection, preclinical testing requirements, and requirements for clinical implementation.
Collapse
|
7
|
Tavakoli J, Geargeflia S, Tipper JL, Diwan AD. Magnetic resonance elastography: A non-invasive biomarker for low back pain studies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Borem R, Madeline A, Theos C, Vela R, Garon A, Gill S, Mercuri J. Angle-ply scaffold supports annulus fibrosus matrix expression and remodeling by mesenchymal stromal and annulus fibrosus cells. J Biomed Mater Res B Appl Biomater 2021; 110:1056-1068. [PMID: 34843173 DOI: 10.1002/jbm.b.34980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 11/07/2022]
Abstract
The angle-ply multilaminate structure of the annulus fibrosus is not reestablished following discectomy which leads to reherniation of the intervertebral disc (IVD). Biomimetic scaffolds developed to repair these defects should be evaluated for their ability to support tissue regeneration by endogenous and exogenous cells. Herein a collagen-based, angle-ply multilaminate patch designed to repair the outer annulus fibrosus was assessed for its ability to support mesenchymal stromal and annulus fibrosus cell viability, elongation, alignment, extracellular matrix gene expression, and scaffold remodeling. Results demonstrated that the cells remained viable, elongated, and aligned along the collagen fiber preferred direction of the scaffold, upregulated genes associated with annulus fibrosus matrix and produced collagen on the scaffold yielding biaxial mechanical properties that resembled native annulus fibrosus tissue. In conclusion, these scaffolds have demonstrated their potential to promote a living repair of defects in the annulus fibrosus and thus may be used to prevent recurrent IVD herniations.
Collapse
Affiliation(s)
- Ryan Borem
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Allison Madeline
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Chris Theos
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Ricardo Vela
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Alex Garon
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Sanjitpal Gill
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
9
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
10
|
Baumgartner L, Wuertz-Kozak K, Le Maitre CL, Wignall F, Richardson SM, Hoyland J, Ruiz Wills C, González Ballester MA, Neidlin M, Alexopoulos LG, Noailly J. Multiscale Regulation of the Intervertebral Disc: Achievements in Experimental, In Silico, and Regenerative Research. Int J Mol Sci 2021; 22:E703. [PMID: 33445782 PMCID: PMC7828304 DOI: 10.3390/ijms22020703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major risk factor of low back pain. It is defined by a progressive loss of the IVD structure and functionality, leading to severe impairments with restricted treatment options due to the highly demanding mechanical exposure of the IVD. Degenerative changes in the IVD usually increase with age but at an accelerated rate in some individuals. To understand the initiation and progression of this disease, it is crucial to identify key top-down and bottom-up regulations' processes, across the cell, tissue, and organ levels, in health and disease. Owing to unremitting investigation of experimental research, the comprehension of detailed cell signaling pathways and their effect on matrix turnover significantly rose. Likewise, in silico research substantially contributed to a holistic understanding of spatiotemporal effects and complex, multifactorial interactions within the IVD. Together with important achievements in the research of biomaterials, manifold promising approaches for regenerative treatment options were presented over the last years. This review provides an integrative analysis of the current knowledge about (1) the multiscale function and regulation of the IVD in health and disease, (2) the possible regenerative strategies, and (3) the in silico models that shall eventually support the development of advanced therapies.
Collapse
Affiliation(s)
- Laura Baumgartner
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Karin Wuertz-Kozak
- Department of Biomedical Engineering, Rochester Institute of Technology (RIT), Rochester, NY 14623, USA;
- Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), 81547 Munich, Germany
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Francis Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Sciences Centre, Oxford Road, Manchester M13 9PT, UK; (F.W.); (S.M.R.); (J.H.)
| | - Carlos Ruiz Wills
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| | - Miguel A. González Ballester
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece; (M.N.); (L.G.A.)
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain; (L.B.); (C.R.W.); (M.A.G.B.)
| |
Collapse
|
11
|
Muttigi MS, Kim BJ, Kumar H, Park S, Choi UY, Han I, Park H, Lee SH. Efficacy of matrilin-3-primed adipose-derived mesenchymal stem cell spheroids in a rabbit model of disc degeneration. Stem Cell Res Ther 2020; 11:363. [PMID: 32831130 PMCID: PMC7444036 DOI: 10.1186/s13287-020-01862-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/27/2020] [Accepted: 07/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Chronic low back pain is a prevalent disability, often caused by intervertebral disc (IVD) degeneration. Mesenchymal stem cell (MSC) therapy could be a safe and feasible option for repairing the degenerated disc. However, for successful translation to the clinic, various challenges need to be overcome including unwanted adverse effects due to acidic pH, hypoxia, and limited nutrition. Matrilin-3 is an essential extracellular matrix (ECM) component during cartilage development and ossification and exerts chondrocyte protective effects. METHODS This study evaluated the effects of matrilin-3-primed adipose-derived MSCs (Ad-MSCs) on the repair of the degenerated disc in vitro and in vivo. We determined the optimal priming concentration and duration and developed an optimal protocol for Ad-MSC spheroid generation. RESULTS Priming with 10 ng/ml matrilin-3 for 5 days resulted in the highest mRNA expression of type 2 collagen and aggrecan in vitro. Furthermore, Ad-MSC spheroids with a density of 250 cells/microwell showed the increased secretion of favorable growth factors such as transforming growth factor beta (TGF-β1), TGF-β2, interleukin-10 (IL-10), granulocyte colony-stimulating factor (G-CSF), and matrix metalloproteinase 1 (MMP1) and decreased secretion of hypertrophic ECM components. In addition, matrilin-3-primed Ad-MSC spheroid implantation was associated with optimal repair in a rabbit model. CONCLUSION Our results suggest that priming MSCs with matrilin-3 and spheroid formation could be an effective strategy to overcome the challenges associated with the use of MSCs for the treatment of IVD degeneration.
Collapse
Affiliation(s)
- Manjunatha S Muttigi
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, South Korea
| | - Byoung Ju Kim
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, 04620, South Korea
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, 382010, India
| | - Sunghyun Park
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, 04620, South Korea
- Department of Biomedical Science, CHA University, Seongnam-si, 13488, South Korea
| | - Un Yong Choi
- Department of Neurosurgery, School of Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, South Korea
| | - Inbo Han
- Department of Neurosurgery, School of Medicine, CHA Bundang Medical Center, CHA University, Seongnam-si, 13496, South Korea.
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, 06911, South Korea.
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Dongguk University-Seoul, Seoul, 04620, South Korea.
| |
Collapse
|
12
|
Tavakoli J, Wang J, Chuah C, Tang Y. Natural-based Hydrogels: A Journey from Simple to Smart Networks for Medical Examination. Curr Med Chem 2020; 27:2704-2733. [PMID: 31418656 DOI: 10.2174/0929867326666190816125144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Natural hydrogels, due to their unique biological properties, have been used extensively for various medical and clinical examinations that are performed to investigate the signs of disease. Recently, complex-crosslinking strategies improved the mechanical properties and advanced approaches have resulted in the introduction of naturally derived hydrogels that exhibit high biocompatibility, with shape memory and self-healing characteristics. Moreover, the creation of self-assembled natural hydrogels under physiological conditions has provided the opportunity to engineer fine-tuning properties. To highlight recent studies of natural-based hydrogels and their applications for medical investigation, a critical review was undertaken using published papers from the Science Direct database. This review presents different natural-based hydrogels (natural, natural-synthetic hybrid and complex-crosslinked hydrogels), their historical evolution, and recent studies of medical examination applications. The application of natural-based hydrogels in the design and fabrication of biosensors, catheters and medical electrodes, detection of cancer, targeted delivery of imaging compounds (bioimaging) and fabrication of fluorescent bioprobes is summarised here. Without doubt, in future, more useful and practical concepts will be derived to identify natural-based hydrogels for a wide range of clinical examination applications.
Collapse
Affiliation(s)
- Javad Tavakoli
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,School of Biomedical Engineering, University of Technology Sydney, Ultimo, 2007 NSW, Australia
| | - Jing Wang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia.,Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Institute of Textile Composite, School of Textile, Tianjin Polytechnic University, Tianjin 300387, China
| | - Clarence Chuah
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| | - Youhong Tang
- Institute of NanoScale Science and Technology, Medical Device Research Institute, College of Science and Engineering, Flinders University, South Australia 5042, Australia
| |
Collapse
|
13
|
Advanced Strategies for the Regeneration of Lumbar Disc Annulus Fibrosus. Int J Mol Sci 2020; 21:ijms21144889. [PMID: 32664453 PMCID: PMC7402314 DOI: 10.3390/ijms21144889] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022] Open
Abstract
Damage to the annulus fibrosus (AF), the outer region of the intervertebral disc (IVD), results in an undesirable condition that may accelerate IVD degeneration causing low back pain. Despite intense research interest, attempts to regenerate the IVD have failed so far and no effective strategy has translated into a successful clinical outcome. Of particular significance, the failure of strategies to repair the AF has been a major drawback in the regeneration of IVD and nucleus replacement. It is unlikely to secure regenerative mediators (cells, genes, and biomolecules) and artificial nucleus materials after injection with an unsealed AF, as IVD is exposed to significant load and large deformation during daily activities. The AF defects strongly change the mechanical properties of the IVD and activate catabolic routes that are responsible for accelerating IVD degeneration. Therefore, there is a strong need to develop effective therapeutic strategies to prevent or reconstruct AF damage to support operational IVD regenerative strategies and nucleus replacement. By the way of this review, repair and regenerative strategies for AF reconstruction, their current status, challenges ahead, and future outlooks were discussed.
Collapse
|
14
|
Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro. Polymers (Basel) 2020; 12:polym12030700. [PMID: 32245277 PMCID: PMC7183275 DOI: 10.3390/polym12030700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/11/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
The annulus fibrosus-one of the two tissues comprising the intervertebral disc-is susceptible to injury and disease, leading to chronic pain and rupture. A synthetic, biodegradable material could provide a suitable scaffold that alleviates this pain and supports repair through tissue regeneration. The transfer of properties, particularly biomechanical, from scaffold to new tissue is essential and should occur at the same rate to prevent graft failure post-implantation. This study outlines the effect of hydrolytic degradation on the material properties of a novel blend of polycaprolactone and poly(lactic acid) electrospun nanofibers (50:50) over a six-month period following storage in phosphate buffered saline solution at 37 °C. As expected, the molecular weight distribution for this blend decreased over the 180-day period. This was in line with significant changes to fiber morphology, which appeared swollen and merged following observation using Scanning Electron Microscopy. Similarly, hydrolysis resulted in considerable remodeling of the scaffolds' polymer chains as demonstrated by sharp increases in percentage crystallinity and tensile properties becoming stiffer, stronger and more brittle over time. These mechanical data remained within the range reported for human annulus fibrosus tissue and their long-term efficacy further supports this novel blend as a potential scaffold to support tissue regeneration.
Collapse
|
15
|
Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:53-66. [DOI: 10.1007/978-981-15-3258-0_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Kim MJ, Ji YB, Seo JY, Park SH, Kim JH, Min BH, Kim MS. Substance P-loaded electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) sheet to facilitate wound healing through MSC recruitment. J Mater Chem B 2019; 7:7599-7611. [PMID: 31740904 DOI: 10.1039/c9tb01532a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, we prepared an electrospun small intestinal submucosa/poly(ε-caprolactone)-ran-poly(l-lactide) (SIS/PCLA) sheet onto which substance P (SP) was loaded, and this was employed as a cell-free scaffold for wound healing through the mobilization of human mesenchymal stem cells (hMSCs). SP release from the SP-loaded scaffold was 42% at 12 h and 51% at 24 h due to an initial burst of SP, but after 1 day, it exhibited a linear release profile and was released at a sustained rate for 21 days. The SP-loaded SIS/PCLA sheet exhibited higher in vitro and in vivo hMSC migration than did the PCLA and SIS/PCLA sheets. Large hMSCs injected into the tail vein of mice models migrated towards the wound to a greater extent in the presence of the SP-loaded SIS/PCLA sheet than with the PCLA and SIS/PCLA sheets, as confirmed by the CD44 and CD29 markers of recruited hMSCs. In animal wound models, significantly higher wound contraction (∼97%) in the group treated with the SP-loaded SIS/PCLA sheet was observed compared with the PCLA (∼74%) and SIS/PCLA (∼84%) groups at 3 weeks. In addition, SP-loaded SIS/PCLA-treated animals showed significant epidermal regeneration and collagen density (56%) in the mature granulation tissue at 3 weeks compared to the PCLA and SIS/PCLA groups. The wound area after SP-loaded SIS/PCLA sheet treatment also showed high blood vessel formation at the early stage, resulting in enhanced wound healing. Furthermore, the SP-loaded SIS/PCLA group exhibited a lower macrophage count (2.9%) than did the PCLA (7.7%) and SIS/PCLA (3.4%) groups. It was thus confirmed that the use of SP-loaded SIS/PCLA sheet as a cell-free scaffold could effectively enhance wound healing through MSC recruitment.
Collapse
Affiliation(s)
- Min Ju Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Ji Young Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
17
|
Kim MG, Kang TW, Park JY, Park SH, Ji YB, Ju HJ, Kwon DY, Kim YS, Kim SW, Lee B, Choi HS, Lee HB, Kim JH, Lee BY, Min BH, Kim MS. An injectable cationic hydrogel electrostatically interacted with BMP2 to enhance in vivo osteogenic differentiation of human turbinate mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109853. [PMID: 31349513 DOI: 10.1016/j.msec.2019.109853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 01/06/2023]
Abstract
We have designed and characterized an injectable, electrostatically bonded, in situ-forming hydrogel system consisting of a cationic polyelectrolyte [(methoxy)polyethylene glycol-b-(poly(ε-caprolactone)-ran-poly(L-lactic acid)] (MP) copolymer derivatized with an amine group (MP-NH2) and anionic BMP2. To the best of our knowledge, there have been hardly any studies that have investigated electrostatically bonded, in situ-forming hydrogel systems consisting of MP-NH2 and BMP2, with respect to how they promote in vivo osteogenic differentiation of human turbinate mesenchymal stem cells (hTMSCs). Injectable formulations almost immediately formed an electrostatically loaded hydrogel depot containing BMP2, upon injection into mice. The hydrogel features and stability of BMP2 inside the hydrogel were significantly affected by the electrostatic attraction between BMP2 and MP-NH2. Additionally, the time BMP2 spent inside the hydrogel depot was prolonged in vivo, as evidenced by in vivo near-infrared fluorescence imaging. Biocompatibility was demonstrated by the fact that hTMSCs survived in vivo, even after 8 weeks and even though relatively few macrophages were in the hydrogel depot. The osteogenic capacity of the electrostatically loaded hydrogel implants containing BMP2 was higher than that of a hydrogel that was simply loaded with BMP2, as evidenced by Alizarin Red S, von Kossa, and hematoxylin and eosin staining as well as osteonectin, osteopontin, osteocalcin, and type 1α collagen mRNA expression. The results confirmed that our injectable, in situ-forming hydrogel system, electrostatically loaded with BMP2, can enhance in vivo osteogenic differentiation of hTMSCs.
Collapse
Affiliation(s)
- Mal Geum Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Tae Woong Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Joon Yeong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seung Hun Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Yun Bae Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyeon Jin Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Doo Yeon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Young Sik Kim
- The Institute of Biomaterial and Medical Engineering, Cellumed Co., Ltd., Seoul 08589, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, The Catholic University of Korea, College of Medicine, Seoul 06591, Republic of Korea
| | - Bong Lee
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Bang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Jae Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Byoung Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
18
|
One step bulk modification of poly(L-lactic acid) composites with functional additives to improve mechanical and biological properties for cardiovascular implant applications. Colloids Surf B Biointerfaces 2019; 179:161-169. [PMID: 30954879 DOI: 10.1016/j.colsurfb.2019.03.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/15/2023]
Abstract
Poly(L-lactic acid) (PLLA) has been widely used as a promising biomaterial in biomedical applications due to its biodegradability and high mechanical strength. However, because of the inherent brittleness, low impact resistance, and weak thermal stability of PLLA, the modification process is usually required to utilize it for biomedical devices. Furthermore, acidic byproducts resulting from the hydrolysis of PLLA after implantation reduce the pH of the surrounding environment and cause inflammatory responses in the implanted area, leading to the failure of their clinical applications. To this end, here, we demonstrate a novel modification process for the PLLA composite with various functional additives, such as cis-aconitic anhydride (AA), triacetin (TA), isosorbide derivative (ISB), and/or Pluronic® F127 (F). The modified PLLA composite with TA and F (PLLA/TF) showed significantly improved elongation at break and Young's modulus and retained tensile strength. Moreover, incorporating magnesium hydroxide (MH) nanoparticles (PLLA/TFMH) significantly reduced acid-induced inflammation responses caused by the acidic degradation products of PLLA. Reduced plasma protein adsorption was observed in the PLLA/TFMH. These results suggest that the one step bulk modification of biodegradable PLLA using TA, F, and MH will have great potential in cardiovascular implant applications.
Collapse
|
19
|
Im SH, Jung Y, Kim SH. In Situ Homologous Polymerization of l-Lactide Having a Stereocomplex Crystal. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Seung Hyuk Im
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Korea University
of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Korea University
of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
20
|
Won HR, Kim YS, Won JE, Shin YS, Kim CH. The Application of Fibrin/Hyaluronic Acid-Poly(l-Lactic- co-Glycolic Acid) Construct in Augmentation Rhinoplasty. Tissue Eng Regen Med 2018; 15:223-230. [PMID: 30603549 PMCID: PMC6171688 DOI: 10.1007/s13770-017-0095-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 12/18/2022] Open
Abstract
Although many graft materials have been used for augmentation rhinoplasty, an ideal graft has not yet been developed. As the field of tissue engineering has been developing, it has been applied to the reconstruction of many organs, but its application in the rhinoplasty field is still limited. This study evaluated the utility of allogenic chondrocytes with fibrin/hyaluronic acid (HA)-poly(l-lactic-co-glycolic acid) (PLGA) constructs in augmentation rhinoplasty. Chondrocytes from rabbit auricular cartilage were isolated and cultured with fibrin/HA hydrogels and implanted into PLGA scaffolds. After 8 weeks of in vitro culture, the scaffolds were implanted in the nasal dorsum of six rabbits. Eight weeks postoperatively, the implanted sites were evaluated with gross, radiologic, and histologic analysis. In vitro, more than 90% of the seeded chondrocytes in the PLGA scaffolds survived for 2 weeks, and they produced a large amount of extracellular matrix and were well differentiated. The grafts maintained their initial shape for 8 weeks after implantation. Radiological and histological evaluations showed that the structure was well maintained with minimal inflammatory response and appropriate elevation levels. However, the formation of neo-chondrocytes was not observed. PLGA scaffolds seeded with fibrin/HA and allogenic chondrocytes can be a biocompatible augmentation material in rhinoplasty in the future.
Collapse
Affiliation(s)
- Ho-Ryun Won
- Department of Otolaryngology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Yoo Suk Kim
- Yonsei ENT Clinic, 511 Nonhyeon-ro, Gangnam-gu, Seoul, 06131 Republic of Korea
| | - Jong-Eun Won
- Department of Otolaryngology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, 164 World cup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 16499 Republic of Korea
| |
Collapse
|