1
|
Shama KA, Greenberg ZF, Tammame C, He M, Taylor BL. Diseased Tendon Models Demonstrate Influence of Extracellular Matrix Alterations on Extracellular Vesicle Profile. Bioengineering (Basel) 2024; 11:1019. [PMID: 39451395 PMCID: PMC11505312 DOI: 10.3390/bioengineering11101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent biomechanical and regenerative capacity in patients. Moreover, the complex cellular communication within the tendon microenvironment ultimately dictates the fate between healthy and diseased tendon, wherein extracellular vesicles (EVs) may facilitate the tendon's fate by transporting biomolecules within the tissue. In this study, we aimed to elucidate how the EV functionality is altered in the context of tendon microenvironments by using polycaprolactone (PCL) electrospun scaffolds mimicking healthy and pathological tendon matrices. Scaffolds were characterized for fiber alignment, mechanical properties, and cellular activity. EVs were isolated and analyzed for concentration, heterogeneity, and protein content. Our results show that our mimicked healthy tendon led to an increase in EV secretion and baseline metabolic activity over the mimicked diseased tendon, where reduced EV secretion and a significant increase in metabolic activity over 5 days were observed. These findings suggest that scaffold mechanics may influence EV functionality, offering insights into tendon homeostasis. Future research should further investigate how EV cargo affects the tendon's microenvironment.
Collapse
Affiliation(s)
- Kariman A. Shama
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | | | - Chadine Tammame
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | - Mei He
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32603, USA;
| | - Brittany L. Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| |
Collapse
|
2
|
Qiu B, Wu D, Xue M, Ou L, Zheng Y, Xu F, Jin H, Gao Q, Zhuang J, Cen J, Lin B, Su YC, Chen S, Sun D. 3D Aligned Nanofiber Scaffold Fabrication with Trench-Guided Electrospinning for Cardiac Tissue Engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4709-4718. [PMID: 38388349 DOI: 10.1021/acs.langmuir.3c03358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Constructing three-dimensional (3D) aligned nanofiber scaffolds is significant for the development of cardiac tissue engineering, which is promising in the field of drug discovery and disease mechanism study. However, the current nanofiber scaffold preparation strategy, which mainly includes manual assembly and hybrid 3D printing, faces the challenge of integrated fabrication of morphology-controllable nanofibers due to its cross-scale structural feature. In this research, a trench-guided electrospinning (ES) strategy was proposed to directly fabricate 3D aligned nanofiber scaffolds with alternative ES and a direct ink writing (DIW) process. The electric field effect of DIW poly(dimethylsiloxane) (PDMS) side walls on guiding whipping ES nanofibers was investigated to construct trench design rules. It was found that the width/height ratio of trenches greatly affected the nanofiber alignment, and the trench width/height ratio of 1.5 provided the nanofiber alignment degree over 60%. As a proof of principle, 3D nanofiber scaffolds with controllable porosity (60-80%) and alignment (30-60%) were fabricated. The effect of the scaffolds was verified by culturing human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), which resulted in the uniform 3D distribution of aligned hiPSC-CMs with ∼1000 μm thickness. Therefore, this printing strategy shows great potential for the efficient engineered tissue construction.
Collapse
Affiliation(s)
- Bin Qiu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Dongyang Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Mingcheng Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Lu Ou
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Yanfei Zheng
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Feng Xu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Hang Jin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Qiang Gao
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jian Zhuang
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Jianzheng Cen
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Bin Lin
- Guangdong Beating Origin Regenerative Medicine Co. Ltd., Foshan 528231, Guangdong, China
| | - Yu-Chuan Su
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 300044, Taiwan, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Choi DJ, Choi K, Park SJ, Kim YJ, Chung S, Kim CH. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Int J Mol Sci 2021; 22:ijms222111600. [PMID: 34769034 PMCID: PMC8584198 DOI: 10.3390/ijms222111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (-10 °C cryogenic plate, 40-80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts' proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks.
Collapse
Affiliation(s)
- Dong Jin Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
- Program in Biomicro System Technology, Korea University, Innovation Hall, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Kyoung Choi
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
- Program in Biomicro System Technology, Korea University, Innovation Hall, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Sang Jun Park
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
| | - Young-Jin Kim
- Department of Biomedical Engineering, Catholic University of Daegu, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Korea;
| | - Seok Chung
- Program in Biomicro System Technology, Korea University, Innovation Hall, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| | - Chun-Ho Kim
- Laboratory of Tissue Engineering, Korea Institute of Radiological and Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul 01812, Korea; (D.J.C.); (K.C.); (S.J.P.)
- Correspondence: ; Tel.: +82-2-970-1319; Fax: +82-2-970-2402
| |
Collapse
|
4
|
Alcala-Orozco CR, Cui X, Hooper GJ, Lim KS, Woodfield TB. Converging functionality: Strategies for 3D hybrid-construct biofabrication and the role of composite biomaterials for skeletal regeneration. Acta Biomater 2021; 132:188-216. [PMID: 33713862 DOI: 10.1016/j.actbio.2021.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/02/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
The evolution of additive manufacturing (AM) technologies, biomaterial development and our increasing understanding of cell biology has created enormous potential for the development of personalized regenerative therapies. In the context of skeletal tissue engineering, physical and biological demands play key roles towards successful construct implantation and the achievement of bone, cartilage and blood vessel tissue formation. Nevertheless, meeting such physical and biological demands to mimic the complexity of human tissues and their functionality is still a significant ongoing challenge. Recent studies have demonstrated that combination of AM technologies and advanced biomaterials has great potential towards skeletal tissue engineering. This review aims to analyze how the most prominent technologies and discoveries in the field converge towards the development of advanced constructs for skeletal regeneration. Particular attention is placed on hybrid biofabrication strategies, combining bioinks for cell delivery with biomaterial inks providing physical support. Hybrid biofabrication has been the focus of recent emerging strategies, however there has been limited review and analysis of these techniques and the challenges involved. Furthermore, we have identified that there are multiple hybrid fabrication strategies, here we present a category system where each strategy is reviewed highlighting their distinct advantages, challenges and potential applications. In addition, bioinks and biomaterial inks are the main components of the hybrid biofabrication strategies, where it is recognized that such platforms still lack optimal physical and biological functionality. Thus, this review also explores the development of composite materials specifically targeting the enhancement of physical and biological functionality towards improved skeletal tissue engineering. STATEMENT OF SIGNIFICANCE: Biofabrication strategies capable of recreating the complexity of native tissues could open new clinical possibilities towards patient-specific regenerative therapies and disease models. Several reviews target the existing additive manufacturing (AM) technologies that may be utilised for biomedical purposes. However, this work presents a unique perspective, describing how such AM technologies have been recently translated towards hybrid fabrication strategies, targeting the fabrication of constructs with converging physical and biological properties. Furthermore, we address composite bioinks and biomaterial inks that have been engineered to overcome traditional limitations, and might be applied to the hybrid fabrication strategies outlined. This work offers ample perspectives and insights into the current and future challenges for the fabrication of skeletal tissues aiming towards clinical and biomedical applications.
Collapse
|
5
|
Ji Y, Park J, Kang Y, Lee S, Ju H, Choi S, Lee B, Kim M. Scaffold printing using biodegradable poly(1,4-butylene carbonate) ink: printability, in vivo physicochemical properties, and biocompatibility. Mater Today Bio 2021; 12:100129. [PMID: 34604731 PMCID: PMC8463913 DOI: 10.1016/j.mtbio.2021.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
This study is the first to assess the applicability of biodegradable poly(1,4-butylene carbonate) (PBC) as a printing ink for fused deposition modeling (FDM). Here, PBC was successfully prepared via the bulk polycondensation of 1,4-butanediol and dimethyl carbonate. PBC was melted above 150°C in the heating chamber of an FDM printer, after which it flowed from the printing nozzle upon applying pressure and solidified at room temperature to create a three-dimensional (3D) scaffold structure. A 3D scaffold exactly matching the program design was obtained by controlling the temperature and pressure of the FDM printer. The compressive moduli of the printed PBC scaffold decreased as a function of implantation time. The printed PBC scaffold exhibited good in vitro biocompatibility, as well as in vivo neotissue formation and little host tissue response, which was proportional to the gradual biodegradation. Collectively, our findings demonstrated the feasibility of PBC as a suitable printing ink candidate for the creation of scaffolds via FDM printing.
Collapse
Affiliation(s)
- Y.B. Ji
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - J.Y. Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Y. Kang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - S. Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - H.J. Ju
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - S. Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - B.Y. Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - M.S. Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
- Research Institute Center, Medipolymers, Research Institute, Suwon 16522, South Korea
| |
Collapse
|
6
|
Wang T, Han Y, Wu Z, Qiu S, Rao Z, Zhao C, Zhu Q, Quan D, Bai Y, Liu X. Tissue-Specific Hydrogels for 3D Printing and Potential Application in Peripheral Nerve Regeneration. Tissue Eng Part A 2021; 28:161-174. [PMID: 34309417 DOI: 10.1089/ten.tea.2021.0093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Decellularized extracellular matrix hydrogel (dECM-G) has demonstrated its significant tissue-specificity, high biocompatibility, and versatile utilities in tissue engineering. However, the low mechanical stability and fast degradation are major drawbacks for its application in 3D printing. Herein, we report a hybrid hydrogel system consisting of dECM-Gs and photocrosslinkable gelatin methacrylate (GelMA), which resulted in significantly improved printability and structural fidelity. These pre-mixed hydrogels retained high bioactivity and tissue-specificity due to their containing dECM-Gs. More specifically, it was realized that the hydrogel containing dECM-G derived from porcine peripheral nerves (GelMA/pDNM-G) effectively facilitated neurite growth and Schwann cell migration from 2D cultured dorsal root ganglion explants. The nerve cells were also encapsulated in the GelMA/pDNM-G hydrogel for 3D culture or underwent cell-laden bioprinting with high cell viability. The preparation of such GelMA/dECM-G hydrogels enabled the recapitulation of functional tissues through extrusion-based bioprinting, which holds great potential for applications in regenerative medicine.
Collapse
Affiliation(s)
- Tao Wang
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Orthopedic and Microsurgery, Guangzhou, Guangdong, China;
| | - Yang Han
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Obstetrics, Guangzhou, Guangdong, China;
| | - Zejia Wu
- Sun Yat-Sen University, 26469, School of Chemistry, Guangzhou, Guangdong, China;
| | - Shuai Qiu
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Orthopedic and Microsurgery, Guangdong Guangzhou 58 Zhongshan 2nd Road, Guangzhou, Guangdong, China, 86-20-84114030;
| | - Zilong Rao
- Sun Yat-Sen University, 26469, School of Chemistry, School of Materials Science and Engineering, Guangzhou, Guangdong, China;
| | - Cailing Zhao
- Sun Yat-Sen University, 26469, School of Materials Science and Engineering, Guangzhou, Guangdong, China;
| | - Qingtang Zhu
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Orthopedic and Microsurgery, Guangzhou, Guangdong, China;
| | - Daping Quan
- Sun Yat-Sen University, 26469, School of Materials Science and Engineering, Guangzhou, Guangdong, China;
| | - Ying Bai
- Sun Yat-Sen University, 26469, School of Materials Science and Engineering, No. 135 Xin'gangxi Road, Guangzhou, Guangdong, China, 510275;
| | - Xiaolin Liu
- Sun Yat-sen University First Affiliated Hospital, 71068, Department of Orthopedic and Microsurgery, Guangzhou, Guangdong, China;
| |
Collapse
|
7
|
Kchaou M, Alquraish M, Abuhasel K, Abdullah A, Ali AA. Electrospun Nanofibrous Scaffolds: Review of Current Progress in the Properties and Manufacturing Process, and Possible Applications for COVID-19. Polymers (Basel) 2021; 13:916. [PMID: 33809662 PMCID: PMC8002202 DOI: 10.3390/polym13060916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Over the last twenty years, researchers have focused on the potential applications of electrospinning, especially its scalability and versatility. Specifically, electrospun nanofiber scaffolds are considered an emergent technology and a promising approach that can be applied to biosensing, drug delivery, soft and hard tissue repair and regeneration, and wound healing. Several parameters control the functional scaffolds, such as fiber geometrical characteristics and alignment, architecture, etc. As it is based on nanotechnology, the concept of this approach has shown a strong evolution in terms of the forms of the materials used (aerogels, microspheres, etc.), the incorporated microorganisms used to treat diseases (cells, proteins, nuclei acids, etc.), and the manufacturing process in relation to the control of adhesion, proliferation, and differentiation of the mimetic nanofibers. However, several difficulties are still considered as huge challenges for scientists to overcome in relation to scaffolds design and properties (hydrophilicity, biodegradability, and biocompatibility) but also in relation to transferring biological nanofibers products into practical industrial use by way of a highly efficient bio-solution. In this article, the authors review current progress in the materials and processes used by the electrospinning technique to develop novel fibrous scaffolds with suitable design and that more closely mimic structure. A specific interest will be given to the use of this approach as an emergent technology for the treatment of bacteria and viruses such as COVID-19.
Collapse
Affiliation(s)
- Mohamed Kchaou
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Mohammed Alquraish
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Khaled Abuhasel
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| | - Ahmad Abdullah
- Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia;
- Department of Civil Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
| | - Ashraf A. Ali
- Department of Mechanical Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 67714, Saudi Arabia; (M.A.); (K.A.); (A.A.A.)
| |
Collapse
|
8
|
Thao NTT, Lee S, Shin GR, Kang Y, Choi S, Kim MS. Preparation of Electrospun Small Intestinal Submucosa/Poly(caprolactone- co-Lactide- co-glycolide) Nanofiber Sheet as a Potential Drug Carrier. Pharmaceutics 2021; 13:pharmaceutics13020253. [PMID: 33670418 PMCID: PMC7917610 DOI: 10.3390/pharmaceutics13020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
In this work, we chose small intestine submucosa (SIS) as a drug carrier because SIS possesses good biocompatibility, non-immunogenic property and bio-resorbability, and performed electrospinning for preparation of nanofiber sheets (NS). For the preparation of drug-loaded electrospun SIS nanofiber sheets as a drug carrier, we used poly(ε-caprolactone-ran-l-lactide) (PCLA) copolymers to improve the electrospinning performance of SIS. The electrospinning of SIS and PCLA provided the electrospun SIS/PCLA (S/P)-nanofiber sheet (S/P-NS) with adjustable thickness and areas. The electrospun S/P-NS showed different porosities, pore sizes, diameters and tensile strengths depending on the ratios between SIS and PCLA. The electrospun S/P-NS was used as a drug carrier of the dexamethasone (Dex) and silver sulfadiazine (AgS) drug related to anti-inflammation. Dex-loaded S/P-NS and AgS-loaded S/P-NS was successfully fabricated by the electrospinning. In the in vitro and in vivo release, we successfully confirmed the possibility for the sustained release of Dex and AgS from the Dex-S/P-NS and AgS-S/P-NS for three weeks. In addition, the sustained Dex and AgS release suppressed the macrophage infiltration. Collectively, we achieved feasible development of SIS nanofiber sheets for a sustained Dex and AgS delivery system.
Collapse
Affiliation(s)
| | | | | | | | | | - Moon Suk Kim
- Correspondence: ; Tel.: +82-31-219-2608; Fax: +82-31-219-3931
| |
Collapse
|
9
|
Bedair TM, Heo Y, Ryu J, Bedair HM, Park W, Han DK. Biocompatible and functional inorganic magnesium ceramic particles for biomedical applications. Biomater Sci 2021; 9:1903-1923. [PMID: 33506843 DOI: 10.1039/d0bm01934h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnesium ceramics hold promise for numerous biological applications. This review covers the synthesis of magnesium ceramic particles with specific morphologies and potential modification techniques. Magnesium ceramic particles possess multiple characteristics directly applicable to human biology; they are anti-inflammatory, antibacterial, antiviral, and offer anti-cancer effects. Based on these advantages, magnesium hydroxide nanoparticles have been extensively utilized across biomedical fields. In a vascular stent, the incorporation of magnesium ceramic nanoparticles enhances re-endothelialization. Additionally, tissue regeneration for bone, cartilage, and kidney can be promoted by magnesium ceramics. This review enables researchers to identify the optimum synthetic conditions to prepare magnesium ceramics with specific morphologies and sizes and select the appropriate modification protocols. It is also intended to elucidate the desirable physicochemical properties and biological benefits of magnesium ceramics.
Collapse
Affiliation(s)
- Tarek M Bedair
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi 13488, Korea.
| | | | | | | | | | | |
Collapse
|
10
|
Askari M, Afzali Naniz M, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 2021; 9:535-573. [DOI: 10.1039/d0bm00973c] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the last decade, 3D bioprinting has received immense attention from research communities to bridge the divergence between artificially engineered tissue constructs and native tissues.
Collapse
Affiliation(s)
- Mohsen Askari
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Moqaddaseh Afzali Naniz
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| | - Monireh Kouhi
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | - Azadeh Saberi
- Nanotechnology and Advanced Materials Department
- Materials and Energy Research Center
- Tehran
- Iran
| | | | - Mahdi Bodaghi
- Department of Engineering
- School of Science and Technology
- Nottingham Trent University
- Nottingham NG11 8NS
- UK
| |
Collapse
|
11
|
Lee J, Lee J, Lee S, Ahmad T, Madhurakkat Perikamana SK, Kim EM, Lee SW, Shin H. Bioactive Membrane Immobilized with Lactoferrin for Modulation of Bone Regeneration and Inflammation. Tissue Eng Part A 2020; 26:1243-1258. [DOI: 10.1089/ten.tea.2020.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Jinki Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sajeesh Kumar Madhurakkat Perikamana
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020; 5:biomimetics5040049. [PMID: 33050136 PMCID: PMC7709492 DOI: 10.3390/biomimetics5040049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches appear nowadays highly promising for the regeneration of injured/diseased tissues. Biomimetic scaffolds are continuously been developed to act as structural support for cell growth and proliferation as well as for the delivery of cells able to be differentiated, and also of bioactive molecules like growth factors and even signaling cues. The current research concerns materials employed to develop biological scaffolds with improved features as well as complex preparation techniques. In this work, hybrid systems based on natural polymers are discussed and the efforts focused to provide new polymers able to mimic proteins and DNA are extensively explained. Progress on the scaffold fabrication technique is mentioned, those processes based on solution and melt electrospinning or even on their combination being mainly discussed. Selection of the appropriate hybrid technology becomes vital to get optimal architecture to reasonably accomplish the final applications. Representative examples of the recent possibilities on tissue regeneration are finally given.
Collapse
Affiliation(s)
- Omid Yousefzade
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bedukidze Univesity Campus, Tbilisi 0131, Georgia;
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-401-5649
| |
Collapse
|
13
|
Comparison of Scaffolds Fabricated via 3D Printing and Salt Leaching: In Vivo Imaging, Biodegradation, and Inflammation. Polymers (Basel) 2020; 12:polym12102210. [PMID: 32993178 PMCID: PMC7599662 DOI: 10.3390/polym12102210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, we prepared fluorescently labeled poly(ε-caprolactone-ran-lactic acid) (PCLA-F) as a biomaterial to fabricate three-dimensional (3D) scaffolds via salt leaching and 3D printing. The salt-leached PCLA-F scaffold was fabricated using NaCl and methylene chloride, and it had an irregular, interconnected 3D structure. The printed PCLA-F scaffold was fabricated using a fused deposition modeling printer, and it had a layered, orthogonally oriented 3D structure. The printed scaffold fabrication method was clearly more efficient than the salt leaching method in terms of productivity and repeatability. In the in vivo fluorescence imaging of mice and gel permeation chromatography of scaffolds removed from rats, the salt-leached PCLA scaffolds showed slightly faster degradation than the printed PCLA scaffolds. In the inflammation reaction, the printed PCLA scaffolds induced a slightly stronger inflammation reaction due to the slower biodegradation. Collectively, we can conclude that in vivo biodegradability and inflammation of scaffolds were affected by the scaffold fabrication method.
Collapse
|
14
|
Grogan SP, Baek J, D'Lima DD. Meniscal tissue repair with nanofibers: future perspectives. Nanomedicine (Lond) 2020; 15:2517-2538. [PMID: 32975146 DOI: 10.2217/nnm-2020-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The knee menisci are critical to the long-term health of the knee joint. Because of the high incidence of injury and degeneration, replacing damaged or lost meniscal tissue is extremely clinically relevant. The multiscale architecture of the meniscus results in unique biomechanical properties. Nanofibrous scaffolds are extremely attractive to replicate the biochemical composition and ultrastructural features in engineered meniscus tissue. We review recent advances in electrospinning to generate nanofibrous scaffolds and the current state-of-the-art of electrospun materials for meniscal regeneration. We discuss the importance of cellular function for meniscal tissue engineering and the application of cells derived from multiple sources. We compare experimental models necessary for proof of concept and to support translation. Finally, we discuss future directions and potential for technological innovations.
Collapse
Affiliation(s)
- Shawn P Grogan
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Jihye Baek
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| | - Darryl D D'Lima
- Shiley Center for Orthopedic Research & Education at Scripps Clinic 10666 North Torrey Pines Road, MS126, La Jolla, CA 92037, USA.,Department of Molecular Medicine, Scripps Research, 10550 North Torrey Pines Road, MB-102, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Kim CH, Kim TH. Graphene Hybrid Materials for Controlling Cellular Microenvironments. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4008. [PMID: 32927729 PMCID: PMC7559936 DOI: 10.3390/ma13184008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Cellular microenvironments are known as key factors controlling various cell functions, including adhesion, growth, migration, differentiation, and apoptosis. Many materials, including proteins, polymers, and metal hybrid composites, are reportedly effective in regulating cellular microenvironments, mostly via reshaping and manipulating cell morphologies, which ultimately affect cytoskeletal dynamics and related genetic behaviors. Recently, graphene and its derivatives have emerged as promising materials in biomedical research owing to their biocompatible properties as well as unique physicochemical characteristics. In this review, we will highlight and discuss recent studies reporting the regulation of the cellular microenvironment, with particular focus on the use of graphene derivatives or graphene hybrid materials to effectively control stem cell differentiation and cancer cell functions and behaviors. We hope that this review will accelerate research on the use of graphene derivatives to regulate various cellular microenvironments, which will ultimately be useful for both cancer therapy and stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Cheol-Hwi Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea;
- Integrative Research Centre for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
16
|
Xie Z, Gao M, Lobo AO, Webster TJ. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers (Basel) 2020; 12:E1717. [PMID: 32751797 PMCID: PMC7464247 DOI: 10.3390/polym12081717] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) printing, as one of the most popular recent additive manufacturing processes, has shown strong potential for the fabrication of biostructures in the field of tissue engineering, most notably for bones, orthopedic tissues, and associated organs. Desirable biological, structural, and mechanical properties can be achieved for 3D-printed constructs with a proper selection of biomaterials and compatible bioprinting methods, possibly even while combining additive and conventional manufacturing (AM and CM) procedures. However, challenges remain in the need for improved printing resolution (especially at the nanometer level), speed, and biomaterial compatibilities, and a broader range of suitable 3D-printed materials. This review provides an overview of recent advances in the development of 3D bioprinting techniques, particularly new hybrid 3D bioprinting technologies for combining the strengths of both AM and CM, along with a comprehensive set of material selection principles, promising medical applications, and limitations and future prospects.
Collapse
Affiliation(s)
- Zelong Xie
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Ming Gao
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| | - Anderson O. Lobo
- LIMAV–Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI–Federal University of Piauí, Teresina 64049-550, Brazil;
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (Z.X.); (M.G.)
| |
Collapse
|
17
|
Abbadessa A, Crecente-Campo J, Alonso MJ. Engineering Anisotropic Meniscus: Zonal Functionality and Spatiotemporal Drug Delivery. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:133-154. [PMID: 32723019 DOI: 10.1089/ten.teb.2020.0096] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human meniscus is a fibrocartilaginous structure that is crucial for an adequate performance of the human knee joint. Degeneration of the meniscus is often followed by partial or total meniscectomy, which enhances the risk of developing knee osteoarthritis. The lack of a satisfactory treatment for this condition has triggered a major interest in drug delivery (DD) and tissue engineering (TE) strategies intended to restore a bioactive and fully functional meniscal tissue. The aim of this review is to critically discuss the most relevant studies on spatiotemporal DD and TE, aiming for a multizonal meniscal reconstruction. Indeed, the development of meniscal tissue implants should involve a provision for adequate active molecules and scaffold features that take into account the anisotropic ultrastructure of human meniscus. This zonal differentiation is reflected in the meniscus biochemical composition, collagen fiber arrangement, and cell distribution. In this sense, it is expected that a proper combination of advanced DD and zonal TE strategies will play a key role in the future trends in meniscus regeneration. Impact statement Meniscus degeneration is one of the main causes of knee pain, inflammation, and reduced mobility. Currently used suturing procedures and meniscectomy are far from being ideal solutions to the loss of meniscal function. Therefore, drug delivery (DD) and tissue engineering (TE) strategies are currently under investigation. DD systems aim at an in situ controlled release of growth factors, whereas TE strategies aim at mimicking the anisotropy of native meniscus. The goal of this review is to discuss these two main approaches, as well as synergies between them that are expected to lead to a real breakthrough in the field.
Collapse
Affiliation(s)
- Anna Abbadessa
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), IDIS Research Institute, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
18
|
Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020; 8:3574-3600. [PMID: 32555780 DOI: 10.1039/d0bm00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering (TE) provides a practicable method for tissue and organ repair or substitution. As the most important component of TE, a scaffold plays a critical role in providing a growing environment for cell proliferation and functional differentiation as well as good mechanical support. And the restorative effects are greatly dependent upon the nature of the scaffold including the composition, morphology, structure, and mechanical performance. Medical textiles have been widely employed in the clinic for a long time and are being extensively investigated as TE scaffolds. However, unfortunately, the advantages of textile technology cannot be fully exploited in tissue regeneration due to the ignoring of the diversity of fabric structures. Therefore, this review focuses on textile-based scaffolds, emphasizing the significance of the fabric design and the resultant characteristics of cell behavior and extracellular matrix reconstruction. The structure and mechanical behavior of the fabrics constructed by various textile techniques for different tissue repairs are summarized. Furthermore, the prospect of structural design in the TE scaffold preparation was anticipated, including profiled fibers and some unique and complex textile structures. Hopefully, the readers of this review would appreciate the importance of structural design of the scaffold and the usefulness of textile-based TE scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Echave MC, Domingues RMA, Gómez-Florit M, Pedraz JL, Reis RL, Orive G, Gomes ME. Biphasic Hydrogels Integrating Mineralized and Anisotropic Features for Interfacial Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47771-47784. [PMID: 31789494 DOI: 10.1021/acsami.9b17826] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The innate graded structural and compositional profile of musculoskeletal tissue interfaces is disrupted and replaced by fibrotic tissue in the context of disease and degeneration. Tissue engineering strategies focused on the restoration of the transitional complexity found in those junctions present special relevance for regenerative medicine. Herein, we developed a gelatin-based multiphasic hydrogel system, where sections with distinct composition and microstructure were integrated in a single unit. In each phase, hydroxyapatite particles or cellulose nanocrystals (CNC) were incorporated into an enzymatically cross-linked gelatin network to mimic bone or tendon tissue, respectively. Stiffer hydrogels were produced with the incorporation of mineralized particles, and magnetic alignment of CNC resulted in anisotropic structure formation. The evaluation of the biological commitment with human adipose-derived stem cells toward the tendon-to-bone interface revealed an aligned cell growth and higher synthesis and deposition of tenascin in the anisotropic phase, while the activity of the secreted alkaline phosphatase and the expression of osteopontin were induced in the mineralized phase. These results highlight the potential versatility offered by gelatin-transglutaminase enzyme tandem for the development of strategies that mimic the graded, composite, and complex intersections of the connective tissues.
Collapse
Affiliation(s)
- Mari Carmen Echave
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , Vitoria-Gasteiz 01006 , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz 01006 , Spain
| | - Rui M A Domingues
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, 4805-017 Guimarães , Portugal
| | - Manuel Gómez-Florit
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , Vitoria-Gasteiz 01006 , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz 01006 , Spain
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, 4805-017 Guimarães , Portugal
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy , University of the Basque Country UPV/EHU , Paseo de la Universidad 7 , Vitoria-Gasteiz 01006 , Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz 01006 , Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua) , Vitoria 01006 , Spain
| | - Manuela E Gomes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , University of Minho , AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra , Barco, 4805-017 Guimarães , Portugal
- ICVS/3B's-PT Government Associate Laboratory , Braga/Guimarães , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine , Headquarters at University of Minho , Avepark , Barco, 4805-017 Guimarães , Portugal
| |
Collapse
|
20
|
Datta P, Dhara S. Engineering Porosity in Electrospun Nanofiber Sheets by Laser Engraving: A Strategy to Fabricate 3D Scaffolds for Bone Graft Applications. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00115-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Sooriyaarachchi D, Wu J, Feng A, Islam M, Tan GZ. Hybrid Fabrication of Biomimetic Meniscus Scaffold by 3D Printing and Parallel Electrospinning. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.promfg.2019.06.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|