1
|
Nakagawa S, Ando W, Shimomura K, Hart DA, Hanai H, Jacob G, Chijimatsu R, Yarimitu S, Fujie H, Okada S, Tsumaki N, Nakamura N. Repair of osteochondral defects: efficacy of a tissue-engineered hybrid implant containing both human MSC and human iPSC-cartilaginous particles. NPJ Regen Med 2023; 8:59. [PMID: 37857652 PMCID: PMC10587071 DOI: 10.1038/s41536-023-00335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Both mesenchymal stromal cells (MSC) and induced pluripotent stem cells (iPSC) offer the potential for repair of damaged connective tissues. The use of hybrid implants containing both human MSC and iPSC was investigated to assess their combined potential to yield enhanced repair of osteochondral defects. Human iPSC-CP wrapped with tissue engineered constructs (TEC) containing human MSC attained secure defect filling with good integration to adjacent tissue in a rat osteochondral injury model. The presence of living MSC in the hybrid implants was required for effective biphasic osteochondral repair. Thus, the TEC component of such hybrid implants serves several critical functions including, adhesion to the defect site via the matrix and facilitation of the repair via live MSC, as well as enhanced angiogenesis and neovascularization. Based on these encouraging studies, such hybrid implants may offer an effective future intervention for repair of complex osteochondral defects.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Wataru Ando
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan.
- Department of Orthopaedic Surgery, Kansai Rosai Hospital, Amagasaki, 660-8511, Japan.
| | - Kazunori Shimomura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - David A Hart
- McCaig Institute for Bone and Joint Health, Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hiroto Hanai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - George Jacob
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Ryota Chijimatsu
- Department of Medical Data Science, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Seido Yarimitu
- Department of Mechanical Systems Engineering, Faculty of Systems Design, Tokyo Metropolitan University, Hachioji, 192-0364, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Faculty of Systems Design, Tokyo Metropolitan University, Hachioji, 192-0364, Japan
| | - Seiji Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Noriyuki Tsumaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
- Department of Tissue Biochemistry, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, 565-0871, Japan
| | - Norimasa Nakamura
- Institute for Medical Science in Sports, Osaka Health Science University, Osaka, 530-0043, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
2
|
Fan X, Jiang K, Geng F, Lu W, Wei G. Ocular therapies with biomacromolecules: From local injection to eyedrop and emerging noninvasive delivery strategies. Adv Drug Deliv Rev 2023; 197:114864. [PMID: 37156266 DOI: 10.1016/j.addr.2023.114864] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The last two decades have witnessed a continuously increasing number of biomacromolecules approved for the treatment of ocular diseases. The eye possesses multiple protective mechanisms to resist the invasion of exogenous substances, but meanwhile these physiological defense systems also act as strong barriers, impeding absorption of most biomacromolecules into the eye. As a result, local injections play predominant roles for posterior ocular delivery of biomacromolecules in clinical practice. To achieve safe and convenient application of biomacromolecules, alternative strategies to realize noninvasive intraocular delivery are necessary. Various nanocarriers, novel penetration enhancers and physical strategies have been explored to facilitate delivery of biomacromolecules to both anterior and posterior ocular segments but still suffered difficulties in clinical translation. This review compares the anatomical and physiological characteristics of the eyes from those frequently adopted experimental species and profiles the well-established animal models of ocular diseases. We also summarize the ophthalmic biomacromolecules launched on the market and put emphasis on emerging noninvasive intraocular delivery strategies of peptides, proteins and genes.
Collapse
Affiliation(s)
- Xingyan Fan
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Kuan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; Eye Institute and Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200030, P.R. China
| | - Feiyang Geng
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China
| | - Gang Wei
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, PR China; The Institutes of Integrative Medicine of Fudan University, Shanghai, 200040, PR China; Shanghai Engineering Research Center of ImmunoTherapeutics, Shanghai, 201203, PR China.
| |
Collapse
|
3
|
Terpstra ML, Li J, Mensinga A, de Ruijter M, van Rijen MHP, Androulidakis C, Galiotis C, Papantoniou I, Matsusaki M, Malda J, Levato R. Bioink with cartilage-derived extracellular matrix microfibers enables spatial control of vascular capillary formation in bioprinted constructs. Biofabrication 2022; 14. [PMID: 35354130 DOI: 10.1088/1758-5090/ac6282] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Microvasculature is essential for the exchange of gas and nutrient for most tissues in our body. Some tissue structures such as the meniscus presents spatially confined blood vessels adjacent to non-vascularized regions. In biofabrication, mimicking the spatial distribution of such vascular components is paramount, as capillary ingrowth into non-vascularized tissues can lead to tissue matrix alterations and subsequent pathology. Multi-material 3D bioprinting can potentially resolve anisotropic tissue features, although building complex constructs comprising stable vascularized and non-vascularized regions remains a major challenge. Here, we developed endothelial cell(EC)-laden pro- and anti-angiogenic bioinks, supplemented with bioactive matrix-derived microfibers (MFs) that were created from type I collagen sponges (col-1) and cartilage decellularized extracellular matrix (CdECM). EC-driven capillary network formation started two days after bioprinting. Supplementing cartilage-derived MFs to endothelial-cell laden bioinks reduced the total length of neo-microvessels by 29% after 14 days, compared to col-1 MFs-laden bioinks. As a proof of concept, the bioinks were bioprinted into an anatomical meniscus shape with a biomimetic vascularized outer and non-vascularized inner region, using a microgel suspension bath. The constructs were cultured up to 14 days, with in the outer zone the HUVEC-, mural cell-, and col-1 MF-laden pro-angiogenic bioink, and in the inner zone a meniscus progenitor cell (MPC)- and CdECM MF-laden anti-angiogenic bioink, revealing successful spatial confinement of the nascent vascular network only in the outer zone. Further, to co-facilitate both microvessel formation and MPC-derived matrix formation, we formulated cell culture medium conditions with a temporal switch. Overall, this study provides a new strategy that could be applied to develop zonal biomimetic meniscal constructs. Moreover, the use of ECM-derived MFs to promote or inhibit capillary networks opens new possibilities for the biofabrication of tissues with anisotropic microvascular distribution. These have potential for many applications including in vitro models, cancer progression, and testing anti-angiogenic therapies.
Collapse
Affiliation(s)
- Margo Luchiena Terpstra
- University Medical Centre Utrecht Department of Orthopedics, Heidelberglaan 100, Utrecht, 3584 CX, NETHERLANDS
| | - Jinyu Li
- Department of Applied Chemistry, Osaka University, Faculty of Engineering, Suita, Osaka 565-0871, Suita, Osaka, 565-0871, JAPAN
| | - Anneloes Mensinga
- Utrecht University Faculty of Veterinary Medicine, Heidelberglaan 8, Utrecht, Utrecht, 3584 CS, NETHERLANDS
| | - Mylène de Ruijter
- University Medical Centre Utrecht Department of Orthopedics, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Mattie H P van Rijen
- Department of Orthopedics, Universitair Medisch Centrum Utrecht, Heidelberglaan 100, Utrecht, Utrecht, 3584 CX, NETHERLANDS
| | - Charalampos Androulidakis
- Department of Chemical Engineering, University of Patras, Stadiou Street, Platani, Patras, Periféria Dhitikís Elládh, 26504, GREECE
| | - Costas Galiotis
- Department Chemical EngineeringScience, University of Patras, Panepistimioupoli, Rio, GR-26504 Patras, Patra, Periféria Dhitikís Elládh, 26504, GREECE
| | - Ioannis Papantoniou
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1, +10, Herestraat 49, box 813, Leuven, 3000, BELGIUM
| | - Michiya Matsusaki
- Department of Applied Chemistry, Osaka University, Faculty of Engineering, Suita, Osaka 565-0871, Suita, Osaka, 565-0871, JAPAN
| | - Jos Malda
- Orthopaedics, University Medical Centre Utrecht Department of Orthopedics, The Netherlands, Utrecht, 3508 GA, NETHERLANDS
| | - Riccardo Levato
- Utrecht University Faculty of Veterinary Medicine, Heidelberglaan 8, Utrecht, 3584 CS, NETHERLANDS
| |
Collapse
|
4
|
Nossin Y, Farrell E, Koevoet WJ, Datema F, Somoza RA, Caplan AI, van Osch GJ. The Releasate of Avascular Cartilage Demonstrates Inherent Pro-Angiogenic Properties In Vitro and In Vivo. Cartilage 2021; 13:559S-570S. [PMID: 34590881 PMCID: PMC8721614 DOI: 10.1177/19476035211047628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE Cartilage is avascular and numerous studies have identified the presence of single anti- and pro-angiogenic factors in cartilage. To better understand the maintenance hyaline cartilage, we assessed the angiogenic potential of complete cartilage releasate with functional assays in vitro and in vivo. DESIGN We evaluated the gene expression profile of angiogenesis-related factors in healthy adult human articular cartilage with a transcriptome-wide analysis generated by next-generation RNAseq. The effect on angiogenesis of the releasate of cartilage tissue was assessed with a chick chorioallantoic membrane (CAM) assay as well as human umbilical vein endothelial cell (HUVEC) migration and proliferation assays using conditioned media generated from tissue-engineered cartilage derived from human articular and nasal septum chondrocytes as well as explants from bovine articular cartilage and human nasal septum. Experiments were done with triplicate samples of cartilage from 3 different donors. RESULTS RNAseq data of 3 healthy human articular cartilage donors revealed that the majority of known angiogenesis-related factors expressed in healthy adult articular cartilage are pro-angiogenic. The releasate from generated cartilage as well as from tissue explants, demonstrated at least a 3.1-fold increase in HUVEC proliferation and migration indicating a pro-angiogenic effect of cartilage. Finally, the CAM assay demonstrated that cartilage explants can indeed attract vessels; however, their ingrowth was not observed. CONCLUSION Using multiple approaches, we show that cartilage releasate has an inherent pro-angiogenic capacity. It remains vessel free due to anti-invasive properties associated with the tissue itself.
Collapse
Affiliation(s)
- Yannick Nossin
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Eric Farrell
- Department of Oral and
Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Wendy J.L.M. Koevoet
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Frank Datema
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands
| | - Rodrigo A. Somoza
- Department of Biology, Skeletal
Research Center, Case Western Reserve University, Cleveland, OH, USA,CWRU Center for Multimodal
Evaluation of Engineered-Cartilage, Cleveland, OH, USA
| | - Arnold I. Caplan
- Department of Biology, Skeletal
Research Center, Case Western Reserve University, Cleveland, OH, USA,CWRU Center for Multimodal
Evaluation of Engineered-Cartilage, Cleveland, OH, USA
| | - Gerjo J.V.M. van Osch
- Department of
Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, the Netherlands,Department of Orthopaedics,
Erasmus MC, University Medical Center Rotterdam, Rotterdam, the
Netherlands,Department of Biomedical
Engineering, Faculty of Mechanical, Maritime, and Materials Engineering,
Delft University of Technology, Delft, the Netherlands,Gerjo J.V.M. van Osch, Departments
of Orthopaedics & Otorhinolaryngology, Erasmus MC, University
Medical Center Rotterdam, Room Ee1655c Wytemaweg 80, Rotterdam, 3015
CN, the Netherlands.
| |
Collapse
|
5
|
Song BR, Park IS, Park DY, Kim YJ, Kim MS, Lee KB, Park SR, Choi BH, Min BH. Anti-adhesive effect of chondrocyte-derived extracellular matrix surface-modified with poly-L-lysine (PLL). J Tissue Eng Regen Med 2021; 16:279-289. [PMID: 34788485 DOI: 10.1002/term.3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 12/08/2022]
Abstract
After an injury, soft tissue structures in the body undergo a natural healing process through specific phases of healing. Adhesions occur as abnormal attachments between tissues and organs through the formation of blood vessels and/or fibrinous adhesions during the regenerative repair process. In this study, we developed an adhesion-preventing membrane with an improved physical protection function by modifying the surface of chondrocyte-derived extracellular matrices (CECM) with anti-adhesion function. We attempted to change the negative charge of the CECM surface to neutral using poly-L-lysine (PLL) and investigated whether it blocked fibroblast adhesion to it and showed an improved anti-adhesion effect in animal models of tissue adhesion. The surface of the membrane was modified with PLL coating (PLL 10), which neutralized the surface charge. We confirmed that the surface characteristics except for the potential difference were maintained after the modification and tested cell attachment in vitro. Adhesion inhibition was identified in a peritoneal adhesion animal model at 1 week and in a subcutaneous adhesion model for 4 weeks. N-CECM suppressed fibroblast and endothelial cell adhesion in vitro and inhibited abdominal adhesions in vivo. The CECM appeared to actively inhibit the infiltration of endothelial cells into the injured site, thereby suppressing adhesion formation, which differed from conventional adhesion barriers in the mode of action. Furthermore, the N-CECM remained intact without degradation for more than four weeks in vivo and exerted anti-adhesion effects for a long time. This study demonstrated that PLL10 surface modification rendered a neutral charge to the polymer on the extracellular matrix surface, thereby inhibiting cell and tissue adhesion. Furthermore, this study suggests a means to modify extracellular matrix surfaces to meet the specific requirements of the target tissue in preventing post-surgical adhesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Ram Song
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| | - In Su Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Young Jick Kim
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Moon Suk Kim
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Kyi Beom Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - So Ra Park
- Department of Physiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Shin YH, Yun HW, Park SY, Choi SJ, Park IS, Min BH, Kim JK. Effect of glutaraldehyde-crosslinked cartilage acellular matrix film on anti-adhesion and nerve regeneration in a rat sciatic nerve injury model. J Tissue Eng Regen Med 2021; 15:1023-1036. [PMID: 34591344 DOI: 10.1002/term.3249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 09/01/2021] [Indexed: 01/16/2023]
Abstract
Decellularized extra-cellular matrix (ECM) has been studied as an alternative to anti-adhesive biomaterials and cartilage acellular matrix (CAM) has been shown to inhibit postoperative adhesion in several organs. This study aimed to evaluate the suitability of glutaraldehyde (GA) crosslinked CAM-films as anti-adhesion barriers for peripheral nerve injury. The films were successfully fabricated and showed improved physical properties such as mechanical strength, swelling ratio, and lengthened degradation period while maintaining the microstructure and chemical composition after GA crosslinking. In the in vitro study of CAM-film, the dsDNA content met the recommended limit of decellularization and more than 70% of the major ECM components were preserved after decellularization. The adhesion and proliferation of seeded human umbilical vein endothelial cells and fibroblasts were significantly lower in CAM-film than in control, but similar with Seprafilm. However, the CAM-film extract did not show cytotoxicity. In the in vivo study, the peri-neural fibrosis was thicker, adhesion score higher, and peri-neural collagen fibers more abundant in the control group than in the CAM-film group. The total number of myelinated axons was significantly higher in the CAM-film group than in the control group. The inflammatory marker decreased with time in the CAM-film group compared to that in the control group, whereas the nerve regenerative marker expression was maintained. Moreover, the ankle angles at contracture and toe-off were higher in the CAM film-treated rats than in the control rats. GA-crosslinked CAM films may be used during peripheral nerve surgery to prevent peri-neural adhesion and enhance nerve functional recovery.
Collapse
Affiliation(s)
- Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hee-Woong Yun
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Suk Young Park
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soon Jin Choi
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In-Su Park
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Jeong W, Kim MK, Kang HW. Effect of detergent type on the performance of liver decellularized extracellular matrix-based bio-inks. J Tissue Eng 2021; 12:2041731421997091. [PMID: 33717429 PMCID: PMC7919203 DOI: 10.1177/2041731421997091] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/05/2023] Open
Abstract
Decellularized extracellular matrix-based bio-inks (dECM bio-inks) for
bioprinting technology have recently gained attention owing to their excellent
ability to confer tissue-specific functions and 3D-printing capability. Although
decellularization has led to a major advancement in bio-ink development, the
effects of detergent type, the most important factor in decellularization, are
still unclear. In this study, the effects of various detergent types on bio-ink
performance were investigated. Porcine liver-derived dECM bio-inks prepared
using widely used detergents, including sodium dodecyl sulfate (SDS), sodium
deoxycholate (SDC), Triton X-100 (TX), and TX with ammonium hydroxide (TXA),
were characterized in detail. SDS and SDC severely damaged glycosaminoglycan and
elastin proteins, TX showed the lowest rate of decellularization, and TXA-based
dECM bio-ink possessed the highest ECM content among all bio-inks. Differences
in biochemical composition directly affected bio-ink performance, with TXA-dECM
bio-ink showing the best performance with respect to gelation kinetics,
intermolecular bonding, mechanical properties, and 2D/3D printability. More
importantly, cytocompatibility tests using primary mouse hepatocytes also showed
that the TXA-dECM bio-ink improved albumin secretion and cytochrome P450
activity by approximately 2.12- and 1.67-fold, respectively, compared with the
observed values for other bio-inks. Our results indicate that the detergent type
has a great influence on dECM damage and that the higher the dECM content, the
better the performance of the bio-ink for 3D bioprinting.
Collapse
Affiliation(s)
- Wonwoo Jeong
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Min Kyeong Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hyun-Wook Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|