1
|
Lin Y, Xu H, Wang K, Wang X, Wu X, Tang Z, Lin Y, Chen C, Wang B. Transcriptomics integrated with metabolomics reveals the effect of benzo[a]pyrene exposure on acute lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117323. [PMID: 39549570 DOI: 10.1016/j.ecoenv.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Benzo[a]pyrene (BaP), a major harmful component in PM2.5, is widely present in automobile emissions and atmospheric pollution. BaP exposure directly targets the lungs, often resulting in acute lung injury (ALI). However, comprehensive metabolic and transcriptomic profiles related to BaP-induced ALI remain unexplored. To simulate BaP-induced lung injury, we performed intratracheal instillation of BaP. To investigate how BaP exposure affects lung transcriptome and metabolic profiles, we used RNA sequencing and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). We aimed to understand the underlying mechanisms of BaP-induced lung damage. Metabolomics analyses indicated that in BaP-exposed animals, most fatty acids, carbohydrates, and steroids were significantly reduced, whereas most amino acids and organic acids remained unchanged. Analysis of transcriptomics data showed that fatty acid synthesis decreased and fatty acid oxidation increased, suggesting that lipid breakdown occurs after BaP exposure. Additionally, there were increases in oxidative stress system activity and decreases in immune system function. Finally, BaP altered mitochondrial, lipid, immune system, and fatty acid pathways, as indicated by pathway enrichment analyses. These results show that BaP substantially affects metabolic and inflammatory responses, enhancing the broader understanding of the underlying mechanisms of ALI after BaP exposure.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haibo Xu
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kaitao Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xinye Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Wu
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiyi Tang
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuxi Lin
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Beibei Wang
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Li Y, Yuan K, Deng C, Tang H, Wang J, Dai X, Zhang B, Sun Z, Ren G, Zhang H, Wang G. Biliary stents for active materials and surface modification: Recent advances and future perspectives. Bioact Mater 2024; 42:587-612. [PMID: 39314863 PMCID: PMC11417150 DOI: 10.1016/j.bioactmat.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Demand for biliary stents has expanded with the increasing incidence of biliary disease. The implantation of plastic or self-expandable metal stents can be an effective treatment for biliary strictures. However, these stents are nondegradable and prone to restenosis. Surgical removal or replacement of the nondegradable stents is necessary in cases of disease resolution or restenosis. To overcome these shortcomings, improvements were made to the materials and surfaces used for the stents. First, this paper reviews the advantages and limitations of nondegradable stents. Second, emphasis is placed on biodegradable polymer and biodegradable metal stents, along with functional coatings. This also encompasses tissue engineering & 3D-printed stents were highlighted. Finally, the future perspectives of biliary stents, including pro-epithelialization coatings, multifunctional coated stents, biodegradable shape memory stents, and 4D bioprinting, were discussed.
Collapse
Affiliation(s)
- Yuechuan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Kunshan Yuan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Chengchen Deng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Hui Tang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Jinxuan Wang
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Bing Zhang
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Ziru Sun
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Guiying Ren
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
- College of materials science and engineering, Shandong University of Technology, Zibo, 25500, Shandong, China
| | - Haijun Zhang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, 251100, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, National Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, 610500, China
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine (CVIHEM), Drum Tower Hospital, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
He Y, Wang Q, Liu Y, Zhang Z, Cao Z, Wang S, Ying X, Ma G, Wang X, Liu H. Composite Mineralized Collagen/Polycaprolactone Scaffold-Loaded Microsphere System with Dual Osteogenesis and Antibacterial Functions. Polymers (Basel) 2024; 16:2394. [PMID: 39274026 PMCID: PMC11397082 DOI: 10.3390/polym16172394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/16/2024] Open
Abstract
Biomaterials play an important role in treating bone defects. The functional characteristics of scaffolds, such as their structure, mechanical strength, and antibacterial and osteogenesis activities, effectively promote bone regeneration. In this study, mineralized collagen and polycaprolactone were used to prepare loaded porous scaffolds with bilayer-structured microspheres with dual antibacterial and osteogenesis functions. The different drug release mechanisms of PLGA and chitosan in PLGA/CS microspheres caused differences in the drug release models in terms of the duration and rate of Pac-525 and BMP-2 release. The prepared PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffolds were analyzed in terms of physical characteristics, bioactivity, and antibacterial properties. The scaffolds with a dimensional porous structure showed similar porosity and pore diameter to cancellous bone. The release curve of the microspheres and scaffolds with high encapsulation rates displayed the two-stage release of Pac-525 and BMP-2 over 30 days. It was found that the scaffolds could inhibit S. aureus and E. coli and then promote ALP activity. The PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffold could be used as a dual delivery system to promote bone regeneration.
Collapse
Affiliation(s)
- Yuzhu He
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Qindong Wang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yuqi Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
| | - Zijiao Zhang
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Zheng Cao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Shuo Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoxia Ying
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| | - Xiumei Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Dalian 116044, China
- Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
4
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
5
|
Thapa Magar K, Boucetta H, Zhao Z, Xu Y, Liu Z, He W. Injectable long-acting formulations (ILAFs) and manufacturing techniques. Expert Opin Drug Deliv 2024; 21:881-904. [PMID: 38953767 DOI: 10.1080/17425247.2024.2374807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Most therapeutics delivered using short-acting formulations need repeated administration, which can harm patient compliance and raise failure risks related to inconsistent treatment. Injectable long-acting formulations (ILAFs) are controlled/sustained-release formulations fabricated to deliver active pharmaceutical ingredients (APIs) and extend their half-life over days to months. Longer half-lives of ILAFs minimize the necessity for frequent doses, increase patient compliance, and reduce the risk of side effects from intravenous (IV) infusions. Using ILAF technologies, the immediate drug release can also be controlled, thereby minimizing potential adverse effects due to high initial drug blood concentrations. AREA COVERED In this review, we have discussed various ILAFs, their physiochemical properties, fabrication technologies, advantages, and practical issues, as well as address some major challenges in their application. Especially, the approved ILAFs are highlighted. EXPERT OPINION ILAFs are sustained-release formulations with extended activity, which can improve patient compliance. ILAFs are designed to deliver APIs like proteins and peptides and extend their half-life over days to months. The specific properties of each ILAF preparation, such as extended-release and improved drug targeting capabilities, make them an effective approach for precise and focused therapy. Furthermore, this is especially helpful for biopharmaceuticals with short biological half-lives and low stability since most environmental conditions can protect them from sustained-release delivery methods.
Collapse
Affiliation(s)
- Kosheli Thapa Magar
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ying Xu
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengxia Liu
- Department of Geriatrics, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Park SY, Jung JH, Kim DS, Lee JK, Song BG, Shin HE, Jung JW, Baek SW, You S, Han I, Han DK. Therapeutic potential of luteolin-loaded poly(lactic-co-glycolic acid)/modified magnesium hydroxide microsphere in functional thermosensitive hydrogel for treating neuropathic pain. J Tissue Eng 2024; 15:20417314231226105. [PMID: 38333057 PMCID: PMC10851718 DOI: 10.1177/20417314231226105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Neuropathic pain (NP) is a debilitating condition stemming from damage to the somatosensory system frequently caused by nerve injuries or lesions. While existing treatments are widely employed, they often lead to side effects and lack specificity. This study aimed to alleviate NP by developing an innovative sustained-release thermosensitive hydrogel system. The system incorporates hyaluronic acid (HA)/Pluronic F127 injectable hydrogel and bupivacaine (Bup, B) in combination with poly(lactic-co-glycolic acid; PLGA)/modified magnesium hydroxide (MH)/luteolin (Lut; PML) microspheres (PML@B/Gel). The PML@B/Gel was designed for localized and prolonged co-delivery of Bup and Lut as an anesthetic and anti-inflammatory agent, respectively. Our studies demonstrated that PML@B/Gel had exceptional biocompatibility, anti-inflammatory, and antioxidant properties. In addition, it exhibited efficient pain relief in in vitro cellular assays. Moreover, this functional hydrogel showed substantial sustained drug release while diminishing microglial activation. Consequently, it effectively mitigated mechanical allodynia and thermal hyperalgesia in in vivo rat models of chronic constriction injury (CCI). Based on our research findings, PML@B/Gel emerges as a promising therapeutic approach for the protracted treatment of NP.
Collapse
Affiliation(s)
- So-Yeon Park
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Korea
| | - Joon Hyuk Jung
- Department of Life Science, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA, USA
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Byeong Gwan Song
- Department of Life Science, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Hae Eun Shin
- Department of Life Science, CHA University School of Medicine, Seongnam-si, Gyeonggi-do, Korea
| | - Ji-Won Jung
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| | - Seungkwon You
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul, Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
7
|
Tang Y, Zhang L, Sun R, Luo B, Zhou Y, Zhang Y, Liang Y, Xiao B, Wang C. Pulmonary delivery of mucus-traversing PF127-modified silk fibroin nanoparticles loading with quercetin for lung cancer therapy. Asian J Pharm Sci 2023; 18:100833. [PMID: 37635802 PMCID: PMC10450418 DOI: 10.1016/j.ajps.2023.100833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The mucosal barrier remains a major barrier in the pulmonary drug delivery system, as mucociliary clearance in the airway accelerates the removal of inhaled nanoparticles (NPs). Herein, we designed and developed the inhalable Pluronic F127-modified silk fibroin NPs loading with quercetin (marked as QR-SF (PF127) NPs), aiming to solve the airway mucus barrier and improve the cancer therapeutic effect of QR. The PF127 coating on the SF NPs could attenuate the interaction between NPs and mucin proteins, thus facilitating the diffusion of SF(PF127) NPs in the mucus layer. The QR-SF (PF127) NPs had particle sizes of approximately 200 nm with negatively charged surfaces and showed constant drug release properties. Fluorescence recovery after photobleaching (FRAP) assay and transepithelial transport test showed that QR-SF (PF127) NPs exhibited superior mucus-penetrating ability in artificial mucus and monolayer Calu-3 cell model. Notably, a large amount of QR-SF (PF127) NPs distributed uniformly in the mice airway section, indicating the good retention of NPs in the respiratory tract. The mice melanoma lung metastasis model was established, and the therapeutic effect of QR-SF (PF127) NPs was significantly improved in vivo. PF127-modified SF NPs may be a promising strategy to attenuate the interaction with mucin proteins and enhance mucus penetration efficiency in the pulmonary drug delivery system.
Collapse
Affiliation(s)
- Yu Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Lanfang Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Rui Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Baiyi Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yu Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yuqi Liang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
8
|
Baek SW, Kim DS, Song DH, Kim HB, Lee S, Kim JH, Lee JK, Hong YJ, Park CG, Han DK. Reduced restenosis and enhanced re-endothelialization of functional biodegradable vascular scaffolds by everolimus and magnesium hydroxide. Biomater Res 2022; 26:86. [PMID: 36544178 PMCID: PMC9768885 DOI: 10.1186/s40824-022-00334-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Coronary artery disease is a cardiovascular disease with a high mortality and mortality rate in modern society. Vascular stent insertion to restore blood flow is essential to treat this disease. A fully biodegradable vascular scaffold (BVS) is a vascular poly (L-lactic acid) (PLLA) stent that is receiving growing interest as this is biodegradable in the body and does not require secondary removal surgery. However, acidic byproducts composed of PLLA produced during the biodegradation of the BVS can induce an inflammatory response. Magnesium hydroxide, a basic inorganic particle, neutralizes the acidic byproducts of PLLA. METHODS: In this study, we investigated using a BVS coated with everolimus and surface-modified magnesium hydroxide that suppresses smooth muscle cell proliferation and protects endothelial cells, respectively. The various characteristics of the functional stent were evaluated using in vitro and in vivo analyses. RESULTS: The BVS was successfully prepared with evenly coated everolimus and surface-modified magnesium hydroxide. A neutral pH value was maintained by magnesium hydroxide during degradation, and everolimus was released for one month. The coated BVS effectively inhibited protein adsorption and platelet adhesion, demonstrating excellent blood compatibility. In vitro analysis showed that BVS protects endothelial cells with magnesium hydroxide and selectively inhibits smooth muscle cell proliferation via everolimus treatment. The functional BVS was inserted into porcine coronary arteries for 28 days, and the results demonstrated that the restenosis and inflammation greatly decreased and re-endothelialization was enhanced as compared to others. CONCLUSIONS This study provides new insights into the design of drug-incorporated BVS stent for coronary artery disease.
Collapse
Affiliation(s)
- Seung-Woon Baek
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi 16419 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi 16419 Korea
| | - Da-Seul Kim
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea ,grid.254224.70000 0001 0789 9563School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974 Korea
| | - Duck Hyun Song
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea
| | - Han Byul Kim
- grid.412484.f0000 0001 0302 820XThe Cardiovascular Convergence Research Center of Chonnam, National University Hospital Designated By Korea Ministry of Health and Welfare, 42 Jebong-ro, Dong-gu, Gwangju, 61469 Korea
| | - Semi Lee
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea
| | - Jun Hyuk Kim
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea
| | - Jun-Kyu Lee
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea
| | - Young Joon Hong
- grid.412484.f0000 0001 0302 820XDivision of Cardiology of Chonnam, Cardiovascular Convergence Research Center Nominated By Korea Ministry of Health and Welfare, National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469 Korea
| | - Chun Gwon Park
- grid.264381.a0000 0001 2181 989XDepartment of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi 16419 Korea ,grid.264381.a0000 0001 2181 989XDepartment of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi 16419 Korea
| | - Dong Keun Han
- grid.410886.30000 0004 0647 3511Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi 13488 Korea
| |
Collapse
|
9
|
Enhanced Mechanical Properties and Anti-Inflammation of Poly(L-Lactic Acid) by Stereocomplexes of PLLA/PDLA and Surface-Modified Magnesium Hydroxide Nanoparticles. Polymers (Basel) 2022; 14:polym14183790. [PMID: 36145934 PMCID: PMC9504497 DOI: 10.3390/polym14183790] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 12/29/2022] Open
Abstract
Poly(L-lactic acid) (PLLA), as a biodegradable polymer, has attracted attention for use as a biomaterial. In order to apply PLLA as a cardiovascular stent, stronger mechanical properties and anti-inflammatory effects against acidic by-products are required. In this study, PLLA/PDLA stereocomplex microparticles (SC) were developed and surface-modified magnesium hydroxide (MH) nanoparticles with oligolactide were combined with these PLLA composites. The SC improved the mechanical properties of the PLLA composites through the formation of stereocomplex structures. The surface-modified MH nanoparticles showed enhanced mechanical properties due to the stereocomplex structures formed by PLLA chains and inhibited inflammatory responses by pH neutralization as a result of MH. Additionally, the MH nanoparticles containing PLLA composites had antibacterial effects and increased the viability of human vascular endothelial cells. This technology is expected to have great potential in the development of PLLA composite materials for the production of various medical devices, such as cardiovascular stents.
Collapse
|
10
|
Bhang SH, Jo I. Nano-sized Materials for Tissue Regeneration and Immune/Cancer Therapy. Tissue Eng Regen Med 2022; 19:203-204. [PMID: 35316519 PMCID: PMC8971241 DOI: 10.1007/s13770-022-00453-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| |
Collapse
|
11
|
Heo Y, Shin SW, Kim DS, Lee S, Park SY, Baek SW, Lee JK, Kim JH, Han DK. Bioactive PCL microspheres with enhanced biocompatibility and collagen production for functional hyaluronic acid dermal fillers. Biomater Sci 2022; 10:947-959. [DOI: 10.1039/d1bm01846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymeric microspheres containing magnesium hydroxide (MH) and a bioactive agent (BA), such as apocynin (APO) and astaxanthin (ATX), have been prepared as functional dermal fillers with enhanced physicochemical and biological performance.
Collapse
Affiliation(s)
- Yun Heo
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Sang-Woo Shin
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
- School of Integrative Engineering, Chung-Ang University, Dongjak-gu, Seoul 06911, Republic of Korea
| | - Semi Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - So-Yeon Park
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung-Woon Baek
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi 16419, Republic of Korea
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi 13488, Republic of Korea
| |
Collapse
|
12
|
Baek SW, Song DH, Lee HI, Kim DS, Heo Y, Kim JH, Park CG, Han DK. Poly(L-Lactic Acid) Composite with Surface-Modified Magnesium Hydroxide Nanoparticles by Biodegradable Oligomer for Augmented Mechanical and Biological Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5869. [PMID: 34640265 PMCID: PMC8510474 DOI: 10.3390/ma14195869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022]
Abstract
Poly(L-lactic acid) (PLLA) has attracted a great deal of attention for its use in biomedical materials such as biodegradable vascular scaffolds due to its high biocompatibility. However, its inherent brittleness and inflammatory responses by acidic by-products of PLLA limit its application in biomedical materials. Magnesium hydroxide (MH) has drawn attention as a potential additive since it has a neutralizing effect. Despite the advantages of MH, the MH can be easily agglomerated, resulting in poor dispersion in the polymer matrix. To overcome this problem, oligo-L-lactide-ε-caprolactone (OLCL) as a flexible character was grafted onto the surface of MH nanoparticles due to its acid-neutralizing effect and was added to the PLLA to obtain PLLA/MH composites. The pH neutralization effect of MH was maintained after surface modification. In an in vitro cell experiment, the PLLA/MH composites including OLCL-grafted MH exhibited lower platelet adhesion, cytotoxicity, and inflammatory responses better than those of the control group. Taken together, these results prove that PLLA/MH composites including OLCL-grafted MH show excellent augmented mechanical and biological properties. This technology can be applied to biomedical materials for vascular devices such as biodegradable vascular scaffolds.
Collapse
Affiliation(s)
- Seung-Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
| | - Duck Hyun Song
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Ho In Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea
| | - Yun Heo
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Jun Hyuk Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea;
- Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-W.B.); (D.H.S.); (H.I.L.); (D.-S.K.); (Y.H.); (J.H.K.)
| |
Collapse
|