1
|
Bugajska-Liedtke M, Fatyga N, Brzozowski A, Bajek A, Maj M. Anaesthetics reduce the viability of adipose-derived stem cells. Adipocyte 2024; 13:2351870. [PMID: 38779963 PMCID: PMC11123512 DOI: 10.1080/21623945.2024.2351870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) are characterized by their low immunogenicity and unique immunosuppressive properties, providing many opportunities for autologous transplantation in regenerative medicine and plastic surgery. These methods are characterized by low rejection rates and intense stimulation of tissue regeneration. However, procedures during which fat tissue is harvested occur under local anaesthesia. To better understand the effects and mechanisms of anaesthetic compounds in cosmetic and therapeutic procedures, the present study used a mixture of these compounds (0.1% epinephrine, 8.4% sodium bicarbonate, and 4% articaine) and examined their impact on a human adipose-derived stem cell line. The results showed anesthetics' negative, dose-dependent effect on cell viability and proliferation, especially during the first 24 h of incubation. After extending the exposure to 48 and 72 h of incubation, cells adapted to new culture conditions. In contrast, no significant changes were observed in immunophenotype, cell cycle progression, and apoptosis. The results obtained from this study provide information on the effect of the selected mixture of anaesthetics on the characteristics and function of ASC52telo cells. The undesirable changes in the metabolic activity of cells suggest the need to search for new drugs to harvest cells with unaltered properties and higher efficacy in aesthetic medicine treatments.
Collapse
Affiliation(s)
- Maria Bugajska-Liedtke
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Nadia Fatyga
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aleksander Brzozowski
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Małgorzata Maj
- Department of Tissue Engineering, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
2
|
Li Y, Yang Y, Zhu L, Xie S, Guo L, Zhang Z, Zhe C, Li W, Liu F. Angelica sinensis polysaccharide facilitates chondrogenic differentiation of adipose-derived stem cells via MDK-PI3K/AKT signaling cascade. Biomed Pharmacother 2024; 179:117349. [PMID: 39191028 DOI: 10.1016/j.biopha.2024.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
OBJECT Adipose-derived mesenchymal stem cells (ADSCs) have received significant attention in the field of cartilage tissue repair. Angelica sinensis polysaccharide (ASP) can enhance both the proliferation and differentiation of mesenchymal stem cells. Therefore, we intend to explore the effect of ASP on chondrogenic differentiation of ADSCs in vitro, and elucidate the underlying mechanisms. METHOD ADSCs were treated with different concentrations of ASP to determine the optimal concentration. The chondrogenic differentiation of ADSCs was evaluated using Alcian blue staining, qRT-PCR, western blot, and IF staining. Transcriptome sequencing was performed to identify the expression profiles of ADSCs before and after ASP treatment, followed by bioinformatic analyses including differential expression analysis, enrichment analysis, and construction of PPI networks to identify differentially expressed genes (DEGs) associated with ASP and chondrogenic differentiation. RESULT Surface markers of isolated rat-derived ADSCs were identified by CD44+CD90+CD45-CD106-, and exhibited the capacity for lipogenic, osteogenic, and chondrogenic differentiation. With increasing concentration of ASP treatment, there was an upregulation in the activity and acidic mucosubstance of ADSCs. The levels of Aggrecan, COL2A1, and Sox9 showed an increase in ADSCs after 28 days of 80 µg/ml ASP treatment. Transcriptome sequencing revealed that ASP-associated DEGs regulate extracellular matrix synthesis, immune response, inflammatory response, and cell cycle, and are involved in the NF-κB, AGE-RAGE, and calcium pathways. Moreover, Edn1, Frzb, Mdk, Nog, and Sulf1 are hub genes in DEGs. Notably, ASP upregulated MDK levels in ADSCs, while knockdown of MDK mitigated ASP-induced elevations in acidic mucosubstance, chondrogenic differentiation-related markers (Aggrecan, COL2A1, and Sox9), and the activity of the PI3K/AKT pathway. CONCLUSION ASP enhances the proliferation and chondrogenic differentiation of ADSCs by activating the MDK-mediated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yangjie Li
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Yongqiang Yang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Lina Zhu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Shukang Xie
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Ling Guo
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Zhiming Zhang
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Chunyang Zhe
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China
| | - Wenhui Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, No.17 Longxin Road, Kunming City, Yunnan Province, China
| | - Feng Liu
- Qujing No.1 Hospital, Affiliated Qujing Hospital of Kunming Medical University, No. 1 Yuanlin Road, Qujing City, Yunnan Province, China.
| |
Collapse
|
3
|
Foti R, Storti G, Palmesano M, Scioli MG, Fiorelli E, Terriaca S, Cervelli G, Kim BS, Orlandi A, Cervelli V. Senescence in Adipose-Derived Stem Cells: Biological Mechanisms and Therapeutic Challenges. Int J Mol Sci 2024; 25:8390. [PMID: 39125960 PMCID: PMC11312747 DOI: 10.3390/ijms25158390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue-derived stem cells (ADSCs) represent a subset of the mesenchymal stem cells in every adipose compartment throughout the body. ADSCs can differentiate into various cell types, including chondrocytes, osteocytes, myocytes, and adipocytes. Moreover, they exhibit a notable potential to differentiate in vitro into cells from other germinal lineages, including endothelial cells and neurons. ADSCs have a wide range of clinical applications, from breast surgery to chronic wounds. Furthermore, they are a promising cell population for future tissue-engineering uses. Accumulating evidence indicates a decreased proliferation and differentiation potential of ADSCs with an increasing age, increasing body mass index, diabetes mellitus, metabolic syndrome, or exposure to radiotherapy. Therefore, the recent literature thoroughly investigates this cell population's senescence mechanisms and how they can hinder its possible therapeutic applications. This review will discuss the biological mechanisms and the physio-pathological causes behind ADSC senescence and how they can impact cellular functionality. Moreover, we will examine the possible strategies to invert these processes, re-establishing the full regenerative potential of this progenitor population.
Collapse
Affiliation(s)
- Riccardo Foti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Gabriele Storti
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Marco Palmesano
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| | - Maria Giovanna Scioli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Elena Fiorelli
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Sonia Terriaca
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Giulio Cervelli
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Bong Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Augusto Orlandi
- Anatomy Pathology Institute, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (M.G.S.); (E.F.); (S.T.); (A.O.)
| | - Valerio Cervelli
- Plastic Surgery, Department of Surgical Sciences, University of Rome “Tor Vergata”, 00133 Rome, Italy; (R.F.); (M.P.); (V.C.)
| |
Collapse
|
4
|
Wu SH, Yu JH, Liao YT, Chou PH, Wen MH, Hsueh KK, Wang JP. Comparison of infant bone marrow- and umbilical cord-derived mesenchymal stem cells in multilineage differentiation. Regen Ther 2024; 26:837-849. [PMID: 39430580 PMCID: PMC11488484 DOI: 10.1016/j.reth.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
We compared infant bone marrow-derived mesenchymal stem cells (infant BMSCs) with umbilical cord-derived mesenchymal stem cells (UCSCs) by assessing multilineage differentiation. Proliferation was gauged through changes in cell numbers and doubling time. Senescence-related genes (p16, p21, and p53), senescence-associated β-galactosidase (SA-β-gal), and γH2AX immunofluorescence determined senescence presence. Superoxide dismutases (SODs) and genes related to various differentiations were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Differentiation was confirmed through histochemical, immunohistochemical, and immunofluorescence staining. Infant BMSCs surpassed UCSCs in proliferation. Infant BMSCs exhibited lower senescence-related gene expression at late passages, upregulated antioxidant enzymes during early passages, and reduced SA-β-gal staining. Chondrogenic gene expression (SOX9, COL2, and COL10) was enhanced in infant BMSCs, along with improved immunohistochemical staining. Infant BMSCs showed higher expression of osteogenic (ALP and OCN) and adipogenic (PPARγ and LPL) genes, confirmed by histochemical staining. However, UCSCs had higher expression of tenogenic genes (MMP3, SCX, DCN, and TNC). Hepatogenic differentiation potential was similar, with no significant difference in hepatogenic gene expression (ALB and TAT). Compared to UCSCs, infant BMSCs demonstrated superior proliferation, reduced senescence, increased antioxidant capacity, and enhanced differentiation potential toward chondrogenic, osteogenic, and adipogenic lineages.
Collapse
Affiliation(s)
- Szu-Hsien Wu
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Jin-Huei Yu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Yu-Ting Liao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Hsin Chou
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Hsuan Wen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuang-Kai Hsueh
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | - Jung-Pan Wang
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Orthopaedics & Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Vakhrushev IV, Basok YB, Baskaev KK, Novikova VD, Leonov GE, Grigoriev AM, Belova AD, Kirsanova LA, Lupatov AY, Burunova VV, Kovalev AV, Makarevich PI, Sevastianov VI, Yarygin KN. Cartilage-Specific Gene Expression and Extracellular Matrix Deposition in the Course of Mesenchymal Stromal Cell Chondrogenic Differentiation in 3D Spheroid Culture. Int J Mol Sci 2024; 25:5695. [PMID: 38891883 PMCID: PMC11172056 DOI: 10.3390/ijms25115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations. Mesenchymal stromal cells (MSCs) from various tissues have been shown to possess chondrogenic differentiation potential, although to different degrees. In the present study, we assessed the alterations in chondrogenesis-related gene transcription rates and extracellular matrix deposition levels before and after the chondrogenic differentiation of MSCs in a 3D spheroid culture. MSCs were obtained from three different tissues: umbilical cord Wharton's jelly (WJMSC-Wharton's jelly mesenchymal stromal cells), adipose tissue (ATMSC-adipose tissue mesenchymal stromal cells), and the dental pulp of deciduous teeth (SHEDs-stem cells from human exfoliated deciduous teeth). Monolayer MSC cultures served as baseline controls. Newly formed 3D spheroids composed of MSCs previously grown in 2D cultures were precultured for 2 days in growth medium, and then, chondrogenic differentiation was induced by maintaining them in the TGF-β1-containing medium for 21 days. Among the MSC types studied, WJMSCs showed the most similarities with primary chondrocytes in terms of the upregulation of cartilage-specific gene expression. Interestingly, such upregulation occurred to some extent in all 3D spheroids, even prior to the addition of TGF-β1. These results confirm that the potential of Wharton's jelly is on par with adipose tissue as a valuable cell source for cartilage engineering applications as well as for the treatment of osteoarthritis. The 3D spheroid environment on its own acts as a trigger for the chondrogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Igor V. Vakhrushev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Yulia B. Basok
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Konstantin K. Baskaev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Victoria D. Novikova
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Georgy E. Leonov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Alexey M. Grigoriev
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Aleksandra D. Belova
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Ludmila A. Kirsanova
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
| | - Alexey Y. Lupatov
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Veronika V. Burunova
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| | - Alexey V. Kovalev
- Priorov Central Institute for Trauma and Orthopedics, Moscow 127299, Russia;
| | - Pavel I. Makarevich
- Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, Moscow 119192, Russia;
| | - Victor I. Sevastianov
- Department for Biomedical Technologies and Tissue Engineering, Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow 123182, Russia; (Y.B.B.); (A.M.G.); (A.D.B.); (L.A.K.); (V.I.S.)
- Institute of Biomedical Research and Technology, Moscow 123557, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia; (K.K.B.); (V.D.N.); (G.E.L.); (V.V.B.); (K.N.Y.)
| |
Collapse
|
6
|
Sun Y, Sheng R, Cao Z, Liu C, Li J, Zhang P, Du Y, Mo Q, Yao Q, Chen J, Zhang W. Bioactive fiber-reinforced hydrogel to tailor cell microenvironment for structural and functional regeneration of myotendinous junction. SCIENCE ADVANCES 2024; 10:eadm7164. [PMID: 38657071 PMCID: PMC11042749 DOI: 10.1126/sciadv.adm7164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Myotendinous junction (MTJ) injuries are prevalent in clinical practice, yet the treatment approaches are limited to surgical suturing and conservative therapy, exhibiting a high recurrence rate. Current research on MTJ tissue engineering is scarce and lacks in vivo evaluation of repair efficacy. Here, we developed a three-dimensional-printed bioactive fiber-reinforced hydrogel containing mesenchymal stem cells (MSCs) and Klotho for structural and functional MTJ regeneration. In a rat MTJ defect model, the bioactive fiber-reinforced hydrogel promoted the structural restoration of muscle, tendon, and muscle-tendon interface and enhanced the functional recovery of injured MTJ. In vivo proteomics and in vitro cell cultures elucidated the regenerative mechanisms of the bioactive fiber-reinforced hydrogel by modulating oxidative stress and inflammation, thus engineering an optimized microenvironment to support the survival and differentiation of transplanted MSCs and maintain the functional phenotype of resident cells within MTJ tissues, including tendon/muscle cells and macrophages. This strategy provides a promising treatment for MTJ injuries.
Collapse
Affiliation(s)
- Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Renwang Sheng
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Chuanquan Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jiaxiang Li
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yan Du
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), 310000 Hangzhou, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China
| |
Collapse
|
7
|
Jiang N, Tian X, Wang Q, Hao J, Jiang J, Wang H. Regulation Mechanisms and Maintenance Strategies of Stemness in Mesenchymal Stem Cells. Stem Cell Rev Rep 2024; 20:455-483. [PMID: 38010581 DOI: 10.1007/s12015-023-10658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Stemness pertains to the intrinsic ability of mesenchymal stem cells (MSCs) to undergo self-renewal and differentiate into multiple lineages, while simultaneously impeding their differentiation and preserving crucial differentiating genes in a state of quiescence and equilibrium. Owing to their favorable attributes, including uncomplicated isolation protocols, ethical compliance, and ease of procurement, MSCs have become a focal point of inquiry in the domains of regenerative medicine and tissue engineering. As age increases or ex vivo cultivation is prolonged, the functionality of MSCs decreases and their stemness gradually diminishes, thereby limiting their potential therapeutic applications. Despite the existence of several uncertainties surrounding the comprehension of MSC stemness, considerable advancements have been achieved in the clarification of the potential mechanisms that lead to stemness loss, as well as the associated strategies for stemness maintenance. This comprehensive review provides a systematic overview of the factors influencing the preservation of MSC stemness, the molecular mechanisms governing it, the strategies for its maintenance, and the therapeutic potential associated with stemness. Finally, we underscore the obstacles and prospective avenues in present investigations, providing innovative perspectives and opportunities for the preservation and therapeutic utilization of MSC stemness.
Collapse
Affiliation(s)
- Nizhou Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiliang Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanxiang Wang
- Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Jiayu Hao
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China
| | - Jian Jiang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| | - Hong Wang
- Central Hospital of Dalian University of Technology Department of Spine Surgery, Dalian, China.
| |
Collapse
|
8
|
Yeh SH, Yu JH, Chou PH, Wu SH, Liao YT, Huang YC, Chen TM, Wang JP. Proliferation and Differentiation Potential of Bone Marrow-Derived Mesenchymal Stem Cells From Children With Polydactyly and Adults With Basal Joint Arthritis. Cell Transplant 2024; 33:9636897231221878. [PMID: 38164917 PMCID: PMC10762874 DOI: 10.1177/09636897231221878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
This study compared the proliferation and differentiation potential of bone marrow-derived mesenchymal stem cells (BMSCs) derived from infants with polydactyly and adults with basal joint arthritis. The proliferation rate of adult and infant BMSCs was determined by the cell number changes and doubling times. The γH2AX immunofluorescence staining, age-related gene expression, senescence-associated β-galactosidase (SA-β-gal) staining were analyzed to determine the senescence state of adult and infant BMSCs. The expression levels of superoxide dismutases (SODs) and genes associated with various types of differentiation were measured using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). Differentiation levels were evaluated through histochemical and immunohistochemical staining. The results showed that infant BMSCs had a significantly higher increase in cell numbers and faster doubling times compared with adult BMSCs. Infant BMSCs at late stages exhibited reduced γH2AX expression and SA-β-gal staining, indicating lower levels of senescence. The expression levels of senescence-related genes (p16, p21, and p53) in infant BMSCs were also lower than in adult BMSCs. In addition, infant BMSCs demonstrated higher antioxidative ability with elevated expression of SOD1, SOD2, and SOD3 compared with adult BMSCs. In terms of differentiation potential, infant BMSCs outperformed adult BMSCs in chondrogenesis, as indicated by higher expression levels of chondrogenic genes (SOX9, COL2, and COL10) and positive immunohistochemical staining. Moreover, differentiated cells derived from infant BMSCs exhibited significantly higher expression levels of osteogenic, tenogenic, hepatogenic, and neurogenic genes compared with those derived from adult BMSCs. Histochemical and immunofluorescence staining confirmed these findings. However, adult BMSCs showed lower adipogenic differentiation potential compared with infant BMSCs. Overall, infant BMSCs demonstrated superior characteristics, including higher proliferation rates, enhanced antioxidative activity, and greater differentiation potential into various lineages. They also exhibited reduced cellular senescence. These findings, within the context of cellular differentiation, suggest potential implications for the use of allogeneic BMSC transplantation, emphasizing the need for further in vivo investigation.
Collapse
Affiliation(s)
- Shih-Han Yeh
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan
| | - Jin-Huei Yu
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan
| | - Po-Hsin Chou
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei
| | - Szu-Hsien Wu
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, School of Medicine, National Defense Medical Center, Taipei
| | - Yu-Ting Liao
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei
| | - Yi-Chao Huang
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei
| | - Tung-Ming Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei
- Division of Orthopedics, Taipei City Hospital Zhongxiao Branch, Taipei
| | - Jung-Pan Wang
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei
| |
Collapse
|
9
|
Jeong JH, Park KN, Kim JH, Noh K, Hur SS, Kim Y, Hong M, Chung JC, Park JH, Lee J, Son YI, Lee JH, Kim SH, Hwang Y. Self-organized insulin-producing β-cells differentiated from human omentum-derived stem cells and their in vivo therapeutic potential. Biomater Res 2023; 27:82. [PMID: 37644502 PMCID: PMC10466773 DOI: 10.1186/s40824-023-00419-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Human omentum-derived mesenchymal stem cells (hO-MSCs) possess great potential to differentiate into multiple lineages and have self-renewal capacity, allowing them to be utilized as patient-specific cell-based therapeutics. Although the use of various stem cell-derived β-cells has been proposed as a novel approach for treating diabetes mellitus, developing an efficient method to establish highly functional β-cells remains challenging. METHODS We aimed to develop a novel cell culture platform that utilizes a fibroblast growth factor 2 (FGF2)-immobilized matrix to regulate the adhesion and differentiation of hO-MSCs into insulin-producing β-cells via cell-matrix/cell-cell interactions. In our study, we evaluated the in vitro differentiation potential of hO-MSCs cultured on an FGF2-immobilized matrix and a round-bottom plate (RBP). Further, the in vivo therapeutic efficacy of the β-cells transplanted into kidney capsules was evaluated using animal models with streptozotocin (STZ)-induced diabetes. RESULTS Our findings demonstrated that cells cultured on an FGF2-immobilized matrix could self-organize into insulin-producing β-cell progenitors, as evident from the upregulation of pancreatic β-cell-specific markers (PDX-1, Insulin, and Glut-2). Moreover, we observed significant upregulation of heparan sulfate proteoglycan, gap junction proteins (Cx36 and Cx43), and cell adhesion molecules (E-cadherin and Ncam1) in cells cultured on the FGF2-immobilized matrix. In addition, in vivo transplantation of differentiated β-cells into animal models of STZ-induced diabetes revealed their survival and engraftment as well as glucose-sensitive production of insulin within the host microenvironment, at over 4 weeks after transplantation. CONCLUSIONS Our findings suggest that the FGF2-immobilized matrix can support initial cell adhesion, maturation, and glucose-stimulated insulin secretion within the host microenvironment. Such a cell culture platform can offer novel strategies to obtain functional pancreatic β-cells from patient-specific cell sources, ultimately enabling better treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Ki Nam Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Joo Hyun Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - KyungMu Noh
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Moonju Hong
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
| | - Jun Chul Chung
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, 31151, Republic of Korea
| | - Jongsoon Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea
| | - Young-Ik Son
- Department of Otorhinolaryngology-Head and Neck Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Ju Hun Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Department of Bio-Med Engineering, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan, Chungnam-Do, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan, Chungnam-Do, 31538, Republic of Korea.
| |
Collapse
|
10
|
Cho GH, Bae HC, Cho WY, Jeong EM, Park HJ, Yang HR, Wang SY, Kim YJ, Shin DM, Chung HM, Kim IG, Han HS. High-glutathione mesenchymal stem cells isolated using the FreSHtracer probe enhance cartilage regeneration in a rabbit chondral defect model. Biomater Res 2023; 27:54. [PMID: 37259149 PMCID: PMC10233867 DOI: 10.1186/s40824-023-00398-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a promising cell source for cartilage regeneration. However, the function of MSC can vary according to cell culture conditions, donor age, and heterogeneity of the MSC population, resulting in unregulated MSC quality control. To overcome these limitations, we previously developed a fluorescent real-time thiol tracer (FreSHtracer) that monitors cellular levels of glutathione (GSH), which are known to be closely associated with stem cell function. In this study, we investigated whether using FreSHtracer could selectively separate high-functioning MSCs based on GSH levels and evaluated the chondrogenic potential of MSCs with high GSH levels to repair cartilage defects in vivo. METHODS Flow cytometry was conducted on FreSHtracer-loaded MSCs to select cells according to their GSH levels. To determine the function of FreSHtracer-isolated MSCs, mRNA expression, migration, and CFU assays were conducted. The MSCs underwent chondrogenic differentiation, followed by analysis of chondrogenic-related gene expression. For in vivo assessment, MSCs with different cellular GSH levels or cell culture densities were injected in a rabbit chondral defect model, followed by histological analysis of cartilage-regenerated defect sites. RESULTS FreSHtracer successfully isolated MSCs according to GSH levels. MSCs with high cellular GSH levels showed enhanced MSC function, including stem cell marker mRNA expression, migration, CFU, and oxidant resistance. Regardless of the stem cell tissue source, FreSHtracer selectively isolated MSCs with high GSH levels and high functionality. The in vitro chondrogenic potential was the highest in pellets generated by MSCs with high GSH levels, with increased ECM formation and chondrogenic marker expression. Furthermore, the MSCs' function was dependent on cell culture conditions, with relatively higher cell culture densities resulting in higher GSH levels. In vivo, improved cartilage repair was achieved by articular injection of MSCs with high levels of cellular GSH and MSCs cultured under high-density conditions, as confirmed by Collagen type 2 IHC, Safranin-O staining and O'Driscoll scores showing that more hyaline cartilage was formed on the defects. CONCLUSION FreSHtracer selectively isolates highly functional MSCs that have enhanced in vitro chondrogenesis and in vivo hyaline cartilage regeneration, which can ultimately overcome the current limitations of MSC therapy.
Collapse
Affiliation(s)
- Gun Hee Cho
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Hyun Cheol Bae
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Won Young Cho
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Eui Man Jeong
- Department of Pharmacy, College of Pharmacy, Jeju National University, Jeju Special Self-Governing Province, Jeju-do, Republic of Korea
| | - Hee Jung Park
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Ha Ru Yang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Sun Young Wang
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - You Jung Kim
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea
| | - Dong Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olymic-Ro 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - In Gyu Kim
- Laboratory for Cellular Response to Oxidative Stress, Cell2in, Inc, Seoul, 03127, Republic of Korea
| | - Hyuk-Soo Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Department of Orthopedic Surgery, Seoul National University Hospital, Yongondong Chongnogu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
11
|
Park JH, Koh EB, Seo YJ, Oh HS, Won JY, Hwang SC, Byun JH. Tiron Has Negative Effects on Osteogenic Differentiation via Mitochondrial Dysfunction in Human Periosteum-Derived Cells. Int J Mol Sci 2022; 23:ijms232214040. [PMID: 36430519 PMCID: PMC9693013 DOI: 10.3390/ijms232214040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
Tiron is a potent antioxidant that counters the pathological effects of reactive oxygen species (ROS) production due to oxidative stress in various cell types. We examined the effects of tiron on mitochondrial function and osteoblastic differentiation in human periosteum-derived cells (hPDCs). Tiron increased mitochondrial activity and decreased senescence-associated β-galactosidase activity in hPDCs; however, it had a detrimental effect on osteoblastic differentiation by reducing alkaline phosphatase (ALP) activity and alizarin red-positive mineralization, regardless of H2O2 treatment. Osteoblast-differentiating hPDCs displayed increased ROS production compared with non-differentiating hPDCs, and treatment with tiron reduced ROS production in the differentiating cells. Antioxidants decreased the rates of oxygen consumption and ATP production, which are increased in hPDCs during osteoblastic differentiation. In addition, treatment with tiron reduced the levels of most mitochondrial proteins, which are increased in hPDCs during culture in osteogenic induction medium. These results suggest that tiron exerts negative effects on the osteoblastic differentiation of hPDCs by causing mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Eun-Byeol Koh
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hye-Seong Oh
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ju-Yeong Won
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Gyeongsang National University Hospital, Jinju 52727, Korea
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence:
| |
Collapse
|
12
|
Tang H, He Y, Liang Z, Li J, Dong Z, Liao Y. The therapeutic effect of adipose-derived stem cells on soft tissue injury after radiotherapy and their value for breast reconstruction. Stem Cell Res Ther 2022; 13:493. [PMID: 36195925 PMCID: PMC9531407 DOI: 10.1186/s13287-022-02952-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Postmastectomy radiotherapy is considered to be a necessary treatment in the therapy of breast cancer, while it will cause soft tissue damage and complications, which are closely related to the success rate and effectiveness of breast reconstruction. After radiotherapy, cutaneous tissue becomes thin and brittle, and its compliance decreases. Component fat grafting and adipose-derived stem cell therapy are considered to have great potential in treating radiation damage and improving skin compliance after radiotherapy. Main body In this paper, the basic types and pathological mechanisms of skin and soft tissue damage to breast skin caused by radiation therapy are described. The 2015–2021 studies related to stem cell therapy in PubMed were also reviewed. Studies suggest that adipose-derived stem cells exert their biological effects mainly through cargoes carried in extracellular vesicles and soluble secreted factors. Compared to traditional fat graft breast reconstruction, ADSC therapy amplifies the effects of stem cells in it. In order to obtain a more purposeful therapeutic effect, proper stem cell pretreatment may achieve more ideal and safe results. Conclusion Recent research works about ADSCs and other MSCs mainly focus on curative effects in the acute phase of radiation injury, and there is little research about treatment of chronic phase complications. The efficacy of stem cell therapy on alleviating skin fibrosis and its underlying mechanism require further research.
Collapse
Affiliation(s)
- Haojing Tang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufei He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Zhuokai Liang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Jian Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Ziqing Dong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
13
|
Cyclin-Dependent Kinase 1 Inhibition Potentiates the Proliferation of Tonsil-Derived Mesenchymal Stem Cells by Delaying Cellular Senescence. Stem Cells Int 2022; 2022:4302992. [PMID: 35910534 PMCID: PMC9337930 DOI: 10.1155/2022/4302992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in tissue regeneration and stem cell therapy and are currently being tested in numerous clinical trials. Senescence-related changes in MSC properties have attracted considerable attention. Senescent MSCs exhibit a compromised potential for proliferation; senescence acts as a stress response that prevents the proliferation of dysfunctional cells by inducing an irreversible cell cycle arrest. Here, we established a senescent MSC model using senescence-associated β-galactosidase, proliferation, and cell cycle assays. We further identified novel biomarker candidates for old, senescent tonsil-derived MSCs (TMSCs) using transcriptomics. A plot of the cellular senescence pathway showed cyclin-dependent kinase 1 (CDK1; +8-fold) and CDK2 (+2-fold), and transforming growth factor beta 2 (TGFB2; +2-fold) showed significantly higher expression in old TMSCs than in young TMSCs. The CDK family was shown to be related to cell cycle and proliferation, as confirmed by quantitative RT-PCR. As replicative senescence of TMSCs, the gene and protein expression of CDK1 was significantly increased, which was further validated by inhibiting CDK1 using an inhibitor and siRNA. Taken together, we suggest that the CDK1 can be used as a selective senescence biomarker of MSCs and broaden the research criteria for senescent mechanisms.
Collapse
|
14
|
Agareva M, Stafeev I, Michurina S, Sklyanik I, Shestakova E, Ratner E, Hu X, Menshikov M, Shestakova M, Parfyonova Y. Type 2 Diabetes Mellitus Facilitates Shift of Adipose-Derived Stem Cells Ex Vivo Differentiation toward Osteogenesis among Patients with Obesity. Life (Basel) 2022; 12:life12050688. [PMID: 35629356 PMCID: PMC9146836 DOI: 10.3390/life12050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
Objective: Sedentary behavior with overnutrition provokes the development of obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The main progenitor cells of adipose tissue are adipose-derived stem cells (ADSCs) which can change differentiation, metabolic, and secretory phenotypes under obesity conditions. The purpose of this study was to evaluate ADSC osteogenesis activity among patients with obesity in normal glucose tolerance (NGT) and T2DM conditions. Methods: In the study, ADSCs from donors with obesity were used. After clinical characterization, all patients underwent bariatric surgery and ADSCs were isolated from subcutaneous fat biopsies. ADSCs were subjected to osteogenic differentiation, stained with Alizarin Red S, and harvested for real-time PCR and Western blotting. Cell senescence was evaluated with a β-galactosidase-activity-based assay. Results: Our results demonstrated the significantly increased calcification of ADSC on day 28 of osteogenesis in the T2DM group. These data were confirmed by the statistically significant enhancement of RUNX2 gene expression, which is a master regulator of osteogenesis. Protein expression analysis showed the increased expression of syndecan 1 and collagen I before and during osteogenesis, respectively. Moreover, T2DM ADSCs demonstrated an increased level of cellular senescence. Conclusion: We suggest that T2DM-associated cellular senescence can cause ADSC differentiation to shift toward osteogenesis, the impaired formation of new fat depots in adipose tissue, and the development of insulin resistance. The balance between ADSC adipo- and osteogenesis commitment is crucial for the determination of the metabolic fate of patients and their adipose tissue.
Collapse
Affiliation(s)
- Margarita Agareva
- Institute of Fine Chemical Technologies Named after M.V. Lomonosov, 119571 Moscow, Russia;
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Iurii Stafeev
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Correspondence:
| | - Svetlana Michurina
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Igor Sklyanik
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Ekaterina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Elizaveta Ratner
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Xiang Hu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Mikhail Menshikov
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
| | - Marina Shestakova
- Institute of Diabetes, Endocrinology Research Centre, 117292 Moscow, Russia; (I.S.); (E.S.); (M.S.)
| | - Yelena Parfyonova
- Department of Angiogenesis, National Medical Research Centre of Cardiology Named after Academician E.I. Chazov, 121552 Moscow, Russia; (S.M.); (E.R.); (M.M.); (Y.P.)
- Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|