1
|
Lestari FB, Vongpunsawad S, Poovorawan Y. Diverse human and bat-like rotavirus G3 strains circulating in suburban Bangkok. PLoS One 2022; 17:e0268465. [PMID: 35609031 PMCID: PMC9129036 DOI: 10.1371/journal.pone.0268465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/29/2022] [Indexed: 11/18/2022] Open
Abstract
Although rotavirus vaccines are available in many parts of the world and are effective in reducing the overall incidence of rotavirus infection, it remains a major cause of diarrhea in less-developed countries. Among various rotavirus group A (RVA) strains, the increasingly common genotype G3 (defined by the VP7 gene) has been identified in both humans and animals. Our previous epidemiological surveillance in Bangkok found several unusual non-vaccine-like G3 strains in patients with diarrhea. In this study, we sequenced and characterized the genomes of seven of these G3 strains, which formed combinations with genotypes P[4], P[6], P[9], and P[10] (defined by the VP4 gene). Interestingly, we identified a bat-like RVA strain with the genome constellation G3-P[10]-I3-R3-C3-M3-A9-N3-T3-E3-H6, which has not been previously reported in the literature. The amino acid residues deduced from the nucleotide sequences of our G3 strains differed at the antigenic epitopes to those of the VP7 capsid protein of the G3 strain in RotaTeq vaccine. Although it is not unusual for the segmented genomes of RVA to reassort and give rise to emerging novel strains, the atypical G3 strains identified in this study suggest possible animal-to-human RVA zoonotic spillover even in urban areas.
Collapse
Affiliation(s)
- Fajar Budi Lestari
- Interdisciplinary Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sompong Vongpunsawad
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
2
|
Rotavirus in Calves and Its Zoonotic Importance. Vet Med Int 2021; 2021:6639701. [PMID: 33968359 PMCID: PMC8081619 DOI: 10.1155/2021/6639701] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/24/2022] Open
Abstract
Rotavirus is a major pathogen responsible for diarrheal disease in calves, resulting in loss of productivity and economy of farmers. However, various facets of diarrheal disease caused by rotavirus in calves in the world are inadequately understood, considering that diarrheal disease caused by rotavirus is a vital health problem in calves that interrupts production benefits with reduced weight gain and increased mortality, and its potential for zoonotic spread. The pathological changes made by rotavirus are almost exclusively limited to the small intestine that leads to diarrhea. It is environmentally distributed worldwide and was extensively studied. Reassortment is one of the important mechanisms for generating genetic diversity of rotaviruses and eventually for viral evolution. So, the primary strategy is to reduce the burden of rotavirus infections by practicing early colostrum's feeding in newborn calves, using vaccine, and improving livestock management. Rotaviruses have a wide host range, infecting many animal species as well as humans. As it was found that certain animal rotavirus strains had antigenic similarities to some human strains, this may be an indication for an animal to play a role as a source of rotavirus infection in humans. Groups A to C have been shown to infect both humans and animals. The most commonly detected strains in both human and animals are G2, G3, G4, and G9, P [6]. Therefore, this review was made to get overview epidemiology status and zoonotic importance of bovine rotavirus.
Collapse
|
3
|
Full genome characterization of human G3P[6] and G3P[9] rotavirus strains in Lebanon. INFECTION GENETICS AND EVOLUTION 2019; 78:104133. [PMID: 31812761 DOI: 10.1016/j.meegid.2019.104133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022]
Abstract
Rotaviruses are the most common infectious agents causing severe diarrheal diseases in young children globally. Three rare human rotavirus strains, two G3P[9] and one G3P[6], were detected in stool samples of children under 5 years of age hospitalized for gastroenteritis in Lebanon during the course of a surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture based high-throughput sequencing method. Genomic sequences were further characterized by using phylogenetic analyses with global RVA G3P[6]/P[9] strains, other vaccine and reference strains. Genetic analysis revealed that the G3P[6] strain emerged as a DS-1/Wa-like mono-reassortant strain with a potential Ethiopian origin. The two G3P[9] strains possessed a mixed DS-1/Wa/AU-1-like origin indicating that these may have evolved via multiple reassortment events involving feline, human and bovine rotaviruses. Furthermore, analysis of these strains revealed high antigenic variability compared to the vaccine strains. Additional studies are essential to fully understand the evolutionary dynamics of G3P[6]/P[9] strains spreading worldwide and their implications on vaccine effectiveness.
Collapse
|
4
|
Dóró R, Farkas SL, Martella V, Bányai K. Zoonotic transmission of rotavirus: surveillance and control. Expert Rev Anti Infect Ther 2015; 13:1337-50. [DOI: 10.1586/14787210.2015.1089171] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Lin CL, Chen SC, Liu SY, Chen KT. Disease caused by rotavirus infection. Open Virol J 2014; 8:14-9. [PMID: 25553142 PMCID: PMC4279035 DOI: 10.2174/1874357901408010014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/28/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023] Open
Abstract
Although rotavirus vaccines are available, rotaviruses remain the major cause of childhood diarrheal disease worldwide. The Rotarix (GlaxoSmithKline Biologicals Rixensart, Belgium) and RotaTeq (Merck and Co., Inc. Whitehouse Station, New Jersey, USA) vaccines are effective for reducing the morbidity and mortality of rotavirus infection. This article aims to assess the epidemiology of rotaviral gastroenteritis and the efficacy and effectiveness of licensed rotavirus vaccines. This review concludes by presenting challenges in the field that require further exploration by and perspectives from basic and translational research in the future.
Collapse
Affiliation(s)
- Che-Liang Lin
- Internal Medicine Chest Division, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Shou-Chien Chen
- Department of Family Medicine, Da-Chien General Hospital, Miaoli, Taiwan ; General Education Center, Ta Tung University, Taipei, Taiwan
| | | | - Kow-Tong Chen
- Department of Occupational Medicine, Tainan Municipal Hospital, Tainan, Taiwan ; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Mladenova Z, Nawaz S, Ganesh B, Iturriza-Gomara M. Increased detection of G3P[9] and G6P[9] rotavirus strains in hospitalized children with acute diarrhea in Bulgaria. INFECTION GENETICS AND EVOLUTION 2014; 29:118-26. [PMID: 25461849 DOI: 10.1016/j.meegid.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/23/2014] [Accepted: 11/12/2014] [Indexed: 11/30/2022]
Abstract
Rotavirus severe disease in children is now vaccine-preventable and the roll-out of vaccination programs globally is expected to make a significant impact in the reduction of morbidity and mortality in children <5 years of age. Rotavirus is also a pathogen of other mammals and birds, and its segmented RNA genome can lead to the emergence of new or unusual strains in human population via interspecies transmission and reassortment events. Despite the efficacy and impact of rotavirus vaccine in preventing severe diarrhea, the correlates of protection remain largely unknown. Therefore, rotavirus strain surveillance before, during and after the introduction of immunization programs remains a crucial for monitoring rotavirus vaccine efficacy and impact. In this context, molecular characterization of 1323 Bulgarian rotavirus strains collected between June 2010 and May 2013 was performed. A total of 17 strains of interest were analyzed by partial sequence analysis. Twelve strains were characterized as G3P[9] and G6P[9] of potential animal origin. Phylogenetic analysis and comparisons with the same specificity strains detected sporadically between 2006 and 2010 revealed the constant circulation of these unusual human strains in Bulgaria, although in low prevalence, and their increased potential for person-to-person spread.
Collapse
Affiliation(s)
- Zornitsa Mladenova
- National Center for Infectious and Parasitic Diseases, Sofia, Bulgaria; Public Health of England, London, United Kingdom.
| | | | | | - Miren Iturriza-Gomara
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
7
|
Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? INFECTION GENETICS AND EVOLUTION 2014; 28:446-61. [PMID: 25224179 DOI: 10.1016/j.meegid.2014.08.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/23/2022]
Abstract
Comprehensive reviews of pre licensure rotavirus strain prevalence data indicated the global importance of six rotavirus genotypes, G1P[8], G2P[4], G3P[8], G4P[8], G9P[8] and G12P[8]. Since 2006, two vaccines, the monovalent Rotarix (RV1) and the pentavalent RotaTeq (RV5) have been available in over 100 countries worldwide. Of these, 60 countries have already introduced either RV1 or RV5 in their national immunization programs. Post licensure vaccine effectiveness is closely monitored worldwide. This review aimed at describing the global changes in rotavirus strain prevalence over time. The genotype distribution of the nearly 47,000 strains that were characterized during 2007-2012 showed similar picture to that seen in the preceding period. An intriguing finding was the transient predominance of heterotypic strains, mainly in countries using RV1. Unusual and novel antigen combinations continue to emerge, including some causing local outbreaks, even in vaccinated populations. In addition, vaccine strains have been found in both vaccinated infants and their contacts and there is evidence for genetic interaction between vaccine and wild-type strains. In conclusion, the post-vaccine introduction strain prevalence data do not show any consistent pattern indicative of selection pressure resulting from vaccine use, although the increased detection rate of heterotypic G2P[4] strains in some countries following RV1 vaccination is unusual and this issue requires further monitoring.
Collapse
|
8
|
Wang YH, Pang BB, Zhou X, Ghosh S, Tang WF, Peng JS, Hu Q, Zhou DJ, Kobayashi N. Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. INFECTION GENETICS AND EVOLUTION 2013; 16:103-12. [PMID: 23403096 DOI: 10.1016/j.meegid.2013.01.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/24/2013] [Accepted: 01/30/2013] [Indexed: 10/27/2022]
Abstract
The group A rotavirus (RVA) G3P[9] is a rare VP7-VP4 genotype combination, detected occasionally in humans and cats. Other than the prototype G3P[9] strain, RVA/Human- tc/JPN/AU-l/1982/G3P3[9], the whole genomes of only two human G3P[9] RVA strains and two feline G3P[9] RVA strains have been analyzed so far, revealing complex evolutionary patterns, distinct from that of AU-1. We report here the whole genomic analyses of two human G3P[9] RVA strains, RVA/Human-tc/CHN/L621/2006/G3P[9] and RVA/Human-wt/CHN/E2451/2011/G3P[9], detected in patients with diarrhea in China. Strains L621 and E2451 possessed a H6 NSP5 genotype on an AU-1-like genotype constellation, not reported previously. However, not all the genes of L621 and E2451 were closely related to those of AU-1, or to each other, revealing different evolutionary patterns among the AU-1-like RVAs. The VP7, VP4, VP6 and NSP4 genes of E2451 and L621 were found to cluster together with human G3P[9] RVA strains believed to be of possible feline/canine origin, and feline or raccoon dog RVA strains. The VP1, VP3, NSP2 and NSP5 genes of E2451 and L621 formed distinct clusters in genotypes typically found in feline/canine RVA strains or RVA strains from other host species which are believed to be of feline/canine RVA origin. The VP2 genes of E2451 and L621, and NSP3 gene of L621 clustered among RVA strains from different host species which are believed to have a complete or partial feline/canine RVA origin. The NSP1 genes of E2451 and L621, and NSP3 gene of E2451 clustered with AU-1 and several other strains possessing a complete or partial feline RVA strain BA222-05-like genotype constellation. Taken together, these observations suggest that nearly all the eleven gene segments of G3P[9] RVA strains L621 and E2451 might have originated from feline/canine RVAs, and that reassortments may have occurred among these feline/canine RVA strains, before being transmitted to humans.
Collapse
Affiliation(s)
- Yuan-Hong Wang
- Wuhan Centers for Disease Prevention and Control, Wuhan, Hubei Province, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Chen SC, Tan LB, Huang LM, Chen KT. Rotavirus infection and the current status of rotavirus vaccines. J Formos Med Assoc 2012; 111:183-93. [DOI: 10.1016/j.jfma.2011.09.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 09/16/2011] [Accepted: 09/28/2011] [Indexed: 12/12/2022] Open
|