1
|
Piñana JL, Tridello G, Xhaard A, Wendel L, Montoro J, Vazquez L, Heras I, Ljungman P, Mikulska M, Salmenniemi U, Perez A, Kröger N, Cornelissen J, Sala E, Martino R, Geurten C, Byrne J, Maertens J, Kerre T, Martin M, Pascual MJ, Yeshurun M, Finke J, Groll AH, Shaw PJ, Blijlevens N, Arcese W, Ganser A, Suarez-Lledo M, Alzahrani M, Choi G, Forcade E, Paviglianiti A, Solano C, Wachowiak J, Zuckerman T, Bader P, Clausen J, Mayer J, Schroyens W, Metafuni E, Knelange N, Averbuch D, de la Camara R. Upper and/or Lower Respiratory Tract Infection Caused by Human Metapneumovirus After Allogeneic Hematopoietic Stem Cell Transplantation. J Infect Dis 2024; 229:83-94. [PMID: 37440459 DOI: 10.1093/infdis/jiad268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Human metapneumovirus (hMPV) epidemiology, clinical characteristics and risk factors for poor outcome after allogeneic stem cell transplantation (allo-HCT) remain a poorly investigated area. METHODS This retrospective multicenter cohort study examined the epidemiology, clinical characteristics, and risk factors for poor outcomes associated with human metapneumovirus (hMPV) infections in recipients of allo-HCT. RESULTS We included 428 allo-HCT recipients who developed 438 hMPV infection episodes between January 2012 and January 2019. Most recipients were adults (93%). hMPV infections were diagnosed at a median of 373 days after allo-HCT. The infections were categorized as upper respiratory tract disease (URTD) or lower respiratory tract disease (LRTD), with 60% and 40% of cases, respectively. Patients with hMPV LRTD experienced the infection earlier in the transplant course and had higher rates of lymphopenia, neutropenia, corticosteroid use, and ribavirin therapy. Multivariate analysis identified lymphopenia and corticosteroid use (>30 mg/d) as independent risk factors for LRTD occurrence. The overall mortality at day 30 after hMPV detection was 2% for URTD, 12% for possible LRTD, and 21% for proven LRTD. Lymphopenia was the only independent risk factor associated with day 30 mortality in LRTD cases. CONCLUSIONS These findings highlight the significance of lymphopenia and corticosteroid use in the development and severity of hMPV infections after allo-HCT, with lymphopenia being a predictor of higher mortality in LRTD cases.
Collapse
Affiliation(s)
- Jose Luis Piñana
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Gloria Tridello
- Azienda Ospedaliera, Universitaria Integrata Verona, Verona, Italy
| | - Aliénor Xhaard
- Service d'Hématologie-Greffe, Hôpital Saint-Louis, Université Paris-Diderot, Paris, France
| | - Lotus Wendel
- Leiden Study Unit, EBMT, Leiden, The Netherlands
| | - Juan Montoro
- Hematology División, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Lourdes Vazquez
- Hematology Department, Hospital Clinico Universitario de Salamanca, Salamanca, Spain
| | | | - Per Ljungman
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Malgorzata Mikulska
- Division of Infectious Diseases, Dipartimento di scienze della salute, University of Genoa, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Urpu Salmenniemi
- Hematology Department, Comprehensive Cancer Center, Helsinki University Central Hospital, Helsinki, Finland
| | - Ariadna Perez
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
| | - Nicolaus Kröger
- Department for Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Cornelissen
- Hematology Department, Erasmus Medical Center Cancer Institute, Rotterdam, The Netherlands
| | - Elisa Sala
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Rodrigo Martino
- Hematology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Claire Geurten
- Hematology Department, Birmingham Children's Hospital, Birmingham, United Kingdom
- Centre Hospitalier Universitaire de Liege, Liege, Belgium
| | - Jenny Byrne
- Hematology Department, Nottingham University, Nottingham, United Kingdom
| | - Johan Maertens
- Hematology Department, University Hospital Gasthuisberg, Leuven, Belgium
| | - Tessa Kerre
- Hematology Department, Ghent University Hospital, Gent, Belgium
| | - Murray Martin
- Hematology Department, Leicester Royal Infirmary, Leicester, United Kingdom
| | | | - Moshe Yeshurun
- Institution of Hematology, Rabin Medical Center, Petach-Tikva, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Jürgen Finke
- Hematology Department, University of Freiburg, Freiburg, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hemtology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital, Muenster, Germany
| | - Peter J Shaw
- The Children`s Hospital at Westmead, Sydney, Australia
| | | | - William Arcese
- Hematology Department, Tor Vergata University of Rome, Rome, Italy
| | | | | | - Mohsen Alzahrani
- Department of Oncology, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Goda Choi
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edouard Forcade
- Service d'Hématologie Clinique et Thérapie Cellulaire, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France
| | | | - Carlos Solano
- Hematology Department, Hospital Clinico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria, Hospital Clínico, Universitario de Valencia, Valencia, Spain
- Department of Medicine, University of Valencia, Valencia, Spain
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology, and Hematopoietic Cell Transplantation, University of Medical Sciences, Poznan, Poland
| | | | - Peter Bader
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Pediatrics and Adolescent Medicine, University Hospital, Goethe University, Frankfurt, Germany
| | - Johannes Clausen
- Department of Internal Medicine I, Ordensklinikum Linz-Elisabethinen, Johannes Kepler University, Linz, Austria
| | - Jiri Mayer
- Masaryk University Hospital Brno, Brno, Czech Republic
| | | | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica e EmatologiaGemelli Research Institute, Fondazione Policlinico Universitario Agostino Gemelli Research Institute, Roma, Italy
| | | | - Dina Averbuch
- Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
| | - Rafael de la Camara
- Hematology Department, Hospital de la Princesa, Madrid, Spain
- Hematology Department, Hospital Universitario Sanitas La Zarzuela, Madrid, Spain
| |
Collapse
|
2
|
Piñana JL, Pérez A, Chorão P, Guerreiro M, García-Cadenas I, Solano C, Martino R, Navarro D. Respiratory virus infections after allogeneic stem cell transplantation: Current understanding, knowledge gaps, and recent advances. Transpl Infect Dis 2023; 25 Suppl 1:e14117. [PMID: 37585370 DOI: 10.1111/tid.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
Before the COVID-19 pandemic, common community-acquired seasonal respiratory viruses (CARVs) were a significant threat to the health and well-being of allogeneic hematopoietic cell transplant (allo-HCT) recipients, often resulting in severe illness and even death. The pandemic has further highlighted the significant risk that immunosuppressed patients, including allo-HCT recipients, face when infected with SARS-CoV-2. As preventive transmission measures are relaxed and CARVs circulate again among the community, including in allo-HSCT recipients, it is crucial to understand the current state of knowledge, gaps, and recent advances regarding CARV infection in allo-HCT recipients. Urgent research is needed to identify seasonal respiratory viruses as potential drivers for future pandemics.
Collapse
Affiliation(s)
- Jose L Piñana
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Ariadna Pérez
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Pedro Chorão
- Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
- Instituto de Investigación La Fe, Hospital Universitário y Politécncio La Fe, Valencia, Spain
| | - Manuel Guerreiro
- Hematology Division, Hospital universitario y politécnico La Fe, Valencia, Spain
- Instituto de Investigación La Fe, Hospital Universitário y Politécncio La Fe, Valencia, Spain
| | | | - Carlos Solano
- Hematology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Fundación INCLIVA, Instituto de Investigación Sanitaria Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Rodrigo Martino
- Hematology Division, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - David Navarro
- Microbiology department, Hospital Clinico Universitario de Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Human metapneumovirus infection in haematopoietic stem cell transplant recipients: a case series. Virusdisease 2021; 32:140-145. [PMID: 33718531 PMCID: PMC7938678 DOI: 10.1007/s13337-021-00670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Human metapneumovirus (hMPV) is an enveloped virus that causes serious respiratory tract infection among immunocompromised populations especially haematopoietic stem cell transplant (HSCT) recipients. Here, we describe 3 cases of hMPV infection which led to mortality among post HSCT adults. 66 post HSCT adults enrolled between January 2017 and March 2019 at Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, were followed up for a period varying from 16 days to 18 months for any episode of respiratory illness until March 2019. Real time reverse transcriptase polymerase chain reaction (rRT-PCR) was used to detect the virus from appropriate specimens when symptoms of acute respiratory infection appeared. Samples from 88 out of a total of 172 episodes of suspected acute respiratory infection could be tested by rRT-PCR. Of these, 9 episodes were positive for hMPV. Three patients with hMPV associated lower respiratory tract infection (LRTI) expired within 30 days of HSCT. The possible risk factors associated with mortality included LRTI, infection during early post-transplant period (first week following HSCT), absolute lymphocyte count less than 200/µl, absolute neutrophil count less than 500/µl, use of steroid within 30 days prior to infection and need for mechanical ventilation.
Collapse
|
4
|
Reckziegel M, Weber-Osel C, Egerer R, Gruhn B, Kubek F, Walther M, Wilhelm S, Zell R, Krumbholz A. Viruses and atypical bacteria in the respiratory tract of immunocompromised and immunocompetent patients with airway infection. Eur J Clin Microbiol Infect Dis 2020; 39:1581-1592. [PMID: 32462500 PMCID: PMC7253234 DOI: 10.1007/s10096-020-03878-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023]
Abstract
Respiratory tract infections (RTI) can take a serious course under immunosuppression. Data on the impact of the underlying pathogens are still controversial. Samples from the upper (n = 322) and lower RT (n = 169) were collected from 136 children and 355 adults; 225 among them have been immunocompromised patients. Exclusion criteria were presence of relevant cultivable microorganisms, C-reactive protein > 20 mg/dl, or procalcitonin > 2.0 ng/ml. Samples were tested by PCR for the presence of herpesviruses (HSV-1/-2; VZV; CMV; HHV6; EBV), adenoviruses, bocaviruses, entero-/rhinoviruses (HRV), parechoviruses, coronaviruses, influenza viruses (IV), parainfluenza viruses as well as for pneumoviruses (HMPV and RSV), and atypical bacteria (Mycoplasma pneumoniae, M.p.; Chlamydia pneumoniae, C.p.). Viral/bacterial genome equivalents were detected in more than two-thirds of specimens. Under immunosuppression, herpesviruses (EBV 30.9%/14.6%, p < 0.001; CMV 19.6%/7.9%, p < 0.001; HSV-1: 14.2%/7.1%, p = 0.012) were frequently observed, mainly through their reactivation in adults. Immunocompromised adults tended to present a higher RSV prevalence (6.4%/2.4%, p = 0.078). Immunocompetent patients were more frequently tested positive for IV (15.0%/5.8%, p = 0.001) and M.p. (6.4%/0.4%, p < 0.001), probably biased due to the influenza pandemic of 2009 and an M.p. epidemic in 2011. About 41.8% of samples were positive for a single pathogen, and among them EBV (19.9%) was most prevalent followed by HRV (18.2%) and IV (16.6%). HSV-2 and C.p. were not found. Marked seasonal effects were observed for HRV, IV, and RSV. Differences in pathogen prevalence were demonstrated between immunocompetent and immunocompromised patients. The exact contribution of some herpesviruses to the development of RTI remains unclear.
Collapse
Affiliation(s)
- Maria Reckziegel
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Department of Hematology/Oncology, Clinic of Internal Medicine II, Jena University Hospital, Jena, Germany
| | - Claudia Weber-Osel
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany.,Department of Medicine II, Catholic Hospital 'St. Johann Nepomuk', Erfurt, Germany
| | - Renate Egerer
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Bernd Gruhn
- Department of Pediatrics, Jena University Hospital, Jena, Germany
| | - Florian Kubek
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Mario Walther
- Department of Fundamental Sciences, Jena University of Applied Sciences, Jena, Germany
| | - Stefanie Wilhelm
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Roland Zell
- Section of Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Andi Krumbholz
- Institute of Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Brunswiker Straße 4, D-24105, Kiel, Germany.
| |
Collapse
|
5
|
Lee C, Colletti PM, Chung JH, Ackman JB, Berry MF, Carter BW, de Groot PM, Hobbs SB, Johnson GB, Maldonado F, McComb BL, Tong BC, Walker CM, Kanne JP. ACR Appropriateness Criteria® Acute Respiratory Illness in Immunocompromised Patients. J Am Coll Radiol 2019; 16:S331-S339. [PMID: 31685101 DOI: 10.1016/j.jacr.2019.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
The immunocompromised patient with an acute respiratory illness (ARI) may present with fever, chills, weight loss, cough, shortness of breath, or chest pain. The number of immunocompromised patients continues to rise with medical advances including solid organ and stem cell transplantation, chemotherapy, and immunomodulatory therapy, along with the continued presence of human immunodeficiency virus and acquired immunodeficiency syndrome. Given the myriad of pathogens that can infect immunocompromised individuals, identifying the specific organism or organisms causing the lung disease can be elusive. Moreover, immunocompromised patients often receive prophylactic or empiric antimicrobial therapy, further complicating diagnostic evaluation. Noninfectious causes for ARI should also be considered, including pulmonary edema, drug-induced lung disease, atelectasis, malignancy, radiation-induced lung disease, pulmonary hemorrhage, diffuse alveolar damage, organizing pneumonia, lung transplant rejection, and pulmonary thromboembolic disease. As many immunocompromised patients with ARI progress along a rapid and potentially fatal course, timely selection of appropriate imaging is of great importance in this setting. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision include an extensive analysis of current medical literature from peer reviewed journals and the application of well-established methodologies (RAND/UCLA Appropriateness Method and Grading of Recommendations Assessment, Development, and Evaluation or GRADE) to rate the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where evidence is lacking, or equivocal, expert opinion may supplement the available evidence to recommend imaging or treatment.
Collapse
Affiliation(s)
| | - Christopher Lee
- Research Author, University of Southern California Keck School of Medicine, Los Angeles, California
| | | | | | - Jeanne B Ackman
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mark F Berry
- Stanford University Medical Center, Stanford, California, The Society of Thoracic Surgeons
| | - Brett W Carter
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Fabien Maldonado
- Vanderbilt University Medical Center, Nashville, Tennessee, American College of Chest Physicians
| | | | - Betty C Tong
- Duke University School of Medicine, Durham, North Carolina, The Society of Thoracic Surgeons
| | | | - Jeffrey P Kanne
- Specialty Chair, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
6
|
Ison MG, Hirsch HH. Community-Acquired Respiratory Viruses in Transplant Patients: Diversity, Impact, Unmet Clinical Needs. Clin Microbiol Rev 2019; 32:e00042-19. [PMID: 31511250 PMCID: PMC7399564 DOI: 10.1128/cmr.00042-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients undergoing solid-organ transplantation (SOT) or allogeneic hematopoietic cell transplantation (HCT) are at increased risk for infectious complications. Community-acquired respiratory viruses (CARVs) pose a particular challenge due to the frequent exposure pre-, peri-, and posttransplantation. Although influenza A and B viruses have a top priority regarding prevention and treatment, recent molecular diagnostic tests detecting an array of other CARVs in real time have dramatically expanded our knowledge about the epidemiology, diversity, and impact of CARV infections in the general population and in allogeneic HCT and SOT patients. These data have demonstrated that non-influenza CARVs independently contribute to morbidity and mortality of transplant patients. However, effective vaccination and antiviral treatment is only emerging for non-influenza CARVs, placing emphasis on infection control and supportive measures. Here, we review the current knowledge about CARVs in SOT and allogeneic HCT patients to better define the magnitude of this unmet clinical need and to discuss some of the lessons learned from human influenza virus, respiratory syncytial virus, parainfluenzavirus, rhinovirus, coronavirus, adenovirus, and bocavirus regarding diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Michael G Ison
- Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hans H Hirsch
- Transplantation & Clinical Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Clinical Virology, Laboratory Medicine, University Hospital Basel, Basel, Switzerland
- Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
7
|
Pinky L, González-Parra G, Dobrovolny HM. Superinfection and cell regeneration can lead to chronic viral coinfections. J Theor Biol 2019; 466:24-38. [PMID: 30639572 PMCID: PMC7094138 DOI: 10.1016/j.jtbi.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/14/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Clinical researchers have found that coinfection of the respiratory tract can cause distinct disease outcome, sometimes leading to long-lasting infection, compared to single viral infection. The impact of coinfections in human respiratory tract have not yet been evaluated in either theoretical or experimental studies on a large scale. A few experiments confirm that different respiratory viruses can infect the same cell (superinfection). Superinfection alone cannot cause long-lasting viral coinfections. The combined mechanism of superinfection and cell regeneration provides a plausible mechanism for chronic viral coinfections.
Molecular diagnostic techniques have revealed that approximately 43% of the patients hospitalized with influenza-like illness are infected by more than one viral pathogen, sometimes leading to long-lasting infections. It is not clear how the heterologous viruses interact within the respiratory tract of the infected host to lengthen the duration of what are usually short, self-limiting infections. We develop a mathematical model which allows for single cells to be infected simultaneously with two different respiratory viruses (superinfection) to investigate the possibility of chronic coinfections. We find that a model with superinfection and cell regeneration has a stable chronic coinfection fixed point, while superinfection without cell regeneration produces only acute infections. This analysis suggests that both superinfection and cell regeneration are required to sustain chronic coinfection via this mechanism since coinfection is maintained by superinfected cells that allow slow-growing infections a chance to infect cells and continue replicating. This model provides a possible mechanism for chronic coinfection independent of any viral interactions via the immune response.
Collapse
Affiliation(s)
- Lubna Pinky
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States.
| | - Gilberto González-Parra
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States; Department of Mathematics, New Mexico Tech, Socorro, NM, United States
| | - Hana M Dobrovolny
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| |
Collapse
|
8
|
Febrile Neutropenia in Transplant Recipients. PRINCIPLES AND PRACTICE OF TRANSPLANT INFECTIOUS DISEASES 2019. [PMCID: PMC7122322 DOI: 10.1007/978-1-4939-9034-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Febrile neutropenic patients are at increased risk of developing infections. During the initial stages of neutropenia, most of these infections are bacterial. The spectrum of bacterial infections depends to some extent on whether or not patients receive antimicrobial prophylaxis when neutropenic. Since most transplant recipients do, Gram-positive organisms predominate, due to the fact prophylaxis is directed primarily against Gram-negative organisms. Staphylococcus species (often methicillin-resistant), Streptococcus species (viridans group streptococci, beta-hemolytic streptococci), and Enterococcus species (including vancomycin-resistant strains) are isolated most often. Therefore, potent empiric Gram-positive coverage is recommended by many in this setting. Escherichia coli, Pseudomonas aeruginosa, and Klebsiella species are the most common Gram-negative pathogens isolated. Non-fermentative Gram-negative bacilli (Stenotrophomonas maltophilia, Acinetobacter species) are emerging as important pathogens. Many of these organisms acquire multiple mechanisms of resistance that render them multidrug resistant. The administration of prompt, broad-spectrum, empiric, antimicrobial therapy is essential and is generally based on local epidemiology and susceptibility/resistance patterns. Response rate to the initial regimen is generally in the range of 75–85%. Fungal infections develop in patients with prolonged neutropenia (greater than 7–10 days). Candida species and Aspergillus species are the predominant fungal pathogens, although many other fungi are opportunistic pathogens in this setting. Fungal infections are seldom documented microbiologically or on histopathology, and the administration of empiric antifungal therapy, when such infections are suspected, is the norm. Therapy is often prolonged, and outcomes are still suboptimal. The importance of infection control and antimicrobial stewardship cannot be overemphasized.
Collapse
|
9
|
Kumar P, Srivastava M. Prophylactic and therapeutic approaches for human metapneumovirus. Virusdisease 2018; 29:434-444. [PMID: 30539045 PMCID: PMC6261883 DOI: 10.1007/s13337-018-0498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important pneumovirus which causes acute respiratory disease in human beings. The viral infection leads to mild to severe respiratory symptoms depending on the age and immune status of the infected individual. Several groups across the world are working on the development of immunogens and therapy to manage HMPV infection with promising results under laboratory conditions but till date any virus specific vaccine or therapy has not been approved for clinical use. This minireview gives an overview of the prophylactic and therapeutic approaches to manage HMPV infections.
Collapse
Affiliation(s)
- Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| | - Mansi Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, U.P. 201301 India
| |
Collapse
|
10
|
Dandachi D, Rodriguez-Barradas MC. Viral pneumonia: etiologies and treatment. J Investig Med 2018; 66:957-965. [PMID: 29680828 DOI: 10.1136/jim-2018-000712] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2018] [Indexed: 12/16/2022]
Abstract
Viral pathogens are increasingly recognized as a cause of pneumonia, in immunocompetent patients and more commonly among immunocompromised. Viral pneumonia in adults could present as community-acquired pneumonia (CAP), ranging from mild disease to severe disease requiring hospital admission and mechanical ventilation. Moreover, the role of viruses in hospital-acquired pneumonia and ventilator-associated pneumonia as causative agents or as co-pathogens and the effect of virus detection on clinical outcome are being investigated.More than 20 viruses have been linked to CAP. Clinical presentation, laboratory findings, biomarkers, and radiographic patterns are not characteristic to specific viral etiology. Currently, laboratory confirmation is most commonly done by detection of viral nucleic acid by reverse transcription-PCR of respiratory secretions.Apart from the US Food and Drug Administration-approved medications for treatment of influenza pneumonia, the treatment of non-influenza respiratory viruses is limited. Moreover, the evidence supporting the use of available antivirals to treat immunocompromised patients is modest at best. With the widespread use of molecular diagnostics, an aging population, and advancement in cancer therapy, physicians will face a bigger challenge in managing viral respiratory tract infections. Emphasis on infection control measures to prevent the spread of respiratory viruses especially in healthcare settings is extremely important.
Collapse
Affiliation(s)
- Dima Dandachi
- Infectious Diseases Section, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Maria C Rodriguez-Barradas
- Infectious Diseases Section, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.,Infectious Diseases Section (MS 111G), Michael E. DeBakey VAMC, Houston, Texas, USA
| |
Collapse
|
11
|
Spahr Y, Tschudin-Sutter S, Baettig V, Compagno F, Tamm M, Halter J, Gerull S, Passweg J, Hirsch HH, Khanna N. Community-Acquired Respiratory Paramyxovirus Infection After Allogeneic Hematopoietic Cell Transplantation: A Single-Center Experience. Open Forum Infect Dis 2018; 5:ofy077. [PMID: 29780847 PMCID: PMC5952916 DOI: 10.1093/ofid/ofy077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Background Paramyxoviruses include respiratory syncytial virus (RSV), parainfluenza virus (PIV), and human metapneumovirus (MPV), which may cause significant respiratory tract infectious disease (RTID) and mortality after allogeneic hematopoietic cell transplantation (HCT). However, clinical data regarding frequency and outcome are scarce. Methods We identified all paramyxovirus RTIDs in allogeneic HCT recipients diagnosed by multiplex polymerase chain reaction between 2010 and 2014. Baseline characteristics of patients, treatment, and outcome of each episode were analyzed; ie, moderate, severe, and very severe immunodeficiency (verySID) according to HCT ≤6 months, T- or B-cell depletion ≤3 months, graft-versus-host disease, neutropenia, lymphopenia, or hypo-gammaglobulinemia. Results One hundred three RTID episodes in 66 patients were identified (PIV 47% [48 of 103], RSV 32% [33 of 103], MPV 21% [22 of 103]). Episodes occurred in 85% (87 of 103) at >100 days post-HCT. Lower RTID accounted for 36% (37 of 103). Thirty-nine percent (40 of 103) of RTID episodes required hospitalization and more frequently affected patients with lower RTID. Six percent progressed from upper to lower RTID. Overall mortality was 6% and did not differ between paramyxoviruses. Sixty-one percent (63 of 103) of episodes occurred in patients with SID, and 20.2% (19 of 63) of episodes occurred in patients with verySID. Oral ribavirin plus intravenous immunoglobulin was administered in 38% (39 of 103) of RTIDs, preferably for RSV or MPV (P ≤ .001) and for SID patients (P = .001). Patients with verySID frequently progressed to lower RTID (P = .075), required intensive care unit transfer, and showed higher mortality. Conclusion Paramyxovirus RTID remains a major concern in allogeneic HCT patients fulfilling SID and verySID, emphasizing that efficacious and safe antiviral treatments are urgently needed.
Collapse
Affiliation(s)
- Yasmin Spahr
- Department of Anesthesiology, Cantonal Hospital St. Gallen, Switzerland
- Infectious Diseases and Hospital Epidemiology, Switzerland
| | | | | | - Francesca Compagno
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Switzerland
| | - Michael Tamm
- Clinic of Pulmonary Medicine and Respiratory Cell Research, Switzerland
| | - Jörg Halter
- Hematology, University of Basel, Switzerland
| | | | | | - Hans H Hirsch
- Infectious Diseases and Hospital Epidemiology, Switzerland
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Switzerland
| | - Nina Khanna
- Infectious Diseases and Hospital Epidemiology, Switzerland
- Infection Biology, Department Biomedicine, University and University Hospital of Basel, Switzerland
- Correspondence: N. Khanna, MD, Infection Biology Laboratory and Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Petersgraben 4, 4031 Basel, Switzerland ()
| |
Collapse
|
12
|
Merkow JS, Nelson EJ. Intraoperative Acute Respiratory Failure in an Immunocompromised Patient with Human Metapneumovirus. AMERICAN JOURNAL OF CASE REPORTS 2018; 19:301-303. [PMID: 29545513 PMCID: PMC5869965 DOI: 10.12659/ajcr.907604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Patient: Male, 31 Final Diagnosis: Pneumonia from Human Metapneumovirus pulmonary infection Symptoms: Cough • fatigue Medication: — Clinical Procedure: Hernia repair Specialty: Anesthesiology
Collapse
Affiliation(s)
- Justin S Merkow
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erik J Nelson
- Department of Anesthesia, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
13
|
Kakiuchi S, Tsuji M, Nishimura H, Wang L, Takayama-Ito M, Kinoshita H, Lim CK, Taniguchi S, Oka A, Mizuguchi M, Saijo M. Human Parainfluenza Virus Type 3 Infections in Patients with Hematopoietic Stem Cell Transplants: the Mode of Nosocomial Infections and Prognosis. Jpn J Infect Dis 2017; 71:109-115. [PMID: 29279454 DOI: 10.7883/yoken.jjid.2017.424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There have been a few prospective and comprehensive surveillance studies on the respiratory viral infections (RVIs) among patients undergoing hematopoietic stem cell transplantation (HSCT). A 2-year prospective cohort surveillance study of symptomatic and asymptomatic RVIs was performed in hospitalized HSCT patients. Oropharyngeal (OP) swab samples were serially collected each week from 1 week before and up to 100 days after HSCT and were tested for virus isolation with cell culture-based viral isolation (CC-based VI) and a multiplex PCR (MPCR). A total of 2,747 OP swab samples were collected from 250 HSCT patients (268 HSCT procedures). Among these patients, 79 had RVIs (CC-based VI, n = 63; MPCR, n = 17). The parainfluenza virus type 3 (PIV3) accounted for 71% (57/80) of the cases of RVIs. Some PIV3 infections were asymptomatic and involved a longer virus-shedding period. The PIV3 was often cultured from samples taken before the onset of a respiratory disease. The PIV3 infections were attributed to the transmission of nosocomial infections. PIV3 infections before engraftment will more likely result in the development of lower respiratory tract infections and worse outcomes. A real-time monitoring of respiratory viral infections in the HSCT ward among patients with or without respiratory symptoms is required for the prevention of nosocomial RVIs, especially of PIV3 infections.
Collapse
Affiliation(s)
- Satsuki Kakiuchi
- Department of Virology 1, National Institute of Infectious Diseases.,Department of Developmental Medical Sciences, The University of Tokyo
| | | | | | - Lixing Wang
- Department of Virology 1, National Institute of Infectious Diseases
| | | | - Hitomi Kinoshita
- Department of Virology 1, National Institute of Infectious Diseases
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases
| | | | - Akira Oka
- Department of Developmental Medical Sciences, The University of Tokyo
| | - Masashi Mizuguchi
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
14
|
Tzannou I, Nicholas SK, Lulla P, Aguayo-Hiraldo PI, Misra A, Martinez CA, Machado AA, Orange JS, Piedra PA, Vera JF, Leen AM. Immunologic Profiling of Human Metapneumovirus for the Development of Targeted Immunotherapy. J Infect Dis 2017; 216:678-687. [PMID: 28934427 PMCID: PMC5853664 DOI: 10.1093/infdis/jix358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022] Open
Abstract
Human metapneumovirus (hMPV) is a respiratory virus detected in ≥9% of allogeneic hematopoietic stem cell transplant (HSCT) recipients, in whom it can cause significant morbidity and mortality. Given the lack of effective antivirals, we investigated the potential for immunotherapeutic intervention, using adoptively transferred T cells. Thus, we characterized the cellular immune response to the virus and identified F, N, M2-1, M, and P as immunodominant target antigens. Reactive T cells were polyclonal (ie, they expressed CD4 and CD8), T-helper type 1 polarized, and polyfunctional (ie, they produced interferon γ, tumor necrosis factor α, granulocyte-macrophage colony-stimulating factor, and granzyme B), and they were able to kill autologous antigen-loaded targets. The detection of hMPV-specific T cells in HSCT recipients who endogenously controlled active infections support the clinical importance of T-cell immunity in mediating protective antiviral effects. Our results demonstrate the feasibility of developing an immunotherapy for immunocompromised patients with uncontrolled infections.
Collapse
Affiliation(s)
- Ifigeneia Tzannou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Sarah K Nicholas
- Solid Organ Transplant Immunology, Section of Immunology, Allergy and Rheumatology
| | - Premal Lulla
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Paibel I Aguayo-Hiraldo
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Anisha Misra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Caridad A Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Annette A Machado
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Jordan S Orange
- Center for Human Immunobiology, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, and Houston Methodist Hospital
| |
Collapse
|
15
|
Grim SA, Reid GE, Clark NM. Update in the treatment of non-influenza respiratory virus infection in solid organ transplant recipients. Expert Opin Pharmacother 2017; 18:767-779. [PMID: 28425766 PMCID: PMC7103702 DOI: 10.1080/14656566.2017.1322063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/19/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Despite the improved outcomes in solid organ transplantation with regard to prevention of rejection and increased patient and graft survival, infection remains a common cause of morbidity and mortality. Respiratory viruses are a frequent and potentially serious cause of infection after solid organ transplantation. Furthermore, clinical manifestations of respiratory virus infection (RVI) may be more severe and unusual in solid organ transplant recipients (SOTRs) compared with the non-immunocompromised population. Areas covered: This article reviews the non-influenza RVIs that are commonly encountered in SOTRs. Epidemiologic and clinical characteristics are highlighted and available treatment options are discussed. Expert opinion: New diagnostic tools, particularly rapid molecular assays, have expanded the ability to identify specific RVI pathogens in SOTRs. This is not only useful from a treatment standpoint but also to guide infection control practices. More data are needed on RVIs in the solid organ transplant population, particularly regarding their effect on rejection and graft dysfunction. There is also a need for new antiviral agents active against these infections as well as markers that can identify which patients would most benefit from treatment.
Collapse
Affiliation(s)
- Shellee A. Grim
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, IL, USA
| | - Gail E. Reid
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| | - Nina M. Clark
- Department of Internal Medicine, Division of Infectious Diseases, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
16
|
El Chaer F, Shah DP, Kmeid J, Ariza-Heredia EJ, Hosing CM, Mulanovich VE, Chemaly RF. Burden of human metapneumovirus infections in patients with cancer: Risk factors and outcomes. Cancer 2017; 123:2329-2337. [PMID: 28178369 PMCID: PMC5459658 DOI: 10.1002/cncr.30599] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 12/27/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Human metapneumovirus (hMPV) causes upper and lower respiratory tract infections (URIs and LRIs, respectively) in healthy and immunocompromised patients; however, its clinical burden in patients with cancer remains unknown. METHODS In a retrospective study of all laboratory‐confirmed hMPV infections treated at the authors’ institution between April 2012 and May 2015, clinical characteristics, risk factors for progression to an LRI, treatment, and outcomes in patients with cancer were determined. RESULTS In total, 181 hMPV infections were identified in 90 patients (50%) with hematologic malignancies (HMs), in 57 (31%) hematopoietic cell transplantation (HCT) recipients, and in 34 patients (19%) with solid tumors. Most patients (92%) had a community‐acquired infection and presented with URIs (67%), and 43% developed LRIs (59 presented with LRIs and 19 progressed from a URI to an LRI). On multivariable analysis, an underlying HM (adjusted odds ratio [aOR], 3.11; 95% confidence interval [CI], 1.12‐8.64; P = .029), nosocomial infection (aOR, 26.9; 95% CI, 2.79‐259.75; P = .004), and hypoxia (oxygen saturation [SpO2], ≤ 92%) at presentation (aOR, 9.61; 95% CI, 1.98‐46.57; P = .005) were identified as independent factors associated with LRI. All‐cause mortality at 30 days from hMPV diagnosis was low (4%), and patients with LRIs had a 10% mortality rate at day 30 from diagnosis; whereas patients with URIs had a 0% mortality rate. CONCLUSIONS hMPV infections in patients with cancer may cause significant morbidity, especially for those with underlying HM who may develop an LRI. Despite high morbidity and the lack of directed antiviral therapy for hMPV infections, mortality at day 30 from this infection remained low in this studied population. Cancer 2017;123:2329–2337. © 2017 American Cancer Society. Human metapneumovirus infections in patients with cancer may cause significant morbidity, especially in those with underlying hematologic malignancies who may develop a lower respiratory infection. Despite high morbidity and the lack of directed antiviral therapy for human metapneumovirus infections, mortality from this infection at day 30 and day 90 remains low in the studied population.
Collapse
Affiliation(s)
- Firas El Chaer
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Dimpy P Shah
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joumana Kmeid
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ella J Ariza-Heredia
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chitra M Hosing
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Victor E Mulanovich
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roy F Chemaly
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
|
18
|
Abstract
Viral pneumonias in patients with hematologic malignancies and recipients of hematopoietic stem cell transplantation cause significant morbidity and mortality. Advances in diagnostic techniques have enabled rapid identification of respiratory viral pathogens from upper and lower respiratory tract samples. Lymphopenia, myeloablative and T-cell depleting chemotherapy, graft-versus-host disease, and other factors increase the risk of developing life-threatening viral pneumonia. Chest imaging is often nonspecific but may aid in diagnoses. Bronchoscopy with bronchoalveolar lavage is recommended in those at high risk for viral pneumonia who have new infiltrates on chest imaging.
Collapse
|
19
|
Affiliation(s)
- Raj D Shah
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-045, Chicago, IL 60611, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, 676 North St. Clair Street, Arkes 14-045, Chicago, IL 60611, USA.
| |
Collapse
|
20
|
von Lilienfeld-Toal M, Berger A, Christopeit M, Hentrich M, Heussel CP, Kalkreuth J, Klein M, Kochanek M, Penack O, Hauf E, Rieger C, Silling G, Vehreschild M, Weber T, Wolf HH, Lehners N, Schalk E, Mayer K. Community acquired respiratory virus infections in cancer patients-Guideline on diagnosis and management by the Infectious Diseases Working Party of the German Society for haematology and Medical Oncology. Eur J Cancer 2016; 67:200-212. [PMID: 27681877 PMCID: PMC7125955 DOI: 10.1016/j.ejca.2016.08.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Community acquired viruses (CRVs) may cause severe disease in cancer patients. Thus, efforts should be made to diagnose CRV rapidly and manage CRV infections accordingly. METHODS A panel of 18 clinicians from the Infectious Diseases Working Party of the German Society for Haematology and Medical Oncology have convened to assess the available literature and provide recommendations on the management of CRV infections including influenza, respiratory syncytial virus, parainfluenza virus, human metapneumovirus and adenovirus. RESULTS CRV infections in cancer patients may lead to pneumonia in approximately 30% of the cases, with an associated mortality of around 25%. For diagnosis of a CRV infection, combined nasal/throat swabs or washes/aspirates give the best results and nucleic acid amplification based-techniques (NAT) should be used to detect the pathogen. Hand hygiene, contact isolation and face masks have been shown to be of benefit as general infection management. Causal treatment can be given for influenza, using a neuraminidase inhibitor, and respiratory syncytial virus, using ribavirin in addition to intravenous immunoglobulins. Ribavirin has also been used to treat parainfluenza virus and human metapneumovirus, but data are inconclusive in this setting. Cidofovir is used to treat adenovirus pneumonitis. CONCLUSIONS CRV infections may pose a vital threat to patients with underlying malignancy. This guideline provides information on diagnosis and treatment to improve the outcome.
Collapse
MESH Headings
- Adenovirus Infections, Human/diagnosis
- Adenovirus Infections, Human/epidemiology
- Adenovirus Infections, Human/therapy
- Antiviral Agents/therapeutic use
- Cidofovir
- Community-Acquired Infections/diagnosis
- Community-Acquired Infections/epidemiology
- Community-Acquired Infections/therapy
- Cytosine/analogs & derivatives
- Cytosine/therapeutic use
- Germany
- Hand Hygiene
- Humans
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Factors/therapeutic use
- Influenza, Human/diagnosis
- Influenza, Human/epidemiology
- Influenza, Human/therapy
- Lung/diagnostic imaging
- Masks
- Medical Oncology
- Metapneumovirus
- Neoplasms/epidemiology
- Neuraminidase/antagonists & inhibitors
- Nucleic Acid Amplification Techniques
- Organophosphonates/therapeutic use
- Oseltamivir/therapeutic use
- Paramyxoviridae Infections/diagnosis
- Paramyxoviridae Infections/epidemiology
- Paramyxoviridae Infections/therapy
- Patient Isolation
- Pneumonia, Viral/diagnosis
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/therapy
- Respiratory Syncytial Virus Infections/diagnosis
- Respiratory Syncytial Virus Infections/epidemiology
- Respiratory Syncytial Virus Infections/therapy
- Respiratory Tract Infections/diagnosis
- Respiratory Tract Infections/epidemiology
- Respiratory Tract Infections/therapy
- Ribavirin/therapeutic use
- Tomography, X-Ray Computed
- Virus Diseases/diagnosis
- Virus Diseases/epidemiology
- Virus Diseases/therapy
Collapse
Affiliation(s)
- Marie von Lilienfeld-Toal
- Department of Haematology and Medical Oncology, Jena University Hospital, Jena, Germany; Centre for Sepsis Control and Care (CSCC), University Hospital Jena, Germany; Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Jena, Germany.
| | - Annemarie Berger
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Hentrich
- Department of Haematology and Oncology, Red Cross Hospital, Munich, Germany
| | - Claus Peter Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany; Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Jana Kalkreuth
- Department of Haematology and Medical Oncology, Jena University Hospital, Jena, Germany
| | - Michael Klein
- Department I of Internal Medicine, Prosper-Hospital, Recklinghausen, Germany
| | - Matthias Kochanek
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Olaf Penack
- Department of Hematology, Oncology and Tumorimmunology, Charité Campus Virchow, Berlin, Germany
| | - Elke Hauf
- Department III of Internal Medicine, The University Hospital Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christina Rieger
- Lehrpraxis der Ludwig-Maximilians-Universität München, Germering, Germany
| | - Gerda Silling
- Department of Haematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Maria Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany; German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Thomas Weber
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Hans-Heinrich Wolf
- Department of Hematology and Oncology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Nicola Lehners
- Department of Haematology and Oncology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Enrico Schalk
- Department of Haematology and Oncology, Medical Centre, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karin Mayer
- Department of Haematology and Oncology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Esposito S, Mastrolia MV. Metapneumovirus Infections and Respiratory Complications. Semin Respir Crit Care Med 2016; 37:512-21. [PMID: 27486733 PMCID: PMC7171707 DOI: 10.1055/s-0036-1584800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute respiratory tract infections (ARTIs) are the most common illnesses experienced by people of all ages worldwide. In 2001, a new respiratory pathogen called human metapneumovirus (hMPV) was identified in respiratory secretions. hMPV is an RNA virus of the Paramyxoviridae family, and it has been isolated on every continent and from individuals of all ages. hMPV causes 7 to 19% of all cases of ARTIs in both hospitalized and outpatient children, and the rate of detection in adults is approximately 3%. Symptoms of hMPV infection range from a mild cold to a severe disease requiring a ventilator and cardiovascular support. The main risk factors for severe disease upon hMPV infection are the presence of a high viral load, coinfection with other agents (especially human respiratory syncytial virus), being between 0 and 5 months old or older than 65 years, and immunodeficiency. Currently, available treatments for hMPV infections are only supportive, and antiviral drugs are employed in cases of severe disease as a last resort. Ribavirin and immunoglobulins have been used in some patients, but the real efficacy of these treatments is unclear. At present, the direction of research on therapy for hMPV infection is toward the development of new approaches, and a variety of vaccination strategies are being explored and tested in animal models. However, further studies are required to define the best treatment and prevention strategies.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Vincenza Mastrolia
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
22
|
Scheuerman O, Barkai G, Mandelboim M, Mishali H, Chodick G, Levy I. Human metapneumovirus (hMPV) infection in immunocompromised children. J Clin Virol 2016; 83:12-6. [PMID: 27522636 DOI: 10.1016/j.jcv.2016.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Human metapneumovirus (hMPV) is a major cause of upper and lower respiratory tract infection (URTI, LRTI) in children. The prognosis of hMPV is unclear in immunocompromised patients. OBJECTIVES To describe the characteristics of hMPV infection in immunocompromised pediatric patients and to review the literature. STUDY DESIGN This retrospective study included 39 immunocompromised children (age 0-18 years) with proven hMPV infection attending two tertiary pediatric medical centers in 2004-2014. Demographic, clinical, laboratory, and radiological data were collected from the medical files. RESULTS Median age was 6 years. Seven patients had primary immune deficiency and 32, secondary immune deficiency, including 9 patients who underwent hematopoietic stem cell transplantation (HSCT). Most cases (92%) occurred in January-May. Twenty patients (51%) had lower respiratory tract infection and 17 (44%), upper respiratory tract infection; 2 patients (5%) had fever only. Presenting symptoms were fever (70%), cough (54%), and rhinorrhea (35%). Severe lymphopenia (<1000lymphocytes/mL) was noted in 64% of patients and elevated liver enzyme levels in 49%. Seventeen patients had pneumonia: bilateral and alveolar in 13 patients, each. HSCT was not associated with more severe disease. Respiratory failure occurred in 6 patients, of whom 4 died (10% of cohort). All children who died had severe lymphopenia. On multivariate analysis, bacterial or fungal co-infection was the only major risk factor for death. Review of the literature showed variable clinical presentations and severity in pediatric patients with hMPV infection. CONCLUSIONS Infection with hMPV may be associated with relatively high morbidity and mortality in immunocompromised children. Death was associated with bacterial and fungal co-infection.
Collapse
Affiliation(s)
- Oded Scheuerman
- Pediatric Infectious Diseases Unit, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel.
| | - Galia Barkai
- Pediatric Infectious Disease Unit, The Edmond and Lily Safra Children's Hospital, Tel Hashomer, Ramat Gan 52621, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| | - Michal Mandelboim
- Department of Virology, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel
| | - Hagit Mishali
- National Center for Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Gabriel Chodick
- Department of Epidemiology & Preventive Medicine, Tel Aviv, Ramat Aviv 6997801, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| | - Itzhak Levy
- Department of Pediatrics B, Schneider Children's Medical Center of Israel, Petach Tikva 49202, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Ramat Aviv 6997801, Israel
| |
Collapse
|
23
|
Human metapneumovirus infections in hematopoietic cell transplant recipients and hematologic malignancy patients: A systematic review. Cancer Lett 2016; 379:100-6. [PMID: 27260872 DOI: 10.1016/j.canlet.2016.05.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/27/2016] [Accepted: 05/27/2016] [Indexed: 11/22/2022]
Abstract
Over the past decade, reported incidence of human metapneumovirus (hMPV) has increased owing to the use of molecular assays for diagnosis of respiratory viral infections in cancer patients. The seasonality of these infections, differences in sampling strategies across institutions, and small sample size of published studies make it difficult to appreciate the true incidence and impact of hMPV infections. In this systematic review, we summarized the published data on hMPV infections in hematopoietic cell transplant recipients and patients with hematologic malignancy, focusing on incidence, hMPV-associated lower respiratory tract infection (LRTI), mortality, prevention, and management with ribavirin and/or intravenous immunoglobulins. Although the incidence of hMPV infections and hMPV-associated LRTI in this patient population is similar to respiratory syncytial virus or parainfluenza virus and despite lack of directed antiviral therapy, the mortality rate remains low unless patients develop LRTI. In the absence of vaccine to prevent hMPV, infection control measures are recommended to reduce its burden in cancer patients.
Collapse
|
24
|
Seo S, Gooley TA, Kuypers JM, Stednick Z, Jerome KR, Englund JA, Boeckh M. Human Metapneumovirus Infections Following Hematopoietic Cell Transplantation: Factors Associated With Disease Progression. Clin Infect Dis 2016; 63:178-85. [PMID: 27143659 PMCID: PMC4928387 DOI: 10.1093/cid/ciw284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/23/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) is a newly identified pulmonary pathogen that can cause fatal lower respiratory tract disease (LRD) in hematopoietic cell transplantation (HCT) recipients. Little is known about progression rates from upper respiratory tract infection (URI) to LRD and risk factors associated with progression. METHODS A total of 118 HCT recipients receiving transplantation between 2004 and 2014 who had HMPV detected in nasopharyngeal, bronchoalveolar lavage, or lung biopsy samples by real-time reverse transcription polymerase chain reaction were retrospectively analyzed. RESULTS More than 90% of the cases were identified between December and May. Among the 118 HCT patients, 88 and 30 had URI alone and LRD, respectively. Among 30 patients with LRD, 17 patients progressed from URI to LRD after a median of 7 days (range, 2-63 days). The probability of progression to LRD within 40 days after URI was 16%. In Cox regression analysis, steroid use ≥1 mg/kg prior to URI diagnosis (hazard ratio [HR], 5.10; P = .004), low lymphocyte count (HR, 3.43; P = .011), and early onset of HMPV infection after HCT (before day 30 after HCT; HR, 3.54; P = .013) were associated with higher progression to LRD. The median viral load in nasal wash samples was 1.1 × 10(6) copies/mL (range, 3.3 × 10(2)-1.7 × 10(9)) with no correlation between the viral load and progression. CONCLUSIONS Progression from URI to LRD occurred in up to 60% of HCT recipients with risk factors such as systemic corticosteroid use or low lymphocyte counts. Further studies are needed to define the role of viral load in the pathogenesis of progressive disease.
Collapse
Affiliation(s)
- Sachiko Seo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington Department of Hematology and Oncology, National Cancer Research Center East, Chiba, Japan
| | - Ted A Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Jane M Kuypers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington Department of Laboratory Medicine
| | - Zachary Stednick
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington Department of Laboratory Medicine
| | - Janet A Englund
- Department of Pediatrics, University of Washington Pediatric Infectious Diseases Division, Seattle Children's Hospital
| | - Michael Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington Clinical Research Division, Fred Hutchinson Cancer Research Center Department of Medicine, University of Washington, Seattle
| |
Collapse
|
25
|
Dignan FL, Clark A, Aitken C, Gilleece M, Jayakar V, Krishnamurthy P, Pagliuca A, Potter MN, Shaw B, Skinner R, Turner A, Wynn RF, Coyle P. BCSH/BSBMT/UK clinical virology network guideline: diagnosis and management of common respiratory viral infections in patients undergoing treatment for haematological malignancies or stem cell transplantation. Br J Haematol 2016; 173:380-93. [PMID: 27060988 PMCID: PMC7161808 DOI: 10.1111/bjh.14027] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 12/21/2022]
Abstract
A joint working group established by the Haemato-oncology subgroup of the British Committee for Standards in Haematology, the British Society for Bone Marrow Transplantation and the UK Clinical Virology Network has reviewed the available literature and made recommendations for the diagnosis and management of respiratory viral infections in patients with haematological malignancies or those undergoing haematopoietic stem cell transplantation. This guideline includes recommendations for the diagnosis, prevention and treatment of respiratory viral infections in adults and children. The suggestions and recommendations are primarily intended for physicians practising in the United Kingdom.
Collapse
Affiliation(s)
- Fiona L Dignan
- Department of Haematology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Andrew Clark
- Bone Marrow Transplant Unit, Beatson Oncology Centre, Gartnavel Hospital, Glasgow, UK
| | - Celia Aitken
- West of Scotland Specialist Virology Centre, Glasgow Royal Infirmary, Glasgow, UK
| | - Maria Gilleece
- Department of Haematology, Leeds Teaching Hospitals Trust, Leeds, UK
| | - Vishal Jayakar
- Department of Haematology, Kingston Hospital NHS Trust, Kingston upon Thames, London, UK
| | | | - Antonio Pagliuca
- Department of Haematological Medicine, King's College Hospital, London, UK
| | - Michael N Potter
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Bronwen Shaw
- Section of Haemato-oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Roderick Skinner
- Department of Paediatric and Adolescent Haematology/Oncology, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Andrew Turner
- Department of Virology, Central Manchester NHS Foundation Trust, Manchester, UK
| | - Robert F Wynn
- Royal Manchester Children's Hospital, Manchester, UK
| | - Peter Coyle
- Regional Virus Laboratory, Department of Microbiology, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
26
|
Arasaratnam RJ, Leen AM. Adoptive T cell therapy for the treatment of viral infections. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:278. [PMID: 26605324 DOI: 10.3978/j.issn.2305-5839.2015.10.12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Reuben J Arasaratnam
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
27
|
Gross AE, Bryson ML. Oral Ribavirin for the Treatment of Noninfluenza Respiratory Viral Infections: A Systematic Review. Ann Pharmacother 2015; 49:1125-35. [PMID: 26228937 DOI: 10.1177/1060028015597449] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To review clinical outcomes data for patients treated with oral ribavirin for noninfluenza respiratory viral infections (NIRVIs). DATA SOURCES MEDLINE, EMBASE, and PubMed Central (1972 to June 1, 2015) were queried with the following search term combinations: "Oral" AND "ribavirin" AND ("respiratory syncytial virus" OR "metapneumovirus" OR "parainfluenza" OR "coronavirus" OR "rhinovirus" OR "enterovirus" OR "adenovirus"). STUDY SELECTION AND DATA EXTRACTION Included studies must have characterized the clinical outcomes of a cohort of patients treated with oral ribavirin for symptomatic NIRVIs. Case reports and series with <5 cases, conference abstracts, and articles written in languages other than English were excluded. DATA SYNTHESIS Of the 1256 unique reports, 15 met inclusion criteria: 12 retrospective, 3 prospective, and 3 comparative with untreated control groups. All studies except for 2 Middle East respiratory syndrome coronavirus (MERS-CoV) studies were in immunocompromised patients (9 malignancy/stem cell transplant, 4 lung transplant). The mortality rate ranged from 0% to 31% in malignancy/stem cell transplant recipients treated with oral ribavirin, and 1/108 (0.9%) ribavirin-treated lung transplant recipients died at 30 days. Three studies (one each for malignancy, lung transplant, and MERS-CoV) suggested a clinical outcomes benefit with oral ribavirin compared with supportive care alone; however, the nonrandomized design precludes efficacy determination. Hemolysis was the most common adverse reaction, occurring in 14% (54/375) of patients. Ribavirin was discontinued in 4% of patients secondary to adverse reactions. CONCLUSIONS Oral ribavirin should be considered for the treatment of NIRVI in immunocompromised adults (malignancy/stem cell transplant or lung transplant) or adults with MERS-CoV.
Collapse
Affiliation(s)
- Alan E Gross
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL, USA University of Illinois Hospital and Health Sciences System, Chicago, IL, USA
| | - Michelle L Bryson
- University of Illinois at Chicago, College of Pharmacy, Chicago, IL, USA Drug Information Group, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
28
|
Hoellein A, Hecker J, Hoffmann D, Göttle F, Protzer U, Peschel C, Götze K. Serious outbreak of human metapneumovirus in patients with hematologic malignancies. Leuk Lymphoma 2015; 57:623-7. [DOI: 10.3109/10428194.2015.1067699] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Alexander Hoellein
- III. Medical Department, Technische Universität München, Munich, Germany
| | - Judith Hecker
- III. Medical Department, Technische Universität München, Munich, Germany
| | - Dieter Hoffmann
- Department of Virology, Technische Universität München and Helmholtz Zentrum, Munich, Germany
| | - Franziska Göttle
- Department of Pediatrics, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Ulrike Protzer
- Department of Virology, Technische Universität München and Helmholtz Zentrum, Munich, Germany
| | - Christian Peschel
- III. Medical Department, Technische Universität München, Munich, Germany
| | - Katharina Götze
- III. Medical Department, Technische Universität München, Munich, Germany
| |
Collapse
|
29
|
Simon A, Manoha C, Müller A, Schildgen O. Human Metapneumovirus and Its Role in Childhood Respiratory Infections. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0048-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Godet C, Le Goff J, Beby-Defaux A, Robin M, Raffoux E, Arnulf B, Roblot F, Frat JP, Maillard N, Tazi A, Bergeron A. Human metapneumovirus pneumonia in patients with hematological malignancies. J Clin Virol 2014; 61:593-6. [PMID: 25440914 PMCID: PMC7173302 DOI: 10.1016/j.jcv.2014.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 11/30/2022]
Abstract
25% of hematological patients with a positive HMPV test have pneumonia. HMPV pneumonia can occur in the course of several hematological conditions. HMPV can cause pneumonia as a single pathogen. Lung HRCT scan may be suggestive of HMPV pneumonia. The outcome of HMPV pneumonia is good despite no antiviral treatment.
Background Human metapneumovirus (HMPV) has recently emerged as a cause of respiratory infections in hematological patients. Clinical data are lacking to guide the management of HMPV pneumonias. Objectives To characterize the clinical and radiographic presentation and outcome of HMPV pneumonias diagnosed in hematological patients. Study design We screened the patients with a positive HMPV respiratory test in two French teaching hospitals between 2007 and 2011. Among them, the medical charts from the hematological patients who presented with HMPV pneumonia were reviewed. Results Among the 54 patients with several underlying hematological conditions who were positive for HMPV, we found 13 cases of HMPV pneumonias. HMPV could be the cause of pneumonia as a single pathogen without associated upper respiratory infection. Centrilobular nodules were constant on lung computed tomography scans. No patients died despite the absence of administration of antiviral treatments. Conclusions Our data provide further insights in the diagnosis and management of HMPV pneumonias in this setting.
Collapse
Affiliation(s)
- Cendrine Godet
- Service de Maladies Infectieuses et de Médecine Interne, CHU Poitiers, France
| | - Jérôme Le Goff
- Univ Paris Diderot, Sorbonne Paris Cité, Laboratoire de microbiologie, AP-HP, Hôpital Saint Louis, Paris, France
| | | | - Marie Robin
- Univ Paris Diderot, Sorbonne Cité, Service d'Hématologie-Greffe, AP-HP, Hôpital Saint Louis, Paris, France
| | - Emmanuel Raffoux
- Univ Paris Diderot, Sorbonne Cité, Maladies du sang, AP-HP, Hôpital Saint Louis, Paris, France
| | - Bertrand Arnulf
- Univ Paris Diderot, Sorbonne Cité, Service d'Immuno-Hématologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - France Roblot
- Service de Maladies Infectieuses et de Médecine Interne, CHU Poitiers, France
| | | | | | - Abdellatif Tazi
- Biostatistics and Clinical Epidemiology Research Team (ECSTRA), UMR 1153 INSERM, Univ Paris Diderot, Sorbonne Paris Cité, France; AP-HP, Hôpital Saint-Louis, Service de Pneumologie, F-75010 Paris, France
| | - Anne Bergeron
- Biostatistics and Clinical Epidemiology Research Team (ECSTRA), UMR 1153 INSERM, Univ Paris Diderot, Sorbonne Paris Cité, France; AP-HP, Hôpital Saint-Louis, Service de Pneumologie, F-75010 Paris, France.
| |
Collapse
|
31
|
Abstract
Modern post-transplant care pathways commonly encompass periods of critical care support. Infectious events account for many of these interactions making critical care physicians integral members of multidisciplinary transplant teams. Despite continuing advances in clinical care and infection prophylaxis, the morbidity and mortality attributable to infection post-transplant remains considerable. Emerging entities constantly add to the breadth of potential opportunistic pathogens. Individualized risk assessments, rapid and thorough diagnostic evaluation, and prompt initiation of appropriate antimicrobial therapies are essential. The approach to managing transplant recipients with infection in critical care is discussed and common and emerging opportunistic pathogens are reviewed.
Collapse
Affiliation(s)
| | - Atul Humar
- Transplant Infectious Diseases, Alberta Transplant Institute, University of Alberta, 6–030 Katz Center for Health Research, 11361–87 Ave, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
32
|
Michelis FV, Branch DR, Scovell I, Bloch E, Pendergrast J, Lipton JH, Cserti-Gazdewich CM. Acute hemolysis after intravenous immunoglobulin amid host factors of ABO-mismatched bone marrow transplantation, inflammation, and activated mononuclear phagocytes. Transfusion 2013; 54:681-90. [DOI: 10.1111/trf.12329] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/03/2013] [Accepted: 05/22/2013] [Indexed: 01/25/2023]
Affiliation(s)
- Fotios V. Michelis
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Donald R. Branch
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Iain Scovell
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Evgenia Bloch
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Jacob Pendergrast
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Jeffrey H. Lipton
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| | - Christine M. Cserti-Gazdewich
- Blood and Marrow Transplant Program; Princess Margaret Hospital; University Health Network; Toronto Ontario Canada
- Research & Development; Canadian Blood Services; Toronto Ontario Canada
- Transfusion Medicine Laboratory; University Health Network; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
33
|
Avery RK. Human metapneumovirus infection: worthy of recognition. Biol Blood Marrow Transplant 2013; 19:1138-9. [PMID: 23791625 DOI: 10.1016/j.bbmt.2013.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 06/10/2013] [Indexed: 11/25/2022]
Affiliation(s)
- Robin Kimiko Avery
- Division of Infectious Disease (Transplant/Oncology), Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
34
|
Haas LEM, Thijsen SFT, van Elden L, Heemstra KA. Human metapneumovirus in adults. Viruses 2013; 5:87-110. [PMID: 23299785 PMCID: PMC3564111 DOI: 10.3390/v5010087] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/16/2022] Open
Abstract
Human metapneumovirus (HMPV) is a relative newly described virus. It was first isolated in 2001 and currently appears to be one of the most significant and common human viral infections. Retrospective serologic studies demonstrated the presence of HMPV antibodies in humans more than 50 years earlier. Although the virus was primarily known as causative agent of respiratory tract infections in children, HMPV is an important cause of respiratory infections in adults as well. Almost all children are infected by HMPV below the age of five; the repeated infections throughout life indicate transient immunity. HMPV infections usually are mild and self-limiting, but in the frail elderly and the immunocompromised patients, the clinical course can be complicated. Since culturing the virus is relatively difficult, diagnosis is mostly based on a nucleic acid amplification test, such as reverse transcriptase polymerase chain reaction. To date, no vaccine is available and treatment is supportive. However, ongoing research shows encouraging results. The aim of this paper is to review the current literature concerning HMPV infections in adults, and discuss recent development in treatment and vaccination.
Collapse
Affiliation(s)
- Lenneke E. M. Haas
- Department of Intensive Care Medicine, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands
| | - Steven F. T. Thijsen
- Department of Microbiology, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands; E-Mails: (S.F.T.T.); (K.A.H.)
| | - Leontine van Elden
- Department of Pulmonary Diseases, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands; E-Mail:
| | - Karen A. Heemstra
- Department of Microbiology, Diakonessenhuis, Utrecht, 3582 KE, The Netherlands; E-Mails: (S.F.T.T.); (K.A.H.)
| |
Collapse
|