1
|
Tarancon-Diez L, Carrasco I, Montes L, Falces-Romero I, Vazquez-Alejo E, Jiménez de Ory S, Dapena M, Iribarren JA, Díez C, Ramos-Ruperto L, Colino E, Calvo C, Muñoz-Fernandez MÁ, Navarro ML, Sainz T. Torque teno virus: a potential marker of immune reconstitution in youths with vertically acquired HIV. Sci Rep 2024; 14:24691. [PMID: 39433755 PMCID: PMC11494008 DOI: 10.1038/s41598-024-73870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Torque teno virus (TTV) viral load (VL), a component of the human virome, increases during immune suppression or dysregulation. This study aimed to explore TTV VL in youths living with vertically acquired HIV (YWVH) and its potential as an immunovirological marker. We performed an observational, retrospective study involving YWVH under antiretroviral treatment (ART) from the Spanish Cohort of HIV-infected children, adolescents, and vertically HIV-infected patients transferred to Adult Units (CoRISpe-FARO), compared to HIV-negative healthy donors (HD). Plasma TTV VL was assessed by qPCR. T-cell phenotype was analysed on cryopreserved peripheral blood mononuclear cells by flow cytometry. Correlations with baseline CD4 and CD8 and long-term virological evolution were examined. A total of 57 YWVH were compared with 23 HD. YWVH had a median CD4 T-cells of 736 cells/mm3 [IQR: 574-906], a median of 17 years [IQR: 14-20.5] since ART initiation, and 65 months [IQR: 39-116] under HIV-RNA virological control. TTV VL was higher among YWVH and in males compared with females (p < 0.05). Among YWVH, TTV VL correlated with CD4 and CD8 counts and the CD4/CD8 ratio (p = 0.002; r = - 0.39, p = 0.037; r = 0.277, p = 0.005; r = - 0.37 respectively). TTV VL correlated with activation expression markers (HLA-DR+/CD38+) on CD4 (p = 0.007, r = 0.39) and the soluble proinflammatory cytokine IL-6 (p = 0.006, r = 0.38).
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Itziar Carrasco
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Montes
- General Pediatrics and Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
| | - Iker Falces-Romero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Microbiology and Parasitology, Hospital La Paz, Madrid, Spain
| | - Elena Vazquez-Alejo
- Molecular Immunology Laboratoy, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Santiago Jiménez de Ory
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Dapena
- Department of Infectious Diseases, Hospital General de Castellón, Castellón, Spain
| | | | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luis Ramos-Ruperto
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
- Infectious Diseases Unit, Hospital La Paz-Carlos III-Cantoblanco, Madrid, Spain
- Hospital La Paz, Madrid, Spain
| | - Elena Colino
- Hospital Materno Infantil Las Palmas, Las Palmas de Gran Canaria, Spain
| | - Cristina Calvo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- General Pediatrics and Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mª Ángeles Muñoz-Fernandez
- Molecular Immunology Laboratoy, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Luisa Navarro
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Pediatría, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Talía Sainz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- General Pediatrics and Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Boukadida C, Peralta-Prado A, Chávez-Torres M, Romero-Mora K, Rincon-Rubio A, Ávila-Ríos S, Garrido-Rodríguez D, Reyes-Terán G, Pinto-Cardoso S. Alterations of the gut microbiome in HIV infection highlight human anelloviruses as potential predictors of immune recovery. MICROBIOME 2024; 12:204. [PMID: 39420423 PMCID: PMC11483978 DOI: 10.1186/s40168-024-01925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND HIV-1 infection is characterized by a massive depletion of mucosal CD4 T cells that triggers a cascade of events ultimately linking gut microbial dysbiosis to HIV-1 disease progression and pathogenesis. The association between HIV infection and the enteric virome composition is less characterized, although viruses are an essential component of the gut ecosystem. Here, we performed a cross-sectional analysis of the fecal viral (eukaryotic viruses and bacteriophages) and bacterial microbiome in people with HIV (PWH) and in HIV-negative individuals. To gain further insight into the association between the gut microbiome composition, HIV-associated immunodeficiency, and immune recovery, we carried out a longitudinal study including 14 PWH who initiated antiretroviral therapy (ART) and were followed for 24 months with samplings performed at baseline (before ART) and at 2, 6, 12, and 24 months post-ART initiation. RESULTS Our data revealed a striking expansion in the abundance and prevalence of several human virus genomic sequences (Anelloviridae, Adenoviridae, and Papillomaviridae) in stool samples of PWH with severe immunodeficiency (CD4 < 200). We also noted a decreased abundance of sequences belonging to two plant viruses from the Tobamovirus genus, a reduction in bacterial alpha diversity, and a decrease in Inoviridae bacteriophage sequences. Short-term ART (24 months) was linked to a significant decrease in human Anelloviridae sequences. Remarkably, the detection of Anellovirus sequences at baseline independently predicted poor immune recovery, as did low CD4 T cell counts. The bacterial and bacteriophage populations were unique to each PWH with individualized trajectories; we found no discernable pattern of clustering after 24 months on ART. CONCLUSION Advanced HIV-1 infection was associated with marked alterations in the virome composition, in particular a remarkable expansion of human anelloviruses, with a gradual restoration after ART initiation. In addition to CD4 T cell counts, anellovirus sequence detection might be useful to predict and monitor immune recovery. This study confirms data on the bacteriome and expands our knowledge on the viral component of the gut microbiome in HIV-1 infection. Video Abstract.
Collapse
Affiliation(s)
- Celia Boukadida
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Amy Peralta-Prado
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Monserrat Chávez-Torres
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Karla Romero-Mora
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Alma Rincon-Rubio
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Santiago Ávila-Ríos
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Daniela Garrido-Rodríguez
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
| | - Gustavo Reyes-Terán
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México
- Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Ciudad de México, México
| | - Sandra Pinto-Cardoso
- Departamento del Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, México.
| |
Collapse
|
3
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Esser PL, Quintanares GHR, Langhans B, Heger E, Böhm M, Jensen BEOLE, Esser S, Lübke N, Fätkenheuer G, Lengauer T, Klein F, Oette M, Rockstroh JK, Boesecke C, Di Cristanziano V, Kaiser R, Pirkl M. Torque Teno Virus Load Is Associated With Centers for Disease Control and Prevention Stage and CD4+ Cell Count in People Living With Human Immunodeficiency Virus but Seems Unrelated to AIDS-Defining Events and Human Pegivirus Load. J Infect Dis 2024; 230:e437-e446. [PMID: 38230877 PMCID: PMC11326818 DOI: 10.1093/infdis/jiae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Torque teno virus (TTV) is part of the human virome. TTV load was related to the immune status in patients after organ transplantation. We hypothesize that TTV load could be an additional marker for immune function in people living with HIV (PLWH). METHODS In this analysis, serum samples of PLWH from the RESINA multicenter cohort were reanalyzed for TTV. Investigated clinical and epidemiological parameters included human pegivirus load, patient age and sex, HIV load, CD4+ T-cell count (Centers for Disease Control and Prevention [CDC] stage 1, 2, or 3), and CDC clinical stage (1993 CDC classification system; stage A, B, or C) before initiation of antiretroviral therapy. Regression analysis was used to detect possible associations among parameters. RESULTS Our analysis confirmed TTV as a strong predictor of CD4+ T-cell count and CDC class 3. This relationship was used to propose a first classification of TTV load with regard to clinical stage. We found no association with clinical CDC stages A-C. The human pegivirus load was inversely correlated with HIV load but not TTV load. CONCLUSIONS TTV load was associated with immunodeficiency in PLWH. Neither TTV nor HIV load were predictive for the clinical categories of HIV infection.
Collapse
Affiliation(s)
- Pia L Esser
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Gibran H Rubio Quintanares
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- Paul Ehrlich Institute, Langen, Germany
- Infectious Disease Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| | - Michael Böhm
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| | - Björn-Erik O L E Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Esser
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Nadine Lübke
- Institute of Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Gerd Fätkenheuer
- Department of Internal Medicine I, University Hospital Cologne, Cologne, Germany
| | - Thomas Lengauer
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| | - Florian Klein
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mark Oette
- Clinic for General Medicine, Gastroenterology, and Infectious Diseases, Augustinerinnen Hospital, Cologne, Germany
| | - Juergen K Rockstroh
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Christoph Boesecke
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Bonn, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
- EuResist Network, Rome, Italy
| | - Martin Pirkl
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Cologne-Bonn, Cologne, Germany
| |
Collapse
|
5
|
Dal Lago S, Brani P, Ietto G, Dalla Gasperina D, Gianfagna F, Giaroni C, Bosi A, Drago Ferrante F, Genoni A, Manzoor HZ, Ambrosini A, De Cicco M, Quartarone CD, Khemara S, Carcano G, Maggi F, Baj A. Torque Teno Virus: A Promising Biomarker in Kidney Transplant Recipients. Int J Mol Sci 2024; 25:7744. [PMID: 39062987 PMCID: PMC11277443 DOI: 10.3390/ijms25147744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Torque Teno Virus (TTV) is a ubiquitous component of the human virome, not associated with any disease. As its load increases when the immune system is compromised, such as in kidney transplant (KT) recipients, TTV load monitoring has been proposed as a method to assess immunosuppression. In this prospective study, TTV load was measured in plasma and urine samples from 42 KT recipients, immediately before KT and in the first 150 days after it. Data obtained suggest that TTV could be a relevant marker for evaluating immune status and could be used as a guide to predict the onset of infectious complications in the follow-up of KT recipients. Since we observed no differences considering distance from transplantation, while we found a changing trend in days before viral infections, we suggest to consider changes over time in the same subjects, irrespective of time distance from transplantation.
Collapse
Affiliation(s)
- Sara Dal Lago
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | - Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Giuseppe Ietto
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Francesco Gianfagna
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | - Angelo Genoni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Hafza Zahira Manzoor
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Andrea Ambrosini
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | - Marco De Cicco
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | | | - Sara Khemara
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani—IRCCS, 00149 Rome, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
6
|
Zhu Z, Wang Y, Ning W, Liu C, Chen C. Torquetenovirus from bronchoalveolar lavage fluid as a biomarker for lung infection among immunocompromised hosts. Biomark Med 2024; 18:581-591. [PMID: 38982729 PMCID: PMC11370955 DOI: 10.1080/17520363.2024.2366148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/08/2024] [Indexed: 07/11/2024] Open
Abstract
Aim: Torquetenovirus (TTV) was a promising biomarker for immunity, while lung regional TTV for evaluating the opportunistic infection among immunocompromised hosts (ICH) was unclear.Materials & methods: In the ICH and non-ICH populations, we compared the susceptibility to opportunistic infections, clinical severity and the prognosis between subgroups, respectively.Results: ICH with detectable bronchoalveolar lavage fluid (BALF)-TTV were more susceptible to lung aspergillosis and Mycobacterium infections. Furthermore, our data demonstrated that the ICH cohort with detectable BALF-TTV represented a higher clinical severity and a worse prognosis, while the above findings were not found in the non-ICH population.Conclusion: Our findings demonstrated that the BALF-TTV could act as an effective predictor for opportunistic infection for ICH that complemented the CD4+ T cell counts.
Collapse
Affiliation(s)
- Ziwen Zhu
- Department of Respiratory & Critical Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou215006, China
| | - Yang Wang
- Department of Respiratory & Critical Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou215006, China
| | - Weiwei Ning
- Department of Respiratory & Critical Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou215006, China
| | - Chao Liu
- Department of Respiratory & Critical Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou215006, China
| | - Cheng Chen
- Department of Respiratory & Critical Medicine, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou215006, China
| |
Collapse
|
7
|
Kaelin EA, Mitchell C, Soria J, Rosa AL, Ticona E, Coombs RW, Frenkel LM, Bull ME, Lim ES. Longitudinal cervicovaginal microbiome and virome alterations during ART and discordant shedding in women living with HIV. RESEARCH SQUARE 2024:rs.3.rs-4078561. [PMID: 38699319 PMCID: PMC11065064 DOI: 10.21203/rs.3.rs-4078561/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Despite successful suppression of plasma HIV replication by antiretroviral therapy (ART), some women living with HIV (WLHIV) can still experience genital HIV shedding (discordant shedding). Female genital tract (FGT) microbiome and virome dynamics during long-term ART in WLHIV are poorly understood but might contribute to discordant HIV shedding, as the microbiome and virome are known to influence FGT health. To understand FGT microbial communities over time during ART usage and discordant shedding, we characterized the microbiome and virome in 125 cervicovaginal specimens collected over two years in 31 WLHIV in Lima, Peru. Intrapersonal bacterial microbiome variation was higher in HIV shedders compared to non-shedders. Cervicovaginal virome composition changed over time, particularly in non-shedders. Specifically, anellovirus relative abundance was inversely associated with ART duration and CD4 counts. Our results suggest that discordant HIV shedding is associated with FGT microbiome instability, and immune recovery during ART influences FGT virome composition.
Collapse
|
8
|
Spiertz A, Tsakmaklis A, Farowski F, Knops E, Heger E, Wirtz M, Kaiser R, Holtick U, Vehreschild MJGT, Di Cristanziano V. Torque teno virus-DNA load as individual cytomegalovirus risk assessment parameter upon allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2023; 111:963-969. [PMID: 37772680 DOI: 10.1111/ejh.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Immune recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) decisively influences the occurrence of opportunistic infections, one of the leading causes of death among this group of patients. Yet, today, there are no laboratory parameters mirroring immune function sufficiently. Torque teno virus (TTV) has already proven itself as a functional immune marker in other settings. AIMS In this analysis, we investigated whether monitoring of TTV-DNA load in whole blood is able to provide additional information on the capacity of the immune system to control cytomegalovirus (CMV) replication in allo-HSCT recipients. METHODS Whole blood samples from 59 patients were collected upon allo-HSCT (between Day -7 and +10), on Day +14, +21, +28, +56, +90, and +365 post-transplant. TTV-DNA loads and other relevant clinical information were correlated with the risk of CMV infections or reactivations, defined by evidence of viral replication in blood. RESULTS CMV serostatus of the recipient and a TTV load below 1000 copies/mL upon allo-HSCT were significantly associated with an increased incidence of CMV infection or reactivation. CONCLUSIONS Quantification of TTV load in the early phase of allo-HSCT procedure could provide additional information in order to identify patients at risk for CMV infection or reactivation.
Collapse
Affiliation(s)
- Arlene Spiertz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fedja Farowski
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Bhagchandani T, Nikita, Verma A, Tandon R. Exploring the Human Virome: Composition, Dynamics, and Implications for Health and Disease. Curr Microbiol 2023; 81:16. [PMID: 38006423 DOI: 10.1007/s00284-023-03537-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023]
Abstract
Humans are colonized by large number of microorganisms-bacteria, fungi, and viruses. The overall genome of entire viruses that either lives on or inside the human body makes up the human virome and is indeed an essential fraction of the human metagenome. Humans are constantly exposed to viruses as they are ubiquitously present on earth. The human virobiota encompasses eukaryotic viruses, bacteriophages, retroviruses, and even giant viruses. With the advent of Next-generation sequencing (NGS) and ongoing development of numerous bioinformatic softwares, identification and taxonomic characterization of viruses have become easier. The viruses are abundantly present in humans; these can be pathogenic or commensal. The viral communities occupy various niches in the human body. The viruses start colonizing the infant gut soon after birth in a stepwise fashion and the viral composition diversify according to their feeding habits. Various factors such as diet, age, medications, etc. influence and shape the human virome. The viruses interact with the host immune system and these interactions have beneficial or detrimental effects on their host. The virome composition and abundance change during the course of disease and these alterations impact the immune system. Hence, the virome population in healthy and disease conditions influences the human host in numerous ways. This review presents an overview of assembly and composition of the human virome in healthy asymptomatic individuals, changes in the virome profiles, and host-virome interactions in various disease states.
Collapse
Affiliation(s)
- Tannu Bhagchandani
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nikita
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Anjali Verma
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ravi Tandon
- Laboratory of AIDS Research and Immunology, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
10
|
Sajiki AF, Koyanagi Y, Ushida H, Kawano K, Fujita K, Okuda D, Kawabe M, Yamada K, Suzumura A, Kachi S, Kaneko H, Komatsu H, Usui Y, Goto H, Nishiguchi KM. Association Between Torque Teno Virus and Systemic Immunodeficiency in Patients With Uveitis With a Suspected Infectious Etiology. Am J Ophthalmol 2023; 254:80-86. [PMID: 37356647 DOI: 10.1016/j.ajo.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
PURPOSE To determine the correlation between the presence of torque teno virus (TTV) in the aqueous humor of patients with uveitis and clinical information, including immunodeficiency history. DESIGN Multicenter, retrospective, cross-sectional study. METHODS Fifty-eight patients with uveitis with a suspected infectious etiology and 24 controls with cataract or age-related macular degeneration were included. We used quantitative polymerase chain reaction to test all subjects for TTV and multiplex polymerase chain reaction to test uveitis subjects for common ocular pathogens. When possible, both serum and aqueous humor samples were tested. Ocular TTV positivity was compared with age, sex, and a history of systemic immunodeficiency with logistic analysis. RESULTS Ocular TTV positivity was found in 23%, 11%, and 0% of patients with herpetic uveitis, nonherpetic uveitis, and controls, respectively. Among patients with herpes infection, positivity for ocular TTV was found in 43%, 8%, 14%, and 50% of patients with cytomegalovirus retinitis, iridocyclitis, acute retinal necrosis, and Epstein-Barr virus-positive uveitis, respectively. Patients with cytomegalovirus retinitis showed a significantly higher rate of ocular TTV infection than controls (P = .008). Serum analysis revealed TTV positivity in 90% of patients with uveitis and in 100% of controls. Age- and gender-adjusted logistic analysis revealed a correlation between ocular TTV positivity and systemic immunodeficiency (P = .01), but no correlations between ocular TTV and age, gender, or viral pathogenic type. CONCLUSIONS These findings suggest that positivity for ocular TTV was correlated with a clinical history of systemic immunodeficiency.
Collapse
Affiliation(s)
- Ai Fujita Sajiki
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.).
| | - Yoshito Koyanagi
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Hiroaki Ushida
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.).
| | - Kenichi Kawano
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.); Department of Ophthalmology, Yokkaichi Municipal Hospital, Yokkaichi, Japan (K.K.)
| | - Kosuke Fujita
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Daishi Okuda
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Mitsuki Kawabe
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Kazuhisa Yamada
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Ayana Suzumura
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Shu Kachi
- Shohzankai Medical Foundation, Miyake Eye Hospital, Nagoya, Japan (S.K.)
| | - Hiroki Kaneko
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| | - Hiroyuki Komatsu
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan (H.K., Y.U., H.G.)
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan (H.K., Y.U., H.G.)
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan (H.K., Y.U., H.G.)
| | - Koji M Nishiguchi
- From the Department of Ophthalmology, Nagoya University Graduate School of Medicine, Nagoya, Japan (A.F.S., Y.K., H.U., K.K., K.F., D.O., M.K., K.Y., A.S., H.K., K.M.N.)
| |
Collapse
|
11
|
Abbate I, Rozera G, Cimini E, Carletti F, Tartaglia E, Rubino M, Pittalis S, Esvan R, Gagliardini R, Mondi A, Mazzotta V, Camici M, Girardi E, Vaia F, Puro V, Antinori A, Maggi F. Kinetics of TTV Loads in Peripheral Blood Mononuclear Cells of Early Treated Acute HIV Infections. Viruses 2023; 15:1931. [PMID: 37766337 PMCID: PMC10537844 DOI: 10.3390/v15091931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Torquetenovirus (TTV) is the most abundant component of the human blood virome and its replication is controlled by a functioning immune system. In this study, TTV replication was evaluated in 21 people with acute HIV infection (AHI) and immune reconstitution following antiretroviral therapy (ART). PBMC-associated TTV and HIV-1 DNA, as well as plasma HIV-1 RNA, were measured by real-time PCR. CD4 and CD8 differentiation, activation, exhaustion, and senescence phenotypes were analyzed by flow cytometry. Thirteen healthy donors (HD) and twenty-eight chronically infected HIV individuals (CHI), late presenters at diagnosis, were included as control groups. TTV replication in AHI seems to be controlled by the immune system being higher than in HD and lower than in CHI. During ART, a transient increase in TTV DNA levels was associated with a significant perturbation of activation and senescence markers on CD8 T cells. TTV loads were positively correlated with the expansion of CD8 effector memory and CD57+ cells. Our results shed light on the kinetics of TTV replication in the context of HIV acute infection and confirm that the virus replication is strongly regulated by the modulation of the immune system.
Collapse
Affiliation(s)
- Isabella Abbate
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (I.A.); (G.R.); (F.C.); (F.M.)
| | - Gabriella Rozera
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (I.A.); (G.R.); (F.C.); (F.M.)
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.T.); (M.R.)
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (I.A.); (G.R.); (F.C.); (F.M.)
| | - Eleonora Tartaglia
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.T.); (M.R.)
| | - Marika Rubino
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (E.T.); (M.R.)
| | - Silvia Pittalis
- AIDS Referral Center, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (S.P.); (R.E.); (V.P.)
| | - Rozenn Esvan
- AIDS Referral Center, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (S.P.); (R.E.); (V.P.)
| | - Roberta Gagliardini
- Clinical Infectious Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Annalisa Mondi
- Clinical Infectious Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Valentina Mazzotta
- Clinical Infectious Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Marta Camici
- Clinical Infectious Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy;
| | - Vincenzo Puro
- AIDS Referral Center, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (S.P.); (R.E.); (V.P.)
| | - Andrea Antinori
- Clinical Infectious Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (R.G.); (A.M.); (V.M.); (M.C.); (A.A.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” IRCCS, 00149 Rome, Italy; (I.A.); (G.R.); (F.C.); (F.M.)
| |
Collapse
|
12
|
Falabello de Luca AC, Marinho GB, Franco JB, Tenório JDR, Andrade NS, Batista AM, Mamana AC, Tozetto-Mendoza TR, Pérez Sayáns M, Braz-Silva PH, Ortega KL. Quantification of Torque Teno Virus (TTV) in plasma and saliva of individuals with liver cirrhosis: a cross sectional study. Front Med (Lausanne) 2023; 10:1184353. [PMID: 37425326 PMCID: PMC10325656 DOI: 10.3389/fmed.2023.1184353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Torque teno virus (TTV) has been pointed as an endogenous marker of immune function, the objective of this study was to investigate the TTV viral load in plasma and saliva of cirrhotic individuals and correlate it with clinical characteristics. Methods Blood, saliva, clinical data from records and laboratory tests were collected from 72 cirrhotic patients. Plasma and saliva were submitted to real-time polymerase chain reaction for quantification of TTV viral load. Results The majority of the patients presented decompensated cirrhosis (59.7%) and 47.2% had alterations in the white blood series. TTV was identified in 28 specimens of plasma (38.8%) and in 67 specimens of saliva (93.0%), with median values of TTV copies/mL of 90.6 in plasma and 245.14 in saliva. All the patients who were positive for TTV in plasma were also positive in saliva, with both fluids having a moderately positive correlation for the presence of TTV. There was no correlation between TTV viral load, either in plasma or in saliva, and any of the variables studied. Conclusion TTV is more frequently found and in greater amount in the saliva than in the plasma of cirrhotic patients. There was no correlation between TTV viral load and clinical parameters.
Collapse
Affiliation(s)
| | - Gabriella Bueno Marinho
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
| | - Juliana Bertoldi Franco
- Division of Dentistry, Clinics Hospital, University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Jefferson da Rocha Tenório
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
- Department of Pathology and Oral Diagnosis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Silva Andrade
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
- Department of Dentistry, Federal University of Sergipe, Lagarto, Sergipe, Brazil
| | - Alexandre Mendes Batista
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ana Carolina Mamana
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mário Pérez Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, MedOralRes Group, University of Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paulo Henrique Braz-Silva
- Laboratory of Virology, Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Karem L. Ortega
- Special Care Dentistry Centre (CAPE), Department of Stomatology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Gore EJ, Gard L, Niesters HGM, Van Leer Buter CC. Understanding torquetenovirus (TTV) as an immune marker. Front Med (Lausanne) 2023; 10:1168400. [PMID: 37384041 PMCID: PMC10296770 DOI: 10.3389/fmed.2023.1168400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023] Open
Abstract
Torquetenovirus (TTV), a small, single stranded anellovirus, is currently being explored as a marker of immunocompetence in patients with immunological impairment and inflammatory disorders. TTV has an extremely high prevalence and is regarded as a part of the human virome, the replication of which is controlled by a functioning immune system. The viral load of TTV in plasma of individuals is thought to reflect the degree of immunosuppression. Measuring and quantifying this viral load is especially promising in organ transplantation, as many studies have shown a strong correlation between high TTV loads and increased risk of infection on one side, and low TTV loads and an increased risk of rejection on the other side. As clinical studies are underway, investigating if TTV viral load measurement is superior for gauging antirejection therapy compared to medication-levels, some aspects nevertheless have to be considered. In contrast with medication levels, TTV loads have to be interpreted bearing in mind that viruses have properties including transmission, tropism, genotypes and mutations. This narrative review describes the potential pitfalls of TTV measurement in the follow-up of solid organ transplant recipients and addresses the questions which remain to be answered.
Collapse
|
14
|
Cancela F, Marandino A, Panzera Y, Betancour G, Mirazo S, Arbiza J, Ramos N. A combined approach of rolling-circle amplification-single site restriction endonuclease digestion followed by next generation sequencing to characterize the whole genome and intra-host variants of human Torque teno virus. Virus Res 2023; 323:198974. [PMID: 36272542 PMCID: PMC10194382 DOI: 10.1016/j.virusres.2022.198974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
Torque Teno Virus (TTV) was initially associated with post-transfusion hepatitis, but growing evidence of its ubiquity in humans is compatible to no apparent clinical significance. TTV is a small non-enveloped virus with a circular single-negative-stranded DNA genome, belonging to the Anelloviridae family. Currently, TTVs are divided in seven phylogenetic groups and are further classified into 21 species. Studies about diversity of TTV in different conditions are receiving increasing interest and in this sense, sequencing of whole genomes for better genetic characterization becomes even more important. Since its discovery in 1997, few TTV complete genomes have been reported worldwide. This is probably due, among other reasons, to the great genetic heterogeneity among TTV strains that prevents its amplification and sequencing by conventional PCR and cloning methods. In addition, although metagenomics approach is useful in these cases, it remains a challenging tool for viromic analysis. With the aim of contributing to the expansion of the TTV whole genomes dataset and to study intra-host variants, we employed a methodology that combined a rolling-circle amplification approach followed by EcoRI digestion, generating a DNA fragment of ∼4Kb consistent with TTV genome length which was sequenced by Illumina next generation sequencing. A genogroup 3 full-length consensus TTV genome was obtained and co-infection with other species (at least those with a single EcoRI cleavage site) was not identified. Additionally, bioinformatics analysis allowed to identify the spectrum of TTV intra-host variants which provides evidence of a complex evolution dynamics of these DNA circular viruses, similarly to what occurs with RNA viruses.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Marandino
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Yanina Panzera
- Sección Genética Evolutiva, Instituto de Biología, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gabriela Betancour
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Santiago Mirazo
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Juan Arbiza
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Biología e Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
15
|
Zhu Y, Zhao W, Yang X, Zhang Y, Lin X, Weng X, Wang Y, Cheng C, Chi Y, Wei H, Peng Z, Hu Z. Metagenomic next-generation sequencing for identification of central nervous system pathogens in HIV-infected patients. Front Microbiol 2022; 13:1055996. [PMID: 36458193 PMCID: PMC9705764 DOI: 10.3389/fmicb.2022.1055996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2023] Open
Abstract
Although considerable interest in metagenomic next-generation sequencing (mNGS) has been attracted in recent years, limited data are available regarding the performance of mNGS in HIV-associated central nervous system (CNS) infection. Here, we conducted a retrospectively analyzing of the cerebrospinal fluid (CSF) mNGS reports and other clinical data from 80 HIV-infected patients admitted to the Second Hospital of Nanjing, China from March, 2018 to March, 2022. In our study, CSF mNGS reported negative result, mono-infection, and mixed infection in 8.8, 36.2, and 55% of the patients, respectively. Epstein-Barr virus (EBV), positive in 52.5% of samples, was the most commonly reported pathogen, followed by cytomegalovirus (CMV), John Cunningham virus (JCV), torque teno virus (TTV), cryptococcus neoformans (CN), toxoplasma Gondii (TE), and mycobacterium tuberculosis (MTB). 76.2% of the EBV identification and 54.2% of the CMV identification were not considered clinically important, and relative less sequence reads were reported in the clinical unimportant identifications. The clinical importance of the presence of TTV in CSF was not clear. Detection of JCV, CN, or TE was 100% suggestive of specific CNS infection, however, 60% of the MTB reports were considered contamination. Moreover, of the 44 (55%) mixed infections reported by mNGS, only 4 (5%) were considered clinical important, and mNGS failed to identify one mixed infection. Additionally, except for MTB, CSF mNGS tended to have high sensitivity to identify the above-mentioned pathogens (almost with 100% sensitivity). Even all the diagnostic strategies were evaluated, the cause of neurological symptoms remained undetermined in 6 (7.5%) patients. Overall, our results suggest that mNGS is a very sensitive tool for detecting common opportunistic CNS pathogen in HIV-infected patients, although its performance in CNS tuberculosis is unsatisfactory. EBV and CMV are commonly detected by CSF mNGS, however, the threshold of a clinical important detection remains to be defined.
Collapse
Affiliation(s)
- Yunqi Zhu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxuan Zhao
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xihong Yang
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Lin
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xing Weng
- BGI Infection Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yali Wang
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Cong Cheng
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Yun Chi
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Hongxia Wei
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhiliang Hu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| |
Collapse
|
16
|
Integrated Immunologic Monitoring in Solid Organ Transplantation: The Road Toward Torque Teno Virus-guided Immunosuppression. Transplantation 2022; 106:1940-1951. [PMID: 35509090 PMCID: PMC9521587 DOI: 10.1097/tp.0000000000004153] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potent immunosuppressive drugs have been introduced into clinical care for solid organ transplant recipients. It is now time to guide these drugs on an individual level to optimize their efficacy. An ideal tool simultaneously detects overimmunosuppression and underimmunosuppression, is highly standardized, and is straightforward to implement into routine. Randomized controlled interventional trials are crucial to demonstrate clinical value. To date, proposed assays have mainly focused on the prediction of rejection and were based on the assessment of few immune compartments. Recently, novel tools have been introduced based on a more integrated approach to characterize the immune function and cover a broader spectrum of the immune system. In this respect, the quantification of the plasma load of a highly prevalent and apathogenic virus that might reflect the immune function of its host has been proposed: the torque teno virus (TTV). Although TTV control is driven by T cells, other major immune compartments might contribute to the hosts' response. A standardized in-house polymerase chain reaction and a conformité européenne-certified commercially available polymerase chain reaction are available for TTV quantification. TTV load is associated with rejection and infection in solid organ transplant recipients, and cutoff values for risk stratification of such events have been proposed for lung and kidney transplantation. Test performance of TTV load does not allow for the diagnosis of rejection and infection but is able to define at-risk patients. Hitherto TTV load has not been used in interventional settings, but two interventional randomized controlled trials are currently testing the safety and efficacy of TTV-guided immunosuppression.
Collapse
|
17
|
Gaggl M, Aschauer C, Aigner C, Bond G, Vychytil A, Strassl R, Wagner L, Sunder-Plassmann G, Schmidt A. SARS-CoV-2 IgG spike protein antibody response in mRNA-1273 Moderna® vaccinated patients on maintenance immunoapheresis – a cohort study. Front Immunol 2022; 13:969193. [PMID: 36225921 PMCID: PMC9549982 DOI: 10.3389/fimmu.2022.969193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background The SARS-CoV-2 pandemic increased mortality and morbidity among immunocompromised populations. Vaccination is the most important preventive measure, however, its effectiveness among patients depending on maintenance immunoglobulin G (IgG) apheresis to control autoimmune disease activity is unknown. We aimed to examine the humoral immune response after mRNA-1273 Moderna® vaccination in immunoapheresis patients. Methods We prospectively monitored SARS-CoV-2 IgG spike (S) protein antibody levels before and after each IgG (exposure) or lipid (LDL) apheresis (controls) over 12 weeks and once after 24 weeks. Primary outcome was the difference of change of SARS-CoV-2 IgG S antibody levels from vaccination until week 12, secondary outcome was the difference of change of SARS-CoV-2 IgG S antibody levels by apheresis treatments across groups. Results We included 6 IgG and 18 LDL apheresis patients. After 12 weeks the median SARS-CoV-2 IgG S antibody level was 115 (IQR: 0.74, 258) in the IgG and 1216 (IQR: 788, 2178) in the LDL group (p=0.03). Median SARS-CoV-2 IgG S antibody reduction by apheresis was 76.4 vs. 23.7% in the IgG and LDL group (p=0.04). The average post- vs. pre-treatment SARS-CoV-2 IgG S antibody rebound in the IgG group vs. the LDL group was 46.1 and 6.44%/week from prior until week 12 visit. Conclusions IgG apheresis patients had lower SARS-CoV-2 IgG S antibody levels compared to LDL apheresis patients, but recovered appropriately between treatment sessions. We believe that IgG apheresis itself probably has less effect on maintaining the immune response compared to concomitant immunosuppressive drugs. Immunization is recommended independent of apheresis treatment.
Collapse
Affiliation(s)
- Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- *Correspondence: Martina Gaggl,
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Vychytil
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Taylo LJ, Keeler EL, Bushman FD, Collman RG. The enigmatic roles of Anelloviridae and Redondoviridae in humans. Curr Opin Virol 2022; 55:101248. [PMID: 35870315 DOI: 10.1016/j.coviro.2022.101248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Anelloviridae and Redondoviridae are virus families with small, circular, single-stranded DNA genomes that are common components of the human virome. Despite their small genome size of less than 5000 bases, they are remarkably successful - anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in human health and disease.
Collapse
Affiliation(s)
- Louis J Taylo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Honorato L, Witkin SS, Mendes-Correa MC, Conde Toscano ALC, Linhares IM, de Paula AV, Paião HGO, de Paula VS, Lopes ADO, Lima SH, Raymundi VDC, Ferreira NE, da Silva Junior AR, Abrahim KY, Braz-Silva PH, Tozetto-Mendoza TR. The Torque Teno Virus Titer in Saliva Reflects the Level of Circulating CD4 + T Lymphocytes and HIV in Individuals Undergoing Antiretroviral Maintenance Therapy. Front Med (Lausanne) 2022; 8:809312. [PMID: 35096897 PMCID: PMC8795607 DOI: 10.3389/fmed.2021.809312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction Torque teno virus (TTV) is a non-pathogenic virus present in body fluids. Its titer in the circulation increases in association with immune suppression, such as in HIV-infected individuals. We evaluated if the TTV titer in saliva from HIV-positive individuals undergoing antiretroviral therapy (ART) was related to the circulating CD4+ T lymphocyte concentration and the HIV titer. Methods Saliva was collected from 276 asymptomatic individuals undergoing ART, and an additional 48 individuals positive for AIDS-associated Kaposi's Sarcoma (AIDS-KS). The salivary TTV titer was measured by gene amplification analysis. The circulating CD4+ T lymphocyte and HIV levels were obtained by chart review. Results TTV was detectable in saliva from 80% of the asymptomatic subjects and 87% of those with AIDS-KS. In the asymptomatic group the median log10 TTV titer/ml was 3.3 in 200 males vs. 2.4 in 76 females (p < 0.0001). TTV titer/ml was 3.7 when HIV was acquired by intravenous drug usage, 3.2 when by sexual acquisition and 2.4 when blood transfusion acquired. The salivary TTV titer was inversely correlated with the circulating CD4+ T lymphocyte level (p < 0.0001) and positively correlated with the circulating HIV concentration (p = 0.0005). The median salivary TTV titer and circulating HIV titer were higher, and the CD4+ count was lower, in individuals positive for AIDS-KS than in the asymptomatic subjects (p < 0.0001). Conclusion The TTV titer in saliva is a potential biomarker for monitoring immune status in individuals undergoing ART.
Collapse
Affiliation(s)
- Layla Honorato
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Steven S Witkin
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil.,Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Maria Cássia Mendes-Correa
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Iara Moreno Linhares
- Departamento de Ginecologia e Obstetrícia, Universidade de São Paulo, São Paulo, Brazil
| | - Anderson Vicente de Paula
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Heuder Gustavo Oliveira Paião
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Amanda de Oliveira Lopes
- Laboratory of Molecular Virology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Silvia Helena Lima
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Vanessa de Cássia Raymundi
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Noely Evangelista Ferreira
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Almir Ribeiro da Silva Junior
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Karim Yaqub Abrahim
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Henrique Braz-Silva
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil.,Faculdade de Odontologia da Universidade de São Paulo, São Paulo, Brazil
| | - Tania Regina Tozetto-Mendoza
- Laboratory of Virology (LIM 52), Department of Infectious Diseases, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Bezerra RDS, Ximenez JPB, Giovanetti M, Zucherato VS, Bitencourt HT, Zimmermann A, Alcantara LCJ, Covas DT, Kashima S, Slavov SN. METAVIROME COMPOSITION OF BRAZILIAN BLOOD DONORS POSITIVE FOR THE ROUTINELY TESTED BLOOD-BORNE INFECTIONS. Virus Res 2022; 311:198689. [PMID: 35090996 DOI: 10.1016/j.virusres.2022.198689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
Abstract
Viral metagenomics is widely applied to characterize emerging viral pathogens but it can also reveal the virome composition in health and disease. The evaluation of the virome in healthy blood donors can provide important knowledge on possible transfusion threats. Currently, there is still a paucity of information regarding the virome of blood donors who test positive for routinely tested blood-borne infections. Such analysis may reveal co-infections which in turn appear to be crucial for transfusion medicine and for patient management. The aim of this study was to evaluate the metavirome in blood donors who tested positive for routinely tested blood-borne infections, the information for which is important for transfusion medicine and blood donor management. For this purpose, we analyzed 18 blood donations obtained from HIV and HBV-infected blood donors from the Brazilian Amazon (Amapa state) and 11 HIV, HBV, HCV, syphilis and Chagas disease - positive blood donations obtained from blood donors sampled in South Brazil (Rio Grande do Sul state). We additionally included a control group of 20 blood donors obtained from Southeast Brazil (State of São Paulo). Samples were assembled in pools and sequenced by the Illumina NovaSeq 6000 platform. To link a given virus with geographic region or type of blood donor, we performed supervised machine learning classification (fingerprint analysis). The virome of both locations was predominantly composed of commensal viruses. However, in HBV-infected blood donors from the Brazilian Amazon, the Human Pegivirus-1 (HPgV-1) reads were prevailing, while in HIV-infected donors from the same location, the torque teno virus (TTV) reads expressive abundance. In blood donors from South Brazil, the most abundant reads were classified as Human endogenous retrovirus K (HERV-K). Putative emerging viruses like the Human gemykibivirus-2 (HuGkV-2) were exclusively identified in samples from the Brazilian Amazon. The fingerprint analysis demonstrated that the HERV-K, TTV-7, 13, and 15 were statistically important for the infected blood donors, while TTV-5, 12 and 20 were linked to geographic localization. Our study revealed differences in the viral composition among blood donors who tested positive for routinely tested blood-borne infections from two different Brazilian regions and indicated the presence of putative emerging viruses in samples obtained from the Amazon. Together our results show that the presence of specific commensal viruses may be related donor infection status but additional investigations including larger study groups and samples from other Brazilian regions are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Rafael Dos Santos Bezerra
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - João Paulo Bianchi Ximenez
- Department of Clinical Analysis, Toxicology and Food Science, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marta Giovanetti
- Laboratory of Flaviviruses, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil;; Laboratory of Molecular and Cellular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Victoria Simionatto Zucherato
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Ana Zimmermann
- Hematology and Hemotherapy Service of Santa Maria, Hospital "Astrogildo de Azevedo" Santa Maria, Rio Grande do Sul, Brazil
| | - Luiz Carlos Júnior Alcantara
- Laboratory of Flaviviruses, Oswaldo Cruz Institute, Rio de Janeiro, Rio de Janeiro, Brazil;; Laboratory of Molecular and Cellular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;; Biotechnology Unit (NUCEL), Butantan Institute, São Paulo, São Paulo, Brazil
| | - Simone Kashima
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;; Biotechnology Unit (NUCEL), Butantan Institute, São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Pyöriä L, Valtonen M, Luoto R, Grönroos W, Waris M, Heinonen OJ, Ruuskanen O, Perdomo MF. Survey of Viral Reactivations in Elite Athletes: A Case-Control Study. Pathogens 2021; 10:666. [PMID: 34071724 PMCID: PMC8229584 DOI: 10.3390/pathogens10060666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise-induced immune perturbations have been proposed to increase susceptibility to viral infections. We investigated the replication of persisting viruses as indicators of immune function in elite cross-country skiers after ten months of sustained high-performance exercise. The viruses evaluated, nine human herpesviruses (HHVs) and torque teno virus (TTV), are typically restrained in health but replicate actively in immunosuppressed individuals. We collected sera from 27 Finnish elite cross-country skiers at the end of the competition's season and 27 matched controls who perform moderate exercise. We quantified all the HHVs and-TTV via highly sensitive qPCRs. To verify equal past exposures between the groups, we assessed the IgG antibody prevalences toward HHV-4 (Epstein-Barr virus, EBV) and HHV-5 (human cytomegalovirus, HCMV). We found equal TTV DNA prevalences in athletes (63%) and controls (63%) and loads with respective geometric means of 1.7 × 103 and 1.2 × 103 copies/mL of serum. Overall, the copy numbers were low and consistent with those of healthy individuals. Neither of the groups presented with herpesvirus viremia despite similar past exposures to HHVs (seroprevalences of EBV 70% vs. 78% and HCMV 52% vs. 44% in athletes and controls, respectively). We found no evidence of increased replication of persistent viruses in elite athletes, arguing against impaired viral immunity due to high-performance exercise.
Collapse
Affiliation(s)
- Lari Pyöriä
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| | - Maarit Valtonen
- Research Institute for Olympics Sports, 40700 Jyväskylä, Finland;
| | - Raakel Luoto
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Wilma Grönroos
- Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, 20520 Turku, Finland; (W.G.); (O.J.H.)
| | - Matti Waris
- Institute of Biomedicine, University of Turku and Department of Clinical Microbiology, Turku University Hospital, 20520 Turku, Finland;
| | - Olli J. Heinonen
- Paavo Nurmi Centre and Unit of Health and Physical Activity, University of Turku, 20520 Turku, Finland; (W.G.); (O.J.H.)
| | - Olli Ruuskanen
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, 20521 Turku, Finland; (R.L.); (O.R.)
| | - Maria F. Perdomo
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland;
| |
Collapse
|