1
|
Islam S, Chauhan VM, Pantazes RJ. Analysis of how antigen mutations disrupt antibody binding interactions toward enabling rapid and reliable antibody repurposing. MAbs 2025; 17:2440586. [PMID: 39690439 DOI: 10.1080/19420862.2024.2440586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
Antibody repurposing is the process of changing a known antibody so that it binds to a mutated antigen. One of the findings to emerge from the Coronavirus Disease 2019 (COVID-19) pandemic was that it was possible to repurpose neutralizing antibodies for Severe Acute Respiratory Syndrome, a related disease, to work for COVID-19. Thus, antibody repurposing is a possible pathway to prepare for and respond to future pandemics, as well as personalizing cancer therapies. For antibodies to be successfully repurposed, it is necessary to know both how antigen mutations disrupt their binding and how they should be mutated to recover binding, with this work describing an analysis to address the first of these topics. Every possible antigen point mutation in the interface of 246 antibody-protein complexes were analyzed using the Rosetta molecular mechanics force field. The results highlight a number of features of how antigen mutations affect antibody binding, including the effects of mutating critical hotspot residues versus other positions, how many mutations are necessary to be likely to disrupt binding, the prevalence of indirect effects of mutations on binding, and the relative importance of changing attractive versus repulsive energies. These data are expected to be useful in guiding future antibody repurposing experiments.
Collapse
Affiliation(s)
- Sumaiya Islam
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Varun M Chauhan
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | - Robert J Pantazes
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
da Silva Amorim AF, Sobalvarro JVM, Torres LH, Dos Reis TM. Sotrovimab in the treatment of coronavirus disease-2019 (COVID-19): a systematic review and meta-analysis of randomized clinical trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9573-9589. [PMID: 39031183 DOI: 10.1007/s00210-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
This study was carried out to verify the evidence regarding the effectiveness and safety of sotrovimab in patients with COVID-19. This is a systematic review of randomized clinical trials retrieved from the PubMed, Embase, Scopus, Lilacs, and Cochrane Library databases. The risk of bias was measured using the Cochrane Risk and Bias Checklist (RoB 2). For the meta-analysis, RStudio Version 2024.04.2 software was used. The certainty of evidence was assessed using GRADE. The study protocol was registered in PROSPERO (CRD42022355786). A total of 1893 studies were identified and four were included in the study. The total population consisted of 5470 patients with COVID-19, 1921 (35%) in the sotrovimab group and 3549 (65%) in the control group (placebo or BRII-196 + BRII-198 or casirivimab + imdevimab or bamlanivimab + etesevimab, administered in a similar way to sotrovimab, in a single dose with a 60-min intravenous infusion). For the effectiveness outcome, three studies presented low risk and one high risk of bias, while for safety all presented high risk of bias. The meta-analysis showed no significant difference between the sotrovimab and control groups in terms of hospitalization rates (95% confidence interval (CI) - 2.10-0.51; p = 0 > 0.05), use of invasive mechanical ventilation (95% CI - 2.78-0.65; p = 0.35) and mortality (95% CI - 0.92-0.59; p = 0.39). However, sensitivity analysis showed that sotrovimab may be effective in reducing hospitalization rates compared to the control (IV = - 1.57; 95% CI - 2.41-0.73; p = 0.99). The use of sotrovimab in the treatment of patients with COVID-19 had no significant impact on mortality and need for mechanical ventilation and did not appear to be safer compared to controls. However, there was evidence of effectiveness in reducing the rate of hospitalization, although the certainty of the evidence is moderate and the risk of bias is high.
Collapse
Affiliation(s)
- Ana Flávia da Silva Amorim
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Larissa Helena Torres
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil.
| | - Tiago Marques Dos Reis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
3
|
Kumar S, Ramaraju K, Kakarla MS, Eranezhath SS, Chenthamarakshan C, Alagesan M, Satheesan B, Unniappan I, Wilhalme H, Pīrāgs V, Furst DE. Evaluating Personalized Add-On Ayurveda Therapy in Oxygen-Dependent Diabetic COVID-19 Patients: A 60-Day Study of Symptoms, Inflammation, and Radiological Changes. Cureus 2024; 16:e68392. [PMID: 39355453 PMCID: PMC11444340 DOI: 10.7759/cureus.68392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Background Effective management of both acute and post-acute sequelae of SARS-CoV-2 is essential, particularly for type 2 diabetes mellitus (T2DM) patients, who are at increased risk of severe pro-inflammatory responses and complications. Persistent symptoms and residual lung and cardiovascular damage in post-coronavirus disease (COVID-19) individuals highlight the need for comprehensive long-term treatment strategies. Conventional treatments, including Remdesivir and glucocorticoids, have limitations, suggesting that further investigation into Ayurvedic therapies could be beneficial, though controlled trials are currently limited. Objectives Evaluate the effectiveness and safety of Ayurveda with the standard of care (SOC) versus SOC in improving symptoms, moderating immune responses (interleukin-6 (IL-6), C-reactive protein (CRP), neutrophil-lymphocyte ratio (NLR), and radiological outcomes in oxygen-dependent, high-risk, non-vaccinated type 2 diabetes COVID-19 patients over 60 days, and thus addressing their heightened vulnerability to severe infections. Methods A controlled trial with 50 diabetic COVID-19 patients, aged 18-80, with an NLR of >= 4, primarily on Remdesivir, was assigned to Group 1 (Add-on Ayurveda+SOC, n=30) or Group 2 (SOC, n=20) based on their voluntary choice with follow-up on days 14, 28, and 60. Parametric outcomes in group analysis were assessed with robust regression and non-parametric outcomes with Cochran-Mantel-Haenszel, log-rank test, and chi-square tests at 95% confidence interval (CI). Results Group 1 exhibited statistically significant improvements in fever, cough, diarrhea, as well as NLR, IL-6, and CRP by 14 days, and in anosmia, loss of taste, shortness of breath, general weakness, and headache by 60 days. Though the sample size is small, notable improvements can be seen in troponin levels in Group 1 at 28 and 60 days. High-resolution computer tomography COVID-19 reporting and data system (HRCT CO-RADS) scores improved more slowly in Group 2 than in Group 1. Survival rates were 96.4% for Group 1 and 90% for Group 2. Numbers were too small for reliable comparisons at 60 days. Conclusion The add-on Ayurveda group showed a better symptomatic response, and faster normalization in inflammatory markers, including IL-6 and NLR by 14 days, and cardiac markers by 28 days. Minimal clinical and no laboratory adverse events were observed. This study supports the need for a randomized, double-blind trial.
Collapse
Affiliation(s)
- Somit Kumar
- Clinical Research, AVP Research Foundation, Coimbatore, IND
- Research and Development, The Arya Vaidya Pharmacy, Coimbatore, IND
| | - Karthikeyan Ramaraju
- Respiratory Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | | | | | | | - Murali Alagesan
- General Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | - Balagopal Satheesan
- Ayurveda and Integrative Medicine, Saranya Ayurveda Hospital, Coimbatore, IND
| | - Indulal Unniappan
- Ayurveda and Integrative Medicine, AVP Research Foundation, Coimbatore, IND
| | - Holly Wilhalme
- Statistics, University of California Los Angeles, Los Angeles, USA
| | | | - Daniel E Furst
- Rheumatology, University of California Los Angeles, Los Angeles, USA
- Rheumatology, University of Washington, Seattle, USA
- Rheumatology, University of Florence, Florence, ITA
| |
Collapse
|
4
|
Garcia C, Rehman N, Matos-Silva J, Deng J, Ghandour S, Huang Z, Mbuagbaw L. Interventions to Improve Adherence to Oral Pre-exposure Prophylaxis: A Systematic Review and Network Meta-analysis. AIDS Behav 2024; 28:2534-2546. [PMID: 38814406 DOI: 10.1007/s10461-024-04365-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 05/31/2024]
Abstract
For people at risk of HIV infection, pre-exposure prophylaxis (PrEP) can reduce the risk of infection in anticipation of exposure to HIV. The effectiveness of PrEP relies upon a user's adherence to their PrEP regimen. We sought to assess the effect of PrEP adherence interventions compared to usual care or another intervention for people at risk of HIV. We searched electronic databases from 2010 onwards for randomized controlled trials (RCTs) involving persons at risk of HIV randomized to an adherence promoting intervention vs usual care or another intervention. We used network meta-analyses to compare PrEP adherence for all participant populations. Certainty of evidence was assessed using Confidence in Network Meta-Analysis (CINeMA). 21 trials (N = 4917) were included in qualitative analysis (19 in network meta-analyses (N = 4101)). HIV self-testing interventions with adherence feedback elements improved adherence compared to usual care (risk ratio (RR): 1.83, 95%CI 1.19, 2.82). In contrast, HIV self-testing alone was inferior to HIV self-testing with adherence feedback (RR: 0.58, 95%CI 0.37-0.92). Reminders alone also were inferior to HIV self-testing with adherence feedback on adherence (RR: 0.53, 95%CI 0.34-0.84) and had similar effects on adherence as usual care (RR: 0.98, 95%CI: 0.86-1.11). Interventions with only one component were inferior for adherence than those with two components (RR: 0.74, 95%CI 0.62-0.88) and those with three components (RR: 0.78, 95%CI 0.65-0.93). The certainty of evidence was moderate for HIV self-testing plus adherence feedback and interventions with two or three components. When designing future PrEP adherence interventions, we recommend strategies with more than one but no more than three components.
Collapse
Affiliation(s)
- Cristian Garcia
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Nadia Rehman
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Jéssyca Matos-Silva
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
| | - Jiawen Deng
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sara Ghandour
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhongyu Huang
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lawrence Mbuagbaw
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada
- Department of Anesthesia, McMaster University, Hamilton, ON, Canada
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
- Biostatistics Unit, Father Sean O'Sullivan Research Centre, St Joseph's Healthcare, Hamilton, ON, Canada
- Division of Epidemiology and Biostatistics, Department of Global Health, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
5
|
Bartalucci C, Limongelli A, Nicolini LA, Ponzano M, Tigano S, Farinella ST, Carrega G, Malerba G, Magnè F, Balletto E, Giacobbe DR, Riccio G, Cenderello G, Taramasso L, Bruzzone B, Vena A, Di Biagio A, Mikulska M, De Maria A, Dentone C, Bassetti M. Neutralizing monoclonal antibodies for the prevention of severe COVID-19: a retrospective study during Omicron BA.1 variant surge. J Chemother 2024; 36:283-290. [PMID: 38095569 DOI: 10.1080/1120009x.2023.2289269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/27/2023] [Indexed: 06/19/2024]
Abstract
Among treatment options for Coronavirus disease 2019 (COVID-19), monoclonal antibodies (mAbs) showed to be effective in preventing disease progression, but real-world data during the Omicron variant surge are still lacking. Multicentre retrospective study evaluating the effectiveness of sotrovimab and casirivimab-imdevimab in fragile patients with mild SARS-CoV-2 infection between November 2021 and March 2022. Unfavourable outcome was defined as increased need for oxygen supplementation and/or death. Of 268 study-participants, 12 (4.48%) previously needed supplemental oxygen, while 6 (2.24%) had active solid neoplasia (2.24%); 186 (69%) have previously received SARS-CoV-2 vaccination. Overall, 22 (8%) had unfavourable outcomes (42% versus 6% of patients with and without previous oxygen need and 50% versus 7% of patients with and without active solid neoplasia). Both supplemental oxygen therapy before SARS-CoV-2 infection and solid malignant tumour have shown to be risk factors for treatment failure. Log-rank test did not identify differences between sotrovimab and casirivimab-imdevimab treatment. Despite diffusion of Omicron variant, the rate of unfavourable outcome was higher than expected. The presence of underlying risk factors, including solid cancer and previous oxygen therapy are independently associated with risk of COVID-19 progression, suggesting the need for antiviral treatments not limited to mAbs and implementation of vaccine campaign.
Collapse
Affiliation(s)
- Claudia Bartalucci
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alessandro Limongelli
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Marta Ponzano
- Section of Biostatistics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | - Gemma Malerba
- Infectious Diseases Unit, Sanremo Hospital, Imperia, Italy
| | - Federica Magnè
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Balletto
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | - Lucia Taramasso
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Bianca Bruzzone
- Hygiene Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonio Di Biagio
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea De Maria
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Dentone
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
6
|
Cui Z, Wang H, Zou H, Li L, Zhang Y, Chen W. Efficacy and safety of casirivimab and imdevimab for preventing and treating COVID-19: a systematic review and meta-analysis. J Thorac Dis 2024; 16:3606-3622. [PMID: 38983147 PMCID: PMC11228754 DOI: 10.21037/jtd-23-1604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/26/2024] [Indexed: 07/11/2024]
Abstract
Background The ongoing global epidemic of coronavirus disease 2019 (COVID-19) has created a serious public health problem. The selection of safe and effective therapeutic agents is of paramount importance. This systematic review aims to evaluate the efficacy and safety of the combination of casirivimab and imdevimab in the treatment of global cases of COVID-19. Methods To identify randomized controlled trials (RCTs) investigating the combined administration of casirivimab and imdevimab for COVID-19 management, a comprehensive search was conducted across multiple databases including PubMed, Web of Science, Embase, and the Cochrane Library from their inception to September 10, 2022. Data on the efficacy and safety of casirivimab and imdevimab were extracted. Subgroup analyses and sensitivity analyses were performed. Results A total of 851 articles were searched. Twelve studies were finally included in the meta-analysis, with 27,179 participants. Dichotomous and continuous variables were presented as odds ratios (ORs) and weighted mean differences (WMDs) with their 95% confidence intervals (CIs), respectively. Compared to placebo or alternative medications, the combination of casirivimab and imdevimab reduced viral load (WMD: -0.73, 95% CI: -1.09 to -0.38, P<0.01), all-cause mortality (OR =0.90, 95% CI: 0.82-0.99, P=0.03), the incidence of any serious adverse events (OR =0.80, 95% CI: 0.67-0.95, P=0.01), the incidence of Grade 3 or more severe adverse events (OR =0.76, 95% CI: 0.62-0.92, P=0.01), the likelihood of contracting COVID-19, the incidence of hospitalization, emergency room visits, and mortality (OR =0.54, 95% CI: 0.32-0.93, P=0.03). Conclusions The monoclonal antibody combination of casirivimab and imdevimab is effective in treating patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as they can reduce viral load, all-cause mortality, infection rates, and the incidence of clinical outcomes of special interest after treatment, while maintaining a favorable safety profile.
Collapse
Affiliation(s)
- Zhifang Cui
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hongwu Wang
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Heng Zou
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Li
- Department of Respiratory Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ye Zhang
- Department of General Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Wenyu Chen
- Department of Respiratory Medicine, Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
7
|
Deng J, Moskalyk M, Hou W, Zuo QK, Luo J. Pharmacological prevention of bone loss and fractures following solid organ transplantations: Protocol for a systematic review and network meta-analysis. PLoS One 2024; 19:e0302566. [PMID: 38669283 PMCID: PMC11051654 DOI: 10.1371/journal.pone.0302566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Solid organ transplant (SOT) recipients can experience bone loss caused by underlying conditions and the use of immunosuppressants. As a result, SOT recipients are at risk for decreased bone mineral density (BMD) and increased fracture incidences. We propose a network meta-analysis (NMA) that incorporates all available randomized control trial (RCT) data to provide the most comprehensive ranking of anti-osteoporotic interventions according to their ability to decrease fracture incidences and increase BMD in SOT recipients. METHODS We will search MEDLINE, EMBASE, Web of Science, CINAHL, CENTRAL and CNKI for relevant RCTs that enrolled adult SOT recipients, assessed anti-osteoporotic therapies, and reported relevant outcomes. Title and full-text screening as well as data extraction will be performed in-duplicate. We will report changes in BMD as weighted or standardized mean differences, and fracture incidences as risk ratios. SUCRA scores will be used to provide rankings of interventions, and quality of evidence will be examined using RoB2 and CINeMA. DISCUSSIONS To our knowledge, this systematic review and NMA will be the most comprehensive quantitative analysis regarding the management of bone loss and fractures in SOT recipients. Our analysis should be able to provide physicians and patients with an up-to-date recommendation for pharmacotherapies in reducing incidences of bone loss and fractures associated with SOT. The findings of the NMA will be disseminated in a peer-reviewed journal.
Collapse
Affiliation(s)
- Jiawen Deng
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| | - Myron Moskalyk
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Wenteng Hou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Qi Kang Zuo
- UBC Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jinyu Luo
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Winiger RR, Perez L. Therapeutic antibodies and alternative formats against SARS-CoV-2. Antiviral Res 2024; 223:105820. [PMID: 38307147 DOI: 10.1016/j.antiviral.2024.105820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world. Despite a prompt generation of vaccines and therapeutics to confront infection, the virus remains a threat. The ancestor viral strain has evolved into several variants of concern, with the Omicron variant now having many distinct sublineages. Consequently, most available antibodies targeting the spike went obsolete and thus new therapies or therapeutic formats are needed. In this review we focus on antibody targets, provide an overview of the therapeutic progress made so far, describe novel formats being explored, and lessons learned from therapeutic antibodies that can enhance pandemic preparedness.
Collapse
Affiliation(s)
- Rahel R Winiger
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| | - Laurent Perez
- University of Lausanne (UNIL), Lausanne University Hospital (CHUV), Service of Immunology and Allergy, and Center for Human Immunology Lausanne (CHIL), Switzerland.
| |
Collapse
|
9
|
Wu J, Yang H, Yu D, Yang X. Blood-derived product therapies for SARS-CoV-2 infection and long COVID. MedComm (Beijing) 2023; 4:e426. [PMID: 38020714 PMCID: PMC10651828 DOI: 10.1002/mco2.426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/15/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of large-scale transmission and has caused the coronavirus disease 2019 (COVID-19) pandemic. Patients with COVID-19 may experience persistent long-term health issues, known as long COVID. Both acute SARS-CoV-2 infection and long COVID have resulted in persistent negative impacts on global public health. The effective application and development of blood-derived products are important strategies to combat the serious damage caused by COVID-19. Since the emergence of COVID-19, various blood-derived products that target or do not target SARS-CoV-2 have been investigated for therapeutic applications. SARS-CoV-2-targeting blood-derived products, including COVID-19 convalescent plasma, COVID-19 hyperimmune globulin, and recombinant anti-SARS-CoV-2 neutralizing immunoglobulin G, are virus-targeting and can provide immediate control of viral infection in the short term. Non-SARS-CoV-2-targeting blood-derived products, including intravenous immunoglobulin and human serum albumin exhibit anti-inflammatory, immunomodulatory, antioxidant, and anticoagulatory properties. Rational use of these products can be beneficial to patients with SARS-CoV-2 infection or long COVID. With evidence accumulated since the pandemic began, we here summarize the progress of blood-derived product therapies for COVID-19, discuss the effective methods and scenarios regarding these therapies, and provide guidance and suggestions for clinical treatment.
Collapse
Affiliation(s)
- Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
| | | | - Ding Yu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd.ChengduChina
- Beijing Tiantan Biological Products Co., Ltd.BeijingChina
| | | |
Collapse
|
10
|
Wicaksono IA, Suhandi C, Elamin KM, Wathoni N. Efficacy and safety of casirivimab-imdevimab combination on COVID-19 patients: A systematic review and meta-analysis randomized controlled trial. Heliyon 2023; 9:e22839. [PMID: 38058433 PMCID: PMC10696184 DOI: 10.1016/j.heliyon.2023.e22839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Background The advantages and disadvantages of casirivimab-imdevimab for coronavirus disease 2019 are not well understood. We conducted a systematic review and meta-analysis of relevant literature to determine the therapeutic effectiveness and potential side effects of casirivimab-imdevimab in COVID-19 patients. Methods Databases were searched from the time of their commencement until February 28th, 2023. The primary results evaluated were the death rate at 28 days, progression of current clinical symptoms within 28 days, viral load, discharge from hospital, and any adverse events. Also, we contrasted the effects of the casirivimab-imdevimab treatment with placebo or standard of care. The protocol registration for this systematic review and meta-analysis was recorded in the PROSPERO database (CRD42023412835). Results A total of eight studies were included, comprising 19,819 patients, and conducted a qualitative assessment of their risk of bias using the Cochrane risk of bias tool. Casirivimab-imdevimab effectively reduced the mortality rate (OR = 0.62; 95 % CI of 0.40-0.98; p = 0.04; I2 = 30 %) and reduced the progression of clinical symptoms (OR = 0.86; 95 % CI of 0.79-0.93; p = 0.0003; I2 = 57 %). Casirivimab-imdevimab also improved viral load clearance and hospital discharge. Additionally, the trials' findings demonstrated a slight decrease in the likelihood of adverse events occurring with the use of casirivimab-imdevimab. Conclusion Our research suggests that casirivimab-imdevimab may be a valuable, safe, and effective anti-SARS-CoV-2 regimen.
Collapse
Affiliation(s)
- Imam Adi Wicaksono
- Department of Pharmacology and Clinical Pharmacy, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Universitas Padjadjaran, Sumedang 45363, West Java, Indonesia
| |
Collapse
|
11
|
Bou-Antoun S, Rokadiya S, Ashiru-Oredope D, Demirjian A, Sherwood E, Ellaby N, Gerver S, Grossi C, Harman K, Hartman H, Lochen A, Ragonnet-Cronin M, Squire H, Sutton JM, Thelwall S, Tree J, Bahar MW, Stuart DI, Brown CS, Chand M, Hopkins S. COVID-19 therapeutics: stewardship in England and considerations for antimicrobial resistance. J Antimicrob Chemother 2023; 78:ii37-ii42. [PMID: 37995354 PMCID: PMC10666993 DOI: 10.1093/jac/dkad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The COVID-19 pandemic saw unprecedented resources and funds driven into research for the development, and subsequent rapid distribution, of vaccines, diagnostics and directly acting antivirals (DAAs). DAAs have undeniably prevented progression and life-threatening conditions in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, there are concerns of antimicrobial resistance (AMR), antiviral resistance specifically, for DAAs. To preserve activity of DAAs for COVID-19 therapy, as well as detect possible mutations conferring resistance, antimicrobial stewardship and surveillance were rapidly implemented in England. This paper expands on the ubiquitous ongoing public health activities carried out in England, including epidemiologic, virologic and genomic surveillance, to support the stewardship of DAAs and assess the deployment, safety, effectiveness and resistance potential of these novel and repurposed therapeutics.
Collapse
Affiliation(s)
- Sabine Bou-Antoun
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Sakib Rokadiya
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Diane Ashiru-Oredope
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Alicia Demirjian
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
- Department of Paediatric Infectious Diseases & Immunology, Evelina London Children's Hospital, London, UK
- Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Emma Sherwood
- Clinical and Emerging Infections (CEI), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Nicholas Ellaby
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Sarah Gerver
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Carlota Grossi
- COVID-19 Rapid Evidence Service Public Health Advice, Guidance and Expertise (PHAGE), UK Health Security Agency, London NW9 5EQ, UK
| | - Katie Harman
- COVID-19 Vaccines and Applied Epidemiology Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Hassan Hartman
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Alessandra Lochen
- Tuberculosis (TB), Acute Respiratory, Zoonoses, Emerging and Travel infections Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Manon Ragonnet-Cronin
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hanna Squire
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - J Mark Sutton
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
- Institute of Pharmaceutical Sciences, King’s College London, London, UK
| | - Simon Thelwall
- COVID-19 Vaccines and Applied Epidemiology Division, UK Health Security Agency, London NW9 5EQ, UK
| | - Julia Tree
- Research and Evaluation, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Mohammad W Bahar
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, The Wellcome Centre for Human Genetics, Oxford, UK
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK
| | - Colin S Brown
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| | - Meera Chand
- Genomics Public Health Analysis (GPHA), United Kingdom Health Security Agency (UKHSA), London, UK
| | - Susan Hopkins
- Healthcare-Associated Infection (HCAI), Fungal, Antimicrobial Resistance (AMR), Antimicrobial Use (AMU) & Sepsis Division, United Kingdom Health Security Agency (UKHSA), London, UK
| |
Collapse
|
12
|
Lee JY, Bu SH, Song E, Cho S, Yu S, Kim J, Kym S, Seo KW, Kwon KT, Kim JY, Kim S, Ahn K, Jung N, Lee Y, Jung Y, Hwang C, Park SW. Safety and Effectiveness of Regdanvimab for COVID-19 Treatment: A Phase 4 Post-marketing Surveillance Study Conducted in South Korea. Infect Dis Ther 2023; 12:2417-2435. [PMID: 37833467 PMCID: PMC10600078 DOI: 10.1007/s40121-023-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/15/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Regdanvimab, a neutralising monoclonal antibody (mAb) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), received approval for the treatment of coronavirus disease 2019 (COVID-19) in South Korea in 2021. The Ministry of Food and Drug Safety in South Korea mandate that new medications be re-examined for safety and effectiveness post-approval in at least 3000 individuals. This post-marketing surveillance (PMS) study was used to evaluate the safety and effectiveness of regdanvimab in real-world clinical care. METHODS This prospective, multicentre, phase 4 PMS study was conducted between February 2021 and March 2022 in South Korea. Eligible patients were aged ≥ 18 years with confirmed mild COVID-19 at high risk of disease progression or moderate COVID-19. Patients were hospitalised and treated with regdanvimab (40 mg/kg, day 1) and then monitored until discharge, with a follow-up call on day 28. Adverse events (AEs) were documented, and the COVID-19 disease progression rate was used to measure effectiveness. RESULTS Of the 3123 patients with COVID-19 infection identified, 3036 were eligible for inclusion. Approximately 80% and 5% of the eligible patients were diagnosed with COVID-19 during the delta- and omicron-dominant periods, respectively. Median (range) age was 57 (18-95) years, and 50.6% of patients were male. COVID-19 severity was assessed before treatment, and high-risk mild and moderate COVID-19 was diagnosed in 1030 (33.9%) and 2006 (66.1%) patients, respectively. AEs and adverse drug reactions (ADRs) were experienced by 684 (22.5%) and 363 (12.0%) patients, respectively. The most common ADR was increased liver function test (n = 62, 2.0%). Nine (0.3%) patients discontinued regdanvimab due to ADRs. Overall, 378 (12.5%) patients experienced disease progression after regdanvimab infusion, with extended hospitalisation/re-admission (n = 300, 9.9%) as the most common reason. Supplemental oxygen was required by 282 (9.3%) patients. Ten (0.3%) patients required intensive care monitoring and 3 (0.1%) died due to COVID-19. CONCLUSION This large-scale PMS study demonstrated that regdanvimab was effective against COVID-19 progression and had an acceptable safety profile when used in real-world clinical practice.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Keimyung University Daegu Dongsan Hospital, Daegu, Republic of Korea
| | - Seon Hee Bu
- Seoul Metropolitan City Bukbu Hospital, Seoul, Republic of Korea
| | - EunHyang Song
- Seoul Metropolitan City Seobuk Hospital, Seoul, Republic of Korea
| | | | - Sungbong Yu
- Bagae General Hospital, Pyeongtaek, Republic of Korea
| | - Jungok Kim
- Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Sungmin Kym
- Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Kwang Won Seo
- Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Ki Tae Kwon
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Yong Kim
- Incheon Medical Centre, Incheon, Republic of Korea
| | | | | | | | - Yeonmi Lee
- Celltrion, Inc., Incheon, Republic of Korea
| | | | | | - Sang Won Park
- Department of Internal Medicine, Seoul National University Boramae Medical Centre, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
13
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
14
|
Garzi G, Cinetto F, Firinu D, Di Napoli G, Lagnese G, Punziano A, Bez P, Cinicola BL, Costanzo G, Scarpa R, Pulvirenti F, Rattazzi M, Spadaro G, Quinti I, Milito C. Real-life data on monoclonal antibodies and antiviral drugs in Italian inborn errors of immunity patients during COVID-19 pandemic. Front Immunol 2022; 13:947174. [PMID: 35967382 PMCID: PMC9367468 DOI: 10.3389/fimmu.2022.947174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/29/2022] [Indexed: 12/16/2022] Open
Abstract
Background Since the beginning of the COVID-19 pandemic, patients with Inborn Errors of Immunity have been infected by SARS-CoV-2 virus showing a spectrum of disease ranging from asymptomatic to severe COVID-19. A fair number of patients did not respond adequately to SARS-CoV-2 vaccinations, thus early therapeutic or prophylactic measures were needed to prevent severe or fatal course or COVID-19 and to reduce the burden of hospitalizations. Methods Longitudinal, multicentric study on patients with Inborn Errors of Immunity immunized with mRNA vaccines treated with monoclonal antibodies and/or antiviral agents at the first infection and at reinfection by SARS-CoV-2. Analyses of efficacy were performed according to the different circulating SARS-CoV-2 strains. Results The analysis of the cohort of 192 SARS-CoV-2 infected patients, across 26 months, showed the efficacy of antivirals on the risk of hospitalization, while mabs offered a positive effect on hospitalization, and COVID-19 severity. This protection was consistent across the alpha, delta and early omicron waves, although the emergence of BA.2 reduced the effect of available mabs. Hospitalized patients treated with mabs and antivirals had a lower risk of ICU admission. We reported 16 re-infections with a length of SARS-CoV-2 positivity at second infection shorter among patients treated with mabs. Treatment with antivirals and mabs was safe. Conclusions The widespread use of specific therapy, vaccination and better access to care might have contributed to mitigate risk of mortality, hospital admission, and severe disease. However, the rapid spread of new viral strains underlines that mabs and antiviral beneficial effects should be re- evaluated over time.
Collapse
Affiliation(s)
- Giulia Garzi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Cinetto
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Giulia Di Napoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Gianluca Lagnese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessandra Punziano
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Patrick Bez
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Costanzo
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Riccardo Scarpa
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Federica Pulvirenti
- Regional Reference Centre for Primary Immune Deficiencies, Azienda Ospedaliera Universitaria Policlinico Umberto I, Rome, Italy
| | - Marcello Rattazzi
- Department of Medicine—DIMED, University of Padova, Padua, Italy
- Rare Diseases Referral Center, Internal Medicine I, Ca’ Foncello Hospital, AULSS2 Marca Trevigiana, Treviso, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Isabella Quinti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Mencoboni M, Fontana V, Damiani A, Spitaleri A, Raso A, Bottaro LC, Rossi G, Canobbio L, La Camera A, Filiberti RA, Taveggia P, Cavo A. Antibody Response to COVID-19 mRNA Vaccines in Oncologic and Hematologic Patients Undergoing Chemotherapy. Curr Oncol 2022; 29:3364-3374. [PMID: 35621663 PMCID: PMC9139308 DOI: 10.3390/curroncol29050273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Information on immune responses in cancer patients following mRNA COVID-19 vaccines is still insufficient, but generally, patients had impaired serological responses, especially those with hematological malignancies. We evaluated serological response to COVID-19 mRNA vaccine in cancer patients receiving chemotherapy compared with healthy controls. METHODS In total, 195 cancer patients and 400 randomly selected controls who had been administered a Pfizer-BioNTech or Moderna COVID-19 vaccines in two doses were compared. The threshold of positivity was 4.33 BAU/mL. Patients were receiving anticancer treatment after the first and second dose of the vaccines. RESULTS a TOTAL OF 169 patients (87%) had solid tumors and 26 hemolymphopoietic diseases. Seropositivity rate was lower in patients than controls (91% vs. 96%), with an age/gender-adjusted rate ratio (RR) of 0.95 (95% CL = 0.89-1.02). Positivity was found in 97% of solid cancers and in 50% of hemolymphopoietic tumors. Both advanced and adjuvant therapy seemed to slightly reduce seropositivity rates in patients when compared to controls (RR = 0.97, 95% CL = 0.89-1.06; RR = 0.94, 95% CL = 0.87-1.01). CONCLUSIONS the response to vaccination is similar in patients affected by solid tumors to controls. On the contrary, hemolymphopietic patients show a much lower response than controls.
Collapse
Affiliation(s)
- Manlio Mencoboni
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 12, 16100 Genoa, Italy;
| | - Azzurra Damiani
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Antonino Spitaleri
- Analysis Laboratory, ASL 3, Via Bertani 4, 16125 Genoa, Italy; (A.S.); (A.R.)
| | - Alessandro Raso
- Analysis Laboratory, ASL 3, Via Bertani 4, 16125 Genoa, Italy; (A.S.); (A.R.)
| | | | - Giovanni Rossi
- Oncology Unit, Antero Micone Hospital, Largo Nevio Rosso 2, 16100 Genoa, Italy; (G.R.); (L.C.)
| | - Luciano Canobbio
- Oncology Unit, Antero Micone Hospital, Largo Nevio Rosso 2, 16100 Genoa, Italy; (G.R.); (L.C.)
| | - Antonella La Camera
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Rosa Angela Filiberti
- Clinical Epidemiology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 12, 16100 Genoa, Italy;
| | - Paola Taveggia
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| | - Alessia Cavo
- Oncology Unit, ASL 3, Villa Scassi Hospital, Corso Scassi 1, 16149 Genoa, Italy; (M.M.); (A.D.); (A.L.C.); (P.T.); (A.C.)
| |
Collapse
|
16
|
Would New SARS-CoV-2 Variants Change the War against COVID-19? EPIDEMIOLGIA (BASEL, SWITZERLAND) 2022; 3:229-237. [PMID: 36417254 PMCID: PMC9620871 DOI: 10.3390/epidemiologia3020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/14/2022]
Abstract
The scientific, private, and industrial sectors use a wide variety of technological platforms available to achieve protection against SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), including vaccines. However, the virus evolves continually into new highly virulent variants, which might overcome the protection provided by vaccines and may re-expose the population to infections. Mass vaccinations should be continued in combination with more or less mandatory non-pharmaceutical interventions. Therefore, the key questions to be answered are: (i) How to identify the primary and secondary infections of SARS-CoV-2? (ii) Why are neutralizing antibodies not long-lasting in both cases of natural infections and post-vaccinations? (iii) Which are the factors responsible for this decay in neutralizing antibodies? (iv) What strategy could be adapted to develop long-term herd immunity? (v) Is the Spike protein the only vaccine target or is a vaccine cocktail better?
Collapse
|