1
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
2
|
Xue R, Pan Y, Xia L, Li J. Non-viral vectors combined delivery of siRNA and anti-cancer drugs to reverse tumor multidrug resistance. Biomed Pharmacother 2024; 178:117119. [PMID: 39142247 DOI: 10.1016/j.biopha.2024.117119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Multidrug resistance (MDR) of tumors is one of the main reasons for the failure of chemotherapy. Multidrug resistance refers to the cross-resistance of tumor cells to multiple antitumor drugs with different structures and mechanisms of action. Current strategies to reverse multidrug resistance in tumors include MDR inhibitors and RNAi technology. siRNA is a small molecule RNA that is widely used in RNAi technology and has the characteristics of being prepared in large quantities and chemically modified. However, siRNA is susceptible to degradation in vivo. The effect of siRNA therapy alone is not ideal, so siRNA and anticancer drugs are administered in combination to reverse the MDR of tumors. Non-viral vectors are now commonly used to deliver siRNA and anticancer drugs to tumor sites. This article will review the progress of siRNA and chemotherapeutic drug delivery systems and their mechanisms for reversing multidrug resistance.
Collapse
Affiliation(s)
- Renkai Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yanzhu Pan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
3
|
Yalamarty SSK, Filipczak N, Pathrikar T, Cotter C, Ataide JA, Luther E, Paranjape S, Torchilin V. Evaluation of mAb 2C5-modified dendrimer-based micelles for the co-delivery of siRNA and chemotherapeutic drug in xenograft mice model. Drug Deliv Transl Res 2024; 14:2171-2185. [PMID: 38507033 PMCID: PMC11208241 DOI: 10.1007/s13346-024-01562-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Combination therapy with small interfering RNA (siRNA) and chemotherapeutic drug is proven to be effective in downregulating cancer resistance proteins, such as P-glycoprotein (P-gp). These proteins are involved in multidrug resistance (MDR) of tumors. A targeted formulation capable of delivering siRNA and chemotherapeutic drug will not only downregulate P-gp but also increase the concentration of the chemotherapeutic drug at the site of tumor thereby increasing the therapeutic effect and lowering the systemic exposure. In this study, monoclonal antibody 2C5-modified dendrimer-based micelles were used to co-deliver siRNA and doxorubicin (DOX) to the tumor site in both male and female xenograft mouse model. The nucleosome-specific 2C5 antibody recognizes the cancer cells via the cell-surface bound nucleosomes. The ability of ability of the 2C5-modified formulation to affect the metastasis of highly aggressive triple negative breast cancer cell migration in (MDA-MB-231) was assessed by a wound healing. Further, the therapeutic efficacy of the formulation was assessed by measuring the tumor volume progression in which the 2C5-modified nanoparticle group had a similar tumor volume to the free drug group at the end of the study, although a 50% increase in DOX concentrations in blood was observed after the last dose of nanoparticle. The free drug group on the other hand showed body weight reduction as well as the visible irritation around the injection spot. The treatment group with 2C5-modified micelles has shown to be safe at the current dose of DOX and siRNA. Furthermore, the siRNA mediated P-gp downregualtion was studied using western blotting assay. We observed a 29% reduction of P-gp levels in both males and females with respect to the control (BHG). We also conclude that the dose of DOX and siRNA should be further optimized to have a better efficacy in a metastatic tumor model, which will be the subject of our future studies.
Collapse
Affiliation(s)
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Tanvi Pathrikar
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Colin Cotter
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Janaína Artem Ataide
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas, 13083- 871, SP, Brazil
| | - Ed Luther
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Swarali Paranjape
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA
| | - Vladimir Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, 02115, USA.
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Kovshova T, Mantrov S, Boiko S, Malinovskaya J, Merkulova M, Osipova N, Moiseeva N, Akimov M, Dudina P, Senchikhin I, Ermolenko Y, Gelperina S. Co-delivery of paclitaxel and etoposide prodrug by human serum albumin and PLGA nanoparticles: synergistic cytotoxicity in brain tumour cells. J Microencapsul 2023; 40:246-262. [PMID: 36880479 DOI: 10.1080/02652048.2023.2188943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The aims of this study were to develop co-delivery systems of paclitaxel (PTX) and etoposide prodrug (4'-O-benzyloxycarbonyl-etoposide, ETP-cbz) based on non-cross-linked human serum albumin (HSA) and poly(lactide-co-glycolide) nanoparticles and to evaluate the synergistic potential of these drugs in vitro. The nanoformulations were prepared by the high-pressure homogenisation technique and characterised using DLS, TEM, SEM, AFM, HPLC, CZE, in-vitro release, and cytotoxicity in human and murine glioma cells. All nanoparticles had 90-150 nm in size and negative ζ-potentials. The Neuro2A cells were the most sensitive to both HSA- and PLGA-based co-delivery systems (IC50 0.024 µM and 0.053 µM, respectively). The drugs' synergistic effect (combination index < 0.9) was observed in the GL261 cells for both types of co-delivery formulations and in the Neuro2A cells for the HSA-based system. These nanodelivery systems may be useful to improve combination chemotherapy for brain tumour treatment. To our knowledge, this is the first report describing the non-cross-linked HSA-based co-delivery nanosuspension which was prepared using nab™ technology.
Collapse
Affiliation(s)
- Tatyana Kovshova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Sergey Mantrov
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Svetlana Boiko
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Julia Malinovskaya
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Maria Merkulova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Nadezhda Osipova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Natalia Moiseeva
- N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Mikhail Akimov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Polina Dudina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan Senchikhin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yulia Ermolenko
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Svetlana Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
5
|
Co-Delivery of siRNA and Chemotherapeutic Drug Using 2C5 Antibody-Targeted Dendrimer-Based Mixed Micelles for Multidrug Resistant Cancers. Pharmaceutics 2022; 14:pharmaceutics14071470. [PMID: 35890364 PMCID: PMC9324017 DOI: 10.3390/pharmaceutics14071470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 02/02/2023] Open
Abstract
Multidrug resistance (MDR) observed in tumors significantly hinders the efficacy of chemotherapy. Downregulation of efflux proteins, such as P-glycoprotein (P-gp), using small interfering RNA (siRNA) can be an effective way to minimize the resistance in tumors. In this study, monoclonal antibody 2C5 (mAb 2C5)-PEG7k-DOPE conjugates were post-inserted into the mixed dendrimer micelles containing generation 4 (G4) polyamidoamine (PAMAM)-PEG2k-DOPE and PEG5k-DOPE. The inherent amphiphilic nature of DOPE conjugates causes the copolymers to self-assemble to form a micelle, which can encapsulate hydrophobic chemotherapeutic drugs in its core. The siRNA electrostatically binds to the cationic charges on the G4 PAMAM dendrimer. The tumor-specific mAb 2C5 on the surface of these nano-preparations resulted in improved tumor targeting. This active targeting to tumors can cause increase in the drug and siRNA accumulation at the tumor site, and thereby minimizing the off-target effects. The micelles were shown to have higher cellular association and effectiveness in vitro. The immunomicelle preparation was also tested for cytotoxicity in breast (MDA-MB-231) and ovarian (SKOV-3TR) MDR cancer cell lines.
Collapse
|
6
|
Kim JE, Park YJ. Hyaluronan self-agglomerating nanoparticles for non-small cell lung cancer targeting. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00115-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Owing to the limited amount of research, there are no nanoparticle-based anticancer agents that use hydrophilic drugs. Therefore, we developed irinotecan-loaded self-agglomerating hyaluronan nanoparticles (ISHNs). While irinotecan has high hydrophilicity, the resulting nanoparticle should possess high anticancer drug-loading capacity and allow selective targeting of the cluster of differentiation 44 (CD44) protein, which is overexpressed on the surface of tumor cells.
Results
The ISHNs were successfully made with hyaluronan (HA) as a targeting moiety, FeCl3 as a binder, and D-glutamic acid (GA) as a stabilizer. The ISHNs self-agglomerated via chelating bonding and were lyophilized using a freeze dryer. The particle diameter and zeta potential of the ISHNs were 93.8 ± 4.48 nm and − 36.3 ± 0.28 mV, respectively; a relatively narrow size distribution was observed. The drug fixation yield and drug-loading concentration were 58.3% and 1.75 mg/mL, respectively. Affinity studies revealed a tenfold stronger targeting to H23 (CD44+) non-small-cell lung cancer (NSCLC) cells, than of A549 (CD44−) cells.
Conclusion
We developed irinotecan-loaded ISHNs, which comprised irinotecan hydrochloride as a water-soluble anticancer agent, HA as a targeting moiety, FeCl3 as a binder for self-agglomeration, and GA as a stabilizer; HA is a binding material for CD44 in NSCLC cells. Owing to their ease of manufacture, excellent stability, non-cell toxicity and CD44-targeting ability, ISHNs are potential nanocarriers for passive and active tumor targeting.
Collapse
|
7
|
Yang M, Yang C, Zhang Y, Yan X, Ma Y, Zhang Y, Cao Y, Xu Q, Tu K, Zhang M. Orally pH-activated "nano-bomb" carrier combined with berberine by regulating gene silencing and gut microbiota for site-specific treatment of ulcerative colitis. Biomater Sci 2022; 10:1053-1067. [DOI: 10.1039/d1bm01765a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing inflammatory bowel disease that features colonic epithelial barrier dysfunction and gut dysbiosis. Preclinical studies demonstrated that inhibiting the overexpression of CD98 via small...
Collapse
|
8
|
Li D, Gao C, Kuang M, Xu M, Wang B, Luo Y, Teng L, Xie J. Nanoparticles as Drug Delivery Systems of RNAi in Cancer Therapy. Molecules 2021; 26:2380. [PMID: 33921892 PMCID: PMC8073355 DOI: 10.3390/molecules26082380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) can mediate gene-silencing by knocking down the expression of a target gene via cellular machinery with much higher efficiency in contrast to other antisense-based approaches which represents an emerging therapeutic strategy for combating cancer. Distinct characters of nanoparticles, such as distinctive size, are fundamental for the efficient delivery of RNAi therapeutics, allowing for higher targeting and safety. In this review, we present the mechanism of RNAi and briefly describe the hurdles and concerns of RNAi as a cancer treatment approach in systemic delivery. Furthermore, the current nanovectors for effective tumor delivery of RNAi therapeutics are classified, and the characteristics of different nanocarriers are summarized.
Collapse
Affiliation(s)
- Diedie Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Chengzhi Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Meiyan Kuang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Minhao Xu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Ben Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Yi Luo
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jing Xie
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (D.L.); (C.G.); (M.K.); (M.X.); (B.W.); (Y.L.)
| |
Collapse
|
9
|
Zhu YX, Jia HR, Duan QY, Wu FG. Nanomedicines for combating multidrug resistance of cancer. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1715. [PMID: 33860622 DOI: 10.1002/wnan.1715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ya-Xuan Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: A gravity to space investigation. Int J Pharm 2020; 591:119993. [DOI: 10.1016/j.ijpharm.2020.119993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
|
11
|
Zhang X, Pan J, Yao M, Palmerston Mendes L, Sarisozen C, Mao S, Torchilin VP. Charge reversible hyaluronic acid-modified dendrimer-based nanoparticles for siMDR-1 and doxorubicin co-delivery. Eur J Pharm Biopharm 2020; 154:43-49. [DOI: 10.1016/j.ejpb.2020.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
|
12
|
Pan J, Attia SA, Subhan MA, Filipczak N, Mendes LP, Li X, Kishan Yalamarty SS, Torchilin VP. Monoclonal Antibody 2C5-Modified Mixed Dendrimer Micelles for Tumor-Targeted Codelivery of Chemotherapeutics and siRNA. Mol Pharm 2020; 17:1638-1647. [PMID: 32233497 DOI: 10.1021/acs.molpharmaceut.0c00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeted delivery of chemotherapeutics to tumors has the potential to reach a high dose at the tumor while minimizing systemic exposure. Incorporation of antibody within a micellar platform represents a drug delivery system for tumor-targeted delivery of antitumor agents. Such modified immunomicelles can result in an increased accumulation of antitumor agents and enhanced cytotoxicity toward cancer cells. Here, mixed dendrimer micelles (MDM) composed of PEG2k-DOPE-conjugated generation 4 polyamidoamine dendrimer G4-PAMAM-PEG2k-DOPE and PEG5k-DOPE were coloaded with doxorubicin and siMDR-1. This formulation was further modified with monoclonal antibodies 2C5 with nucleosome-restricted specificity that effectively recognized cancer cells via the cell-surface-bound nucleosomes. Micelles with attached 2C5 antibodies significantly enhanced cellular association and tumor killing in both monolayer and spheroid tumor models as well as in vivo in experimental animals compared to the nontargeted formulations.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sara Aly Attia
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Md Abdus Subhan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Livia Palmerston Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, Jiangxi, China
| | - Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia 119146
| |
Collapse
|
13
|
Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents. Ther Deliv 2019; 10:527-550. [DOI: 10.4155/tde-2019-0044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent decades, many novel methods by using nanoparticles (NPs) have been investigated for diagnosis, drug delivery and treatment of cancer. Accordingly, the potential of NPs as carriers is very significant for the delivery of anticancer drugs, because cancer treatment with NPs has led to the improvement of some of the drug delivery limitations such as low blood circulation time and bioavailability, lack of water solubility, drug adverse effect. In addition, the NPs protect drugs against enzymatic degradation and can lead to the targeted and/or controlled release of the drug. The present review focuses on the potential of NPs that can help the targeted and/or controlled delivery of anticancer agents for cancer therapy.
Collapse
|
14
|
Recent Progress in the Development of Poly(lactic- co-glycolic acid)-Based Nanostructures for Cancer Imaging and Therapy. Pharmaceutics 2019; 11:pharmaceutics11060280. [PMID: 31197096 PMCID: PMC6630460 DOI: 10.3390/pharmaceutics11060280] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diverse nanosystems for use in cancer imaging and therapy have been designed and their clinical applications have been assessed. Among a variety of materials available to fabricate nanosystems, poly(lactic-co-glycolic acid) (PLGA) has been widely used due to its biocompatibility and biodegradability. In order to provide tumor-targeting and diagnostic properties, PLGA or PLGA nanoparticles (NPs) can be modified with other functional materials. Hydrophobic or hydrophilic therapeutic cargos can be placed in the internal space or adsorbed onto the surface of PLGA NPs. Protocols for the fabrication of PLGA-based NPs for cancer imaging and therapy are already well established. Moreover, the biocompatibility and biodegradability of PLGA may elevate its feasibility for clinical application in injection formulations. Size-controlled NP’s properties and ligand–receptor interactions may provide passive and active tumor-targeting abilities, respectively, after intravenous administration. Additionally, the introduction of several imaging modalities to PLGA-based NPs can enable drug delivery guided by in vivo imaging. Versatile platform technology of PLGA-based NPs can be applied to the delivery of small chemicals, peptides, proteins, and nucleic acids for use in cancer therapy. This review describes recent findings and insights into the development of tumor-targeted PLGA-based NPs for use of cancer imaging and therapy.
Collapse
|
15
|
Hwang HJ, Oh MS, Lee DW, Kuh HJ. Multiplex quantitative analysis of stroma-mediated cancer cell invasion, matrix remodeling, and drug response in a 3D co-culture model of pancreatic tumor spheroids and stellate cells. J Exp Clin Cancer Res 2019; 38:258. [PMID: 31200779 PMCID: PMC6567511 DOI: 10.1186/s13046-019-1225-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a stroma-rich carcinoma, and pancreatic stellate cells (PSCs) are a major component of this dense stroma. PSCs play significant roles in metastatic progression and chemoresistance through cross-talk with cancer cells. Preclinical in vitro tumor model of invasive phenotype should incorporate three-dimensional (3D) culture of cancer cells and PSCs in extracellular matrix (ECM) for clinical relevance and predictability. METHODS PANC-1 cells were cultured as tumor spheroids (TSs) using our previously developed minipillar chips, and co-cultured with PSCs, both embedded in collagen gels. Effects of PSC co-culture on ECM fiber network, invasive migration of cancer cells, and expression of epithelial-mesenchymal transition (EMT)-related proteins were examined. Conditioned media was also analyzed for secreted factors involved in cancer cell-PSC interactions. Inhibitory effect on cancer cell invasion was compared between gemcitabine and paclitaxel at an equitoxic concentration in PANC-1 TSs co-cultured with PSCs. RESULTS Co-culture condition was optimized for the growth of TSs, activation of PSCs, and their interaction. Increase in cancer cell invasion via ECM remodeling, invadopodia formation and EMT, as well as drug resistance was recapitulated in the TS-PSC co-culture, and appeared to be mediated by cancer cell-PSC interaction via multiple secreted factors, including IL-6, IL-8, IGF-1, EGF, TIMP-1, uPA, PAI-1, and TSP-1. Compared to gemcitabine, paclitaxel showed a greater anti-invasive activity, which was attributed to suppresion of invadopodia formation in cancer cells as well as to PSC-specific cytotoxicity abrogating its paracrine signaling. CONCLUSIONS Here, we established 3D co-culture of TSs of PANC-1 cells and PSCs using minipillar histochips as a novel tumoroid model of PDAC. Our results indicate usefulness of the present co-culture model and multiplex quantitative analysis method not only in studying the role of PSCs and their interactions with tumor cell towards metastatic progression, but also in the drug evaluation of stroma-targeting drugs.
Collapse
Affiliation(s)
- Hyun Ju Hwang
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Suk Oh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Lee
- Departments of Biomedical Engineering, Konyang University, Daejeon, Republic of Korea
- Medical & Bio Device, #B-9, 145 Gwanggyo-ro, Suwon, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-ku, Seoul, 06591 Republic of Korea
| |
Collapse
|
16
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
17
|
Ben-David-Naim M, Dagan A, Grad E, Aizik G, Nordling-David MM, Morss Clyne A, Granot Z, Golomb G. Targeted siRNA Nanoparticles for Mammary Carcinoma Therapy. Cancers (Basel) 2019; 11:E442. [PMID: 30934857 PMCID: PMC6521050 DOI: 10.3390/cancers11040442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Non-viral, polymeric-based, siRNA nanoparticles (NPs) have been proposed as promising gene delivery systems. Encapsulating siRNA in targeted NPs could confer improved biological stability, extended half-life, enhanced permeability, effective tumor accumulation, and therapy. In this work, a peptide derived from apolipoprotein B100 (ApoB-P), the protein moiety of low-density lipoprotein, was used to target siRNA-loaded PEGylated NPs to the extracellular matrix/proteoglycans (ECM/PGs) of a mammary carcinoma tumor. siRNA against osteopontin (siOPN), a protein involved in breast cancer development and progression, was encapsulated into PEGylated poly(d,l-lactic-co-glycolic acid) (PLGA) NPs using the double emulsion solvent diffusion technique. The NPs obtained possessed desired physicochemical properties including ~200 nm size, a neutral surface charge, and high siOPN loading of ~5 µg/mg. ApoB-P-targeted NPs exhibited both enhanced binding to isolated ECM and internalization by MDA-MB-231 human mammary carcinoma cells, in comparison to non-targeted NPs. Increased accumulation of the targeted NPs was achieved in the primary mammary tumor of mice xenografted with MDA-MB-231 mammary carcinoma cells as well as in the lungs, one of the main sites affected by metastases. siOPN NPs treatment resulted in significant inhibition of tumor growth (similar bioactivity of both formulations), accompanied with significant reduction of OPN mRNA levels (~40% knockdown of mRNA levels). We demonstrated that targeted NPs possessed enhanced tumor accumulation with increased therapeutic potential in mice models of mammary carcinoma.
Collapse
Affiliation(s)
- Meital Ben-David-Naim
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Arie Dagan
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Etty Grad
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Gil Aizik
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Mirjam M Nordling-David
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Alisa Morss Clyne
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA 19104, USA.
| | - Zvi Granot
- Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Gershon Golomb
- Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
18
|
Pan J, Rostamizadeh K, Filipczak N, Torchilin VP. Polymeric Co-Delivery Systems in Cancer Treatment: An Overview on Component Drugs' Dosage Ratio Effect. Molecules 2019; 24:E1035. [PMID: 30875934 PMCID: PMC6471357 DOI: 10.3390/molecules24061035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are involved in the development of cancers and their effects on survival rate. Many are related to chemo-resistance of tumor cells. Thus, treatment with a single therapeutic agent is often inadequate for successful cancer therapy. Ideally, combination therapy inhibits tumor growth through multiple pathways by enhancing the performance of each individual therapy, often resulting in a synergistic effect. Polymeric nanoparticles prepared from block co-polymers have been a popular platform for co-delivery of combinations of drugs associated with the multiple functional compartments within such nanoparticles. Various polymeric nanoparticles have been applied to achieve enhanced therapeutic efficacy in cancer therapy. However, reported drug ratios used in such systems often vary widely. Thus, the same combination of drugs may result in very different therapeutic outcomes. In this review, we investigated polymeric co-delivery systems used in cancer treatment and the drug combinations used in these systems for synergistic anti-cancer effect. Development of polymeric co-delivery systems for a maximized therapeutic effect requires a deeper understanding of the optimal ratio among therapeutic agents and the natural heterogenicity of tumors.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| | - Kobra Rostamizadeh
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
- Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Kim SR, Ho MJ, Choi YW, Kang MJ. Improved Drug Loading and Sustained Release of Entecavir‐loaded PLGA Microsphere Prepared by Spray Drying Technique. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sung Rae Kim
- College of PharmacyChung‐Ang University Seoul 150‐756 South Korea
| | - Myoung Jin Ho
- College of PharmacyDankook University Chungnam 330‐714 South Korea
| | - Young Wook Choi
- College of PharmacyChung‐Ang University Seoul 150‐756 South Korea
| | - Myung Joo Kang
- College of PharmacyDankook University Chungnam 330‐714 South Korea
| |
Collapse
|
20
|
Soe ZC, Kwon JB, Thapa RK, Ou W, Nguyen HT, Gautam M, Oh KT, Choi HG, Ku SK, Yong CS, Kim JO. Transferrin-Conjugated Polymeric Nanoparticle for Receptor-Mediated Delivery of Doxorubicin in Doxorubicin-Resistant Breast Cancer Cells. Pharmaceutics 2019; 11:E63. [PMID: 30717256 PMCID: PMC6410246 DOI: 10.3390/pharmaceutics11020063] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, a transferrin (Tf)-conjugated polymeric nanoparticle was developed for the targeted delivery of the chemotherapeutic agent doxorubicin (Dox) in order to overcome multi-drug resistance in cancer treatment. Our objective was to improve Dox delivery for producing significant antitumor efficacy in Dox-resistant (R) breast cancer cell lines with minimum toxicity to healthy cells. The results of our experiments revealed that Dox was successfully loaded inside a transferrin (Tf)-conjugated polymeric nanoparticle composed of poloxamer 407 (F127) and 123 (P123) (Dox/F127&P123-Tf), which produced nanosized particles (~90 nm) with a low polydispersity index (~0.23). The accelerated and controlled release profiles of Dox from the nanoparticles were characterized in acidic and physiological pH and Dox/F127&P123-Tf enhanced Dox cytotoxicity in OVCAR-3, MDA-MB-231, and MDA-MB-231(R) cell lines through induction of cellular apoptosis. Moreover, Dox/F127&P123-Tf inhibited cell migration and altered the cell cycle patterns of different cancer cells. In vivo study in MDA-MB-231(R) tumor-bearing mice demonstrated enhanced delivery of nanoparticles to the tumor site when coated in a targeting moiety. Therefore, Dox/F127&P123-Tf has been tailored, using the principles of nanotherapeutics, to overcome drug-resistant chemotherapy.
Collapse
Affiliation(s)
- Zar Chi Soe
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
- Department of Pharmaceutics, University of Pharmacy (Yangon), Waybargi Road, North Okkalapa township, Yangon 11031, Myanmar.
| | - Jun Bum Kwon
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heuksuk-dong Dongjak-gu, Seoul 156-756, Korea.
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791, Korea.
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Korea.
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-dong, Gyeongsan 712-749, Korea.
| |
Collapse
|
21
|
Uz M, Kalaga M, Pothuraju R, Ju J, Junker WM, Batra SK, Mallapragada S, Rachagani S. Dual delivery nanoscale device for miR-345 and gemcitabine co-delivery to treat pancreatic cancer. J Control Release 2019; 294:237-246. [PMID: 30576747 PMCID: PMC6379902 DOI: 10.1016/j.jconrel.2018.12.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022]
Abstract
A polymeric dual delivery nanoscale device (DDND) was designed for combined delivery of microRNA (miR-345) and gemcitabine (GEM) to treat pancreatic cancer (PC). This temperature and pH-responsive pentablock copolymer system was able to restore miR-345, making xenograft tumors more susceptible to GEM, the standard therapy for PC. Restoration using DDND treatment results in sonic hedgehog signaling down regulation, which decreases desmoplasia, thereby resulting in improved GEM perfusion to the tumor and better therapeutic outcomes. The release of miR-345 and GEM could be tuned by using the DDND in the form of micelles or in the form of thermoreversible gels, based on polymer concentration. The DDNDs enabled miR-345 stability and sustained co-release of miR-345 and GEM, thereby facilitating dose-sparing use of GEM. Further, enhanced in vitro cellular uptake due to amphiphilic character, and endosomal escape because of the cationic end blocks led to efficient transfection with DDNDs. The combined DDND treatment enabled efficient reduction in cell viability of Capan-1 and CD18/HPAF cells in vitro compared with either GEM or miR-345 treatment alone. Mice carrying xenograft tumors treated with DDNDs carrying both miR-345 and GEM combination therapy displayed reduced tumor growth and less metastasis in distant organs compared to individual drug treatments. Immunohistochemical analysis of the xenograft tissues revealed significant down regulation of desmoplastic reaction, SHH, Gli-1, MUC4, and Ki67 compared to control groups.
Collapse
Affiliation(s)
- Metin Uz
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Manisha Kalaga
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhyung Ju
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Wade M Junker
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Sanguine Diagnostics and Therapeutics, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; Eppley Institute for Research in Cancer & Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
22
|
Wu H, You C, Jiao J, Chen F, Sun B, Zhu X. A novel near-infrared triggered dual-targeted nanoplatform for mitochondrial combined photothermal-chemotherapy of cancer in vitro. NANOTECHNOLOGY 2019; 30:035601. [PMID: 30418947 DOI: 10.1088/1361-6528/aaebca] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A combination of photothermal-chemotherapy has received widespread attention in drug delivery systems for cancer treatment. However, the combination therapy operated in subcellular organelles, such as mitochondria, has been rarely reported. Herein, we designed a novel near-infrared (NIR) triggered dual-targeted nanoplatform (FA/TPP-DINPs) based on mitochondrial combined photothermal-chemotherapy by co-loading FDA-approved NIR dye indocyanine green (ICG) and anticancer drug doxorubicin (DOX). The resulting nanoparticles showed a monodispersed sphere and excellent colloidal stability. Specially, the simultaneous introduction of targeted ligands folic acid (FA) and triphenylphosphine (TPP) to nanoparticles significantly promoted the cellular internalization and mitochondrial co-localization of nanoparticles. Moreover, the encapsulated dye could convert NIR light into heat with high efficiency, which makes the FA/TPP-DINPs an effective platform for mitochondrial combination therapy with chemotherapy drug DOX. Meanwhile, the thermal expansion in response to the change of temperature after sustained 808 nm laser irradiation could cause the disintegration of nanoparticles, which triggered the rapid release of DOX from nanoparticles. As expected, the prepared FA/TPP-DINPs exhibited evidently enhanced cytotoxicity and preeminent combination therapy efficiency on MCF-7 cells. Thus, the NIR triggered dual-targeted nanoplatform provides a new drug delivery strategy for mitochondrial combined photothermal-chemotherapy of cancer.
Collapse
Affiliation(s)
- Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Pan J, Mendes LP, Yao M, Filipczak N, Garai S, Thakur GA, Sarisozen C, Torchilin VP. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 2019; 136:18-28. [PMID: 30633973 DOI: 10.1016/j.ejpb.2019.01.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) significantly decreases the therapeutic efficiency of anti-cancer drugs. Its reversal could serve as a potential method to restore the chemotherapeutic efficiency. Downregulation of MDR-related proteins with a small interfering RNA (siRNA) is a promising way to reverse the MDR effect. Additionally, delivery of small molecule therapeutics simultaneously with siRNA can enhance the efficiency of chemotherapy by dual action in MDR cell lines. Here, we conjugated the dendrimer, generation 4 polyamidoamine (G4 PAMAM), with a polyethylene glycol (PEG)-phospholipid copolymer. The amphiphilic conjugates obtained spontaneously self-assembled into a micellar nano-preparation, which can be co-loaded with siRNA onto PAMAM moieties and sparingly water-soluble chemotherapeutics into the lipid hydrophobic core. This system was co-loaded with doxorubicin (DOX) and therapeutic siRNA (siMDR-1) and tested for cytotoxicity against MDR cancer cells: human ovarian carcinoma (A2780 ADR) and breast cancer (MCF7 ADR). The combination nanopreparation effectively downregulated P-gp in MDR cancer cells and reversed the resistance towards DOX.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Livia P Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil
| | - Momei Yao
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Cao J, Choi JS, Oshi MA, Lee J, Hasan N, Kim J, Yoo JW. Development of PLGA micro- and nanorods with high capacity of surface ligand conjugation for enhanced targeted delivery. Asian J Pharm Sci 2019; 14:86-94. [PMID: 32104441 PMCID: PMC7032182 DOI: 10.1016/j.ajps.2018.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Particle shape has been recognized as one of the key properties of nanoparticles in biomedical applications including targeted drug delivery. Targeting ability of shape-engineered particles depends largely on targeting ligands conjugated on the particle surface. However, poor capacity for surface ligand conjugation remains a problem in anisotropic nanoparticles made with biodegradable polymers such as PLGA. In this study, we prepared anisotropic PLGA nanoparticles with abundant conjugatable surface functional groups by a film stretching-based fabrication method with poly (ethylene-alt-maleic acid) (PEMA). Scanning electron microscopy images showed that microrods and nanorods were successfully fabricated by the PEMA-based film stretching method. The presence of surface carboxylic acid groups was confirmed by confocal microscopy and zeta potential measurements. Using the improved film-stretching method, the amount of protein conjugated to the surface of nanorods was increased three-fold. Transferrin-conjugated, nanorods fabricated by the improved method exhibited higher binding and internalization than unmodified counterparts. Therefore, the PEMA-based film-stretching system presented in this study would be a promising fabrication method for non-spherical biodegradable polymeric micro- and nanoparticles with high capacity of surface modifications for enhanced targeted delivery.
Collapse
Affiliation(s)
- Jiafu Cao
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jin-Seok Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
- Department of Medical Management, Chodang University, Muan-gun 58530, South Korea
| | - Murtada A. Oshi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Juho Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Nurhasni Hasan
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jihyun Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
- College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, South Korea
| | - Jin-Wook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
25
|
Cellular Delivery of siRNA Using Poly(2-dimethylaminoethyl methacrylate)- Functionalized Graphene Oxide Nano-Wrap. Macromol Res 2018. [DOI: 10.1007/s13233-019-7017-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Xu JW, Ge X, Lv LH, Xu F, Luo YL. Dual-Stimuli-Responsive Paclitaxel Delivery Nanosystems from Chemically Conjugate Self-Assemblies for Carcinoma Treatment. Macromol Rapid Commun 2018; 39:e1800628. [DOI: 10.1002/marc.201800628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/16/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Jing-Wen Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Xin Ge
- Health Science Center; Xi'an Jiaotong University; Xi'an 710061 China
| | - Li-Hua Lv
- Dr. L.-H. Lv; Weinan Central Hospital; Weinan 714000 China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province; School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| |
Collapse
|
27
|
Kozlu S, Sahin A, Ultav G, Yerlikaya F, Calis S, Capan Y. Development and in vitro evaluation of doxorubicin and celecoxib co-loaded bone targeted nanoparticles. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Rezaee M, Gholami L, Gildeh MS, Ramezani M, Kazemi Oskuee R. Charge reduction: an efficient strategy to reduce toxicity and increase the transfection efficiency of high molecular weight polyethylenimine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0388-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Effects of Phytochemical P-Glycoprotein Modulators on the Pharmacokinetics and Tissue Distribution of Doxorubicin in Mice. Molecules 2018; 23:molecules23020349. [PMID: 29414892 PMCID: PMC6017107 DOI: 10.3390/molecules23020349] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Pungent spice constituents such as piperine, capsaicin and [6]-gingerol consumed via daily diet or traditional Chinese medicine, have been reported to possess various pharmacological activities. These dietary phytochemicals have also been reported to inhibit P-glycoprotein (P-gp) in vitro and act as an alternative to synthetic P-gp modulators. However, the in vivo effects on P-gp inhibition are currently unknown. This study aimed to test the hypothesis that phytochemical P-gp inhibitors, i.e., piperine, capsaicin and [6]-gingerol, modulate the in vivo tissue distribution of doxorubicin, a representative P-gp substrate. Mice were divided into four groups and each group was pretreated with intraperitoneal injections of control vehicle, piperine, capsaicin, or [6]-gingerol and doxorubicin (1 mg/kg) was administered via the penile vein. The concentrations of the phytochemicals and doxorubicin in the plasma and tissues were determined by LC-MS/MS. The overall plasma concentration-time profiles of doxorubicin were not significantly affected by piperine, capsaicin, or [6]-gingerol. In contrast, doxorubicin accumulation was observed in tissues pretreated with piperine or capsaicin. The tissue to plasma partition coefficients, Kp, for the liver and kidney were higher in the piperine-pretreated group, while the Kp for kidney, brain and liver were higher in the capsaicin-pretreated group. [6]-Gingerol did not affect doxorubicin tissue distribution. The data demonstrated that the phytochemicals modulated doxorubicin tissue distribution, which suggested their potential to induce food-drug interactions and act as a strategy for the delivery of P-gp substrate drugs to target tissues and tumors.
Collapse
|
30
|
Yang S, Ren Z, Chen M, Wang Y, You B, Chen W, Qu C, Liu Y, Zhang X. Nucleolin-Targeting AS1411-Aptamer-Modified Graft Polymeric Micelle with Dual pH/Redox Sensitivity Designed To Enhance Tumor Therapy through the Codelivery of Doxorubicin/TLR4 siRNA and Suppression of Invasion. Mol Pharm 2018; 15:314-325. [PMID: 29250957 DOI: 10.1021/acs.molpharmaceut.7b01093] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this article, a novel graft polymeric micelle with targeting function ground on aptamer AS1411 was synthesized. The micelle was based on chitosan-ss-polyethylenimine-urocanic acid (CPU) with dual pH/redox sensitivity and targeting effects. This micelle was produced for codelivering Toll-like receptor 4 siRNA (TLR4-siRNA) and doxorubicin (Dox). In vitro investigation revealed the sustained gene and drug release from Dox-siRNA-loaded micelles under physiological conditions, and this codelivery nanosystem exhibited high dual pH/redox sensitivity, rapid intracellular drug release, and improved cytotoxicity against A549 cells in vitro. Furthermore, the micelles loaded with TLR4-siRNA inhibited the migration and invasion of A549. Excellent tumor penetrating efficacy was also noted in the A549 tumor spheroids and solid tumor slices. In vivo, multiple results demonstrated the excellent tumor-targeting ability of AS1411-chitosan-ss-polyethylenimine-urocanic acid (ACPU) micelle in tumor tissues. The micelles exhibited excellent antitumor efficacy and low toxicity in the systemic circulation in lung-tumor-bearing BALB/c mice. These results conclusively demonstrated the great potential of the new graft copolymer micelle with targeting function for the targeted and efficient codelivery of chemotherapeutic drugs and genes in cancer treatment.
Collapse
Affiliation(s)
- Shudi Yang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zhaoxiang Ren
- Jiangsu Key Laboratory for Translational Research and Therapy for Neuropsycho-disorders & Department of Pharmacology College of Pharmaceutical Sciences, Soochow University , Suzhou 215123, P. R. China
| | - Mengtian Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Ying Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Bengang You
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Weiliang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Chenxi Qu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Yang Liu
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Xuenong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University , 199 Ren'ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
31
|
Jalalian SH, Ramezani M, Abnous K, Taghdisi SM. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett 2017; 416:87-93. [PMID: 29253524 DOI: 10.1016/j.canlet.2017.12.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022]
Abstract
Chemotherapy is a commonly used cancer treatment strategy that causes severe side effects by damaging normal tissue. Therefore, targeted drug delivery systems have attracted great attention for the treatment of cancer in recent years. In this study, epirubicin (EPI)-loaded-NAS-24-functionalized PEI-PEG-5TR1 aptamer coated selenium nanoparticles (SeNPs), known as the ENPPASe complex, were developed and used for targeted delivery of both EPI (anticancer drug) and NAS-24 aptamer (apoptosis induction agent) to MCF7 (human breast carcinoma cell) and C26 (murine colon carcinoma cell) cancer cells using 5TR1 aptamer as the target agent. The ENPPASe complex could significantly reduce the toxicity in non-target cells (HEPG2, hepatocellular carcinoma cell). As with the EPI alone, the ENPPASe complex could significantly reduce cell viability in the target cancer cells (MCF-7 and C26). In addition, the complex significantly reduced the tumor growth in cancer-bearing mice compared to EPI treatment alone.
Collapse
Affiliation(s)
- Seyed Hamid Jalalian
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Students Research Committee, Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Mashhad Branch, Mashhad, Iran
| | - Mohammad Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
32
|
Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi HG, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2017; 41:111-129. [DOI: 10.1007/s12272-017-0995-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
|
33
|
Nehate C, Moothedathu Raynold AA, Koul V. ATRP Fabricated and Short Chain Polyethylenimine Grafted Redox Sensitive Polymeric Nanoparticles for Codelivery of Anticancer Drug and siRNA in Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39672-39687. [PMID: 29048878 DOI: 10.1021/acsami.7b11716] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To overcome the limitations of conventional chemotherapy, nanoparticle-mediated combinatorial delivery of siRNA and drugs represents a new approach to overcome its associated side effects. Designing safe and efficient vehicles for their codelivery has emerged as a potential challenge in the clinical translation of these formulations. Herein, we have demonstrated a novel "two-in-one" polyplex nanosystem developed from redox sensitive, short chain polyethylenimine modified poly[(poly(ethylene)glycol methacrylate]-s-s-polycaprolactone copolymer synthesized by atom-transfer free-radical polymerization (ATRP), which can deliver doxorubicin and polo-like kinase I (plk1) siRNA, simultaneously for an enhanced chemotherapeutic effect. The nanoparticles were found to be stable at physiological buffer with and without fetal bovine serum (FBS). The developed polymeric nanosystem was found to be biocompatible and hemocompatible in vitro and in vivo at repeated dose administrations. The polymer could easily self-assemble into ∼100 nm spherical nanoparticles with enhanced doxorubicin loading (∼18%) and effective siRNA complexation at a polymer to siRNA weight ratio of 15. The doxorubicin loaded nanoparticles exhibited ∼4-fold higher drug release in endosomal pH (pH 5) containing 10 mmol of GSH compared to pH 7.4, depicting their redox-sensitive behavior. The polyplexes were capable of delivering both cargos simultaneously to cancer cells in vitro as observed by their excellent colocalization in the cytoplasm of MDA-MB-231 and HeLa cells using confocal laser microscopy. Moreover, in vitro transfection of the cells with polyplexes exhibited 50-70% knockdown of plk1-mRNA expression in both cell lines. In vivo administration of the drug loaded polyplexes to EAT tumor bearing (EAT, Ehrlich ascites tumor) Swiss albino mice showed a ∼29-fold decrease in percent tumor volume in comparison to the control group. The results highlight the therapeutic potential of the polyplexes as a combined delivery of doxorubicin and plk1-siRNA in cancer therapy.
Collapse
Affiliation(s)
- Chetan Nehate
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Aji Alex Moothedathu Raynold
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| | - Veena Koul
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi , New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences , New Delhi 110029, India
| |
Collapse
|
34
|
Pathak S, Regmi S, Gupta B, Poudel BK, Pham TT, Yong CS, Kim JO, Kim JR, Park MH, Bae YK, Yook S, Ahn CH, Jeong JH. Single synchronous delivery of FK506-loaded polymeric microspheres with pancreatic islets for the successful treatment of streptozocin-induced diabetes in mice. Drug Deliv 2017; 24:1350-1359. [PMID: 28911248 PMCID: PMC8241191 DOI: 10.1080/10717544.2017.1377317] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 12/18/2022] Open
Abstract
Immune rejection after transplantation is common, which leads to prompt failure of the graft. Therefore, to prolong the survival time of the graft, immunosuppressive therapy is the norm. Here, we report a robust immune protection protocol using FK506-loaded microspheres (FK506M) in injectable hydrogel. Pancreatic islets were codelivered with the FK506M into the subcutaneous space of streptozocin-induced diabetic mice. The islets codelivered with 10 mg/kg FK506M maintained normal blood glucose levels during the study period (survival rate: 60%). However, transplantation of islets and FK506M at different sites hardly controlled the blood glucose level (survival rate: 20%). Immunohistochemical analysis revealed an intact morphology of the islets transplanted with FK506M. In addition, minimal number of immune cells invaded inside the gel of the islet-FK506M group. The single injection of FK506M into the local microenvironment effectively inhibited immune rejection and prolonged the survival time of transplanted islets in a xenograft model.
Collapse
Affiliation(s)
- Shiva Pathak
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Shobha Regmi
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Bijay K. Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Tung Thanh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology and Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Min Hui Park
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Young Kyung Bae
- Department of Pathology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Cheol-Hee Ahn
- Engineering Research Institute, Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongbuk, Republic of Korea
| |
Collapse
|
35
|
Ramasamy T, Sundaramoorthy P, Ruttala HB, Choi Y, Shin WH, Jeong JH, Ku SK, Choi HG, Kim HM, Yong CS, Kim JO. Polyunsaturated fatty acid-based targeted nanotherapeutics to enhance the therapeutic efficacy of docetaxel. Drug Deliv 2017; 24:1262-1272. [PMID: 28891336 PMCID: PMC8241009 DOI: 10.1080/10717544.2017.1373163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/23/2022] Open
Abstract
Since breast cancer is one of the most lethal malignancies, targeted strategies are urgently needed. In this study, we report the enhanced therapeutic efficacy of docetaxel (DTX) when combined with polyunsaturated fatty acids (PUFA) for effective treatment of multi-resistant breast cancers. Folic acid (FA)-conjugated PUFA-based lipid nanoparticles (FA-PLN/DTX) was developed. The physicochemical properties, in vitro uptake, in vitro cytotoxicity, and in vivo anticancer activity of FA-PLN/DTX were evaluated. FA-PLN/DTX could efficiently target and treat human breast tumor xenografts in vivo. They showed high payload carrying capacity with controlled release characteristics and selective endocytic uptake in folate receptor-overexpressing MCF-7 and MDA-MB-231 cells. PUFA synergistically improved the anticancer efficacy of DTX in both tested cancer cell lines by inducing a G2/M phase arrest and cell apoptosis. Combination of PUFA and DTX remarkably downregulated the expression levels of pro-apoptotic and anti-apoptotic markers, and blocked the phosphorylation of AKT signaling pathways. Compared to DTX alone, FA-PLN/DTX showed superior antitumor efficacy, with no signs of toxic effects in cancer xenograft animal models. We propose that PUFA could improve the therapeutic efficacy of anticancer agents in cancer therapy. Further studies are necessary to fully understand these findings and achieve clinical translation.
Collapse
Affiliation(s)
- Thiruganesh Ramasamy
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
- Department of Medicine, Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pasupathi Sundaramoorthy
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
- Division of Hematologic Malignancies & Cellular Therapy, Duke University Medical Center, Durham, NC, USA
| | | | - Yongjoo Choi
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Woo Hyun Shin
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hwan Mook Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
36
|
Kang JH, Battogtokh G, Ko YT. Self-Assembling Lipid-Peptide Hybrid Nanoparticles of Phospholipid-Nonaarginine Conjugates for Enhanced Delivery of Nucleic Acid Therapeutics. Biomacromolecules 2017; 18:3733-3741. [PMID: 28954191 DOI: 10.1021/acs.biomac.7b01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite potential applications of nucleic acid therapeutics, the lack of effective delivery systems hinders their clinical application. To overcome the barriers to nucleic acid delivery, we previously reported nanoparticles using phospholipid-polyethylenimine conjugates. However, toxicity of polyethylenimine remains as a problematic issue. Herein, we proposed to substitute the polyethylenimine with arginine-rich peptide to obtain a less-toxic carrier system. Nonaarginine was conjugated to the distal end of phospholipid hydrocarbon chains leading to phospholipid-nonaarginine conjugates (PL9R) and then lipid-peptide hybrid nanoparticles carrying oligonucleotide therapeutics (hNP) were constructed by self-assembly process. The hNP were further modified with cell penetrating Tat peptide (T-hNP) to enhance cellular uptake. The PL9R was less cytotoxic, and the hNP showed high loading capacity and colloidal stability. The T-hNP showed higher cellular uptake and transfection efficiency and effective accumulation to tumor tissue and silencing effect in tumor bearing mice. Altogether, T-hNP could provide a promising nanocarrier for nucleic acid therapeutics.
Collapse
Affiliation(s)
- Ji Hee Kang
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University , Incheon, South Korea 21936
| | - Gantumur Battogtokh
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University , Incheon, South Korea 21936
| | - Young Tag Ko
- College of Pharmacy, Gachon Institute of Pharmaceutical Sciences, Gachon University , Incheon, South Korea 21936
| |
Collapse
|
37
|
Multiple polysaccharide–drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting. Carbohydr Polym 2017; 173:57-66. [DOI: 10.1016/j.carbpol.2017.05.062] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/29/2022]
|
38
|
Pashaei-Asl R, Khodadadi K, Pashaei-Asl F, Haqshenas G, Ahmadian N, Pashaiasl M, Hajihosseini Baghdadabadi R. Legionella Pneumophila and Dendrimers-Mediated Antisense Therapy. Adv Pharm Bull 2017; 7:179-187. [PMID: 28761819 PMCID: PMC5527231 DOI: 10.15171/apb.2017.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/29/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022] Open
Abstract
Finding novel and effective antibiotics for treatment of Legionella disease is a challenging field. Treatment with antibiotics usually cures Legionella infection; however, if the resultant disease is not timely recognized and treated properly, it leads to poor prognosis and high case fatality rate. Legionella pneumophila DrrA protein (Defects in Rab1 recruitment protein A)/also known as SidM affects host cell vesicular trafficking through modification of the activity of cellular small guanosine triphosphatase )GTPase( Rab (Ras-related in brain) function which facilitates intracellular bacterial replication within a supporter vacuole. Also, Legionella pneumophila LepA and LepB (Legionella effector protein A and B) proteins suppress host-cell Rab1 protein's function resulting in the cell lysis and release of bacteria that subsequently infect neighbour cells. Legionella readily develops resistant to antibiotics and, therefore, new drugs with different modes of action and therapeutic strategic approaches are urgently required among antimicrobial drug therapies;gene therapy is a novel approach for Legionnaires disease treatment. On the contrary to the conventional treatment approaches that target bacterial proteins, new treatment interventions target DNA (Deoxyribonucleic acid), RNA (Ribonucleic acid) species, and different protein families or macromolecular complexes of these components. The above approaches can overcome the problems in therapy of Legionella infections caused by antibiotics resistance pathogens. Targeting Legionella genes involved in manipulating cellular vesicular trafficking using a dendrimer-mediated antisense therapy is a promising approach to inhibit bacterial replication within the target cells.
Collapse
Affiliation(s)
- Roghiyeh Pashaei-Asl
- Department of Biology, Payame Noor University, Tehran, Iran.,Department of Anatomy, Medical School, Iran University of Medical Science, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Khodadad Khodadadi
- Genetic Theme, Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, Melbourne, Australia
| | - Fatima Pashaei-Asl
- Molecular Biology Laboratory, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Haqshenas
- Microbiology Department, Biomedical Discovery Institute, Monash University, Melbourne, Australia
| | - Nasser Ahmadian
- Transplantation Center, Department of Curative Affairs, Ministry of Health and Medical Education, Tehran, Iran
| | - Maryam Pashaiasl
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
39
|
Kim B, Seo B, Park S, Lee C, Kim JO, Oh KT, Lee ES, Choi HG, Youn YS. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers. Colloids Surf B Biointerfaces 2017; 158:157-166. [PMID: 28688365 DOI: 10.1016/j.colsurfb.2017.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022]
Abstract
Albumin nanoparticles are well-known as effective drug carriers used to deliver hydrophobic chemotherapeutic agents. Albumin nanoparticles encapsulating curcumin and doxorubicin were fabricated using slightly modified nanoparticle albumin-bound (nab™) technology, and the synergistic effects of these two drugs were examined. Albumin nanoparticles encapsulating curcumin, doxorubicin, and both curcumin and doxorubicin were prepared using a high pressure homogenizer. The sizes of albumin nanoparticles were ∼130nm, which was considered to be suitable for the EPR (enhanced permeability and retention) effect. Albumin nanoparticles gradually released drugs over a period of 24h without burst effect. To confirm the synergistic effect of two drugs, in vitro cytotoxicity assay was performed using B16F10 melanoma cells. The cytotoxic effect on B16F10 melanoma cells was highest when co-treated with both curcumin and doxorubicin compared to single treatment of either curcumin and doxorubicin. The combined index calculated by medium-effect equation was 0.6069, indicating a synergistic effect. Results of confocal laser scanning microscopy and fluorescence-activated cell sorting corresponded to results from an in vitro cytotoxicity assay, indicating synergistic cytotoxicity induced by both drugs. A C57BL/6 mouse model induced by B16F10 lung metastasis was used to study in vivo therapeutic effects. When curcumin and doxorubicin were simultaneously treated, the metastatic melanoma mass in the lungs macroscopically decreased compared to curcumin or doxorubicin alone. Albumin nanoparticles encapsulating two anticancer drugs were shown to have an effective therapeutic result and would be an excellent way to treat resistant lung cancers.
Collapse
Affiliation(s)
- Bomi Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Bohyung Seo
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Sanghyun Park
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 214-1, Dae-Dong, Gyongsan 38541, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
40
|
Folate receptor-targeted hybrid lipid-core nanocapsules for sequential delivery of doxorubicin and tanespimycin. Colloids Surf B Biointerfaces 2017; 155:83-92. [PMID: 28410515 DOI: 10.1016/j.colsurfb.2017.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 11/23/2022]
Abstract
When exposed to cancer cells, cytotoxic drugs such as doxorubicin (DOX) can lead to the induction of heat shock protein 90 (Hsp90), a molecular chaperone associated with a number of cancer-related client proteins, and result in cell survival. Co-administration of DOX with tanespimycin (TNP), an Hsp90 inhibitor, can sensitize the cancer cells to the cytotoxic effects of DOX. The effect of such a combination has been found to depend on the schedule of administration. Sequential administration of DOX and TNP has been linked to highly synergistic combination effects. Therefore, we aimed to develop folate-receptor targeted hybrid lipid-core nanocapsules comprising a hybrid lipid core lodging TNP and a polymeric corona lodging DOX (F-DTN). These nanocarriers were capable of delivering DOX and TNP sequentially, which was well demonstrated by an in vitro release study. The in vitro release profiles displayed pH-dependent and sustained release features. F-DTN exhibited excellent morphological characteristics with highly monodispersed particles. In vitro tests with F-DTN in MCF-7 cell line demonstrated exceptional cytotoxicity, with high cellular uptake and apoptosis. These findings were appreciably more assertive than tests with free individual drugs (DOX, TNP), free drug combination (DOX/TNP), or non-folate receptor-targeted hybrid lipid-core nanocapsules (DTN). In vivo pharmacokinetic study revealed noticeable enhancement of bioavailability and plasma circulation time of the drugs when encapsulated in the carrier system. Therefore, hybrid lipid-core nanocapsules have the potential to be utilized for application in folate receptor-targeted combination chemotherapy.
Collapse
|