1
|
Multifunctional hydrogels for wound dressings using xanthan gum and polyacrylamide. Int J Biol Macromol 2022; 217:944-955. [PMID: 35908675 DOI: 10.1016/j.ijbiomac.2022.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Developing advanced dressings that integrate multiple functions is one of the major challenges in current clinical wound treatment. In this study, Xanthan gum (XG) and polyacrylamide (PAAm) materials were used to prepare hydrogel dressings by one-pot method. With the combination of the PAAm network and the XG network, the PAAm-XG hydrogels showed the tensile strength of 0.36 MPa and the stretchability as large as 2078 %. The prepared PAAm-XG hydrogels had excellent water uptake efficiency with the swelling ratio of 1200 %. Besides, the developed dressings possessed outstanding biocompatibility, universal adhesion and self-healing ability. More importantly, the PAAm-XG hydrogels can be successfully loaded with Cefixime and human recombinant epidermal growth factor, and these loaded hydrogels released these bioactive molecules in sustained ways. As a result, both E. coli and S. aureus bacteria were inactivated after contacting with the Cefixime-loaded hydrogels for 24 h. Furthermore, in vivo data demonstrated that the PAAm-XG hydrogel dressings significantly accelerated the wound healing in a mouse model. All of these indicate that the multifunctional PAAm-XG hydrogels are promising candidates for wound treatment.
Collapse
|
2
|
Torumkuney D, Van PH, Thinh LQ, Koo SH, Tan SH, Lim PQ, Sivhour C, Lamleav L, Somary N, Sosorphea S, Lagamayo E, Morrissey I. Results from the Survey of Antibiotic Resistance (SOAR) 2016-18 in Vietnam, Cambodia, Singapore and the Philippines: data based on CLSI, EUCAST (dose-specific) and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. J Antimicrob Chemother 2021; 75:i19-i42. [PMID: 32337597 DOI: 10.1093/jac/dkaa082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To determine antibiotic susceptibility of Streptococcus pneumoniae and Haemophilus influenzae isolates collected from community-acquired respiratory tract infections (CA-RTIs) in 2016-18 in four Asian countries. METHODS MICs were determined by CLSI broth microdilution and susceptibility was assessed using CLSI, EUCAST (dose-specific) and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. RESULTS In total, 260 S. pneumoniae and 258 H. influenzae isolates were tested. Pneumococci from Vietnam (n = 161) were the least susceptible, with rates of susceptibility >90% for fluoroquinolones by CLSI breakpoints, ∼60% for amoxicillin, amoxicillin/clavulanic acid and ceftriaxone but <14% for most other agents. Pneumococcal isolates from Cambodia (n = 48) and Singapore (n = 34) showed susceptibilities ranging from ∼30% for trimethoprim/sulfamethoxazole and oral penicillin to 100% for fluoroquinolones. Among isolates of H. influenzae from Cambodia (n = 30), the Philippines (n = 59) and Singapore (n = 80), rates of susceptibility using CLSI breakpoints were >90% for amoxicillin/clavulanic acid, cephalosporins [except cefaclor in Singapore (77.5%)], macrolides and fluoroquinolones; for isolates from Vietnam (n = 89) the rates of susceptibility were >85% only for amoxicillin/clavulanic acid (95.5%), ceftriaxone (100%) and macrolides (87.6%-89.9%). Susceptibility to other antibiotics ranged from 7.9% (trimethoprim/sulfamethoxazole) to 57.3%-59.6% (fluoroquinolones) and 70.8% (cefixime). The application of different EUCAST breakpoints for low and higher doses for some of the antibiotics (amoxicillin, amoxicillin/clavulanic acid, ampicillin, penicillin, ceftriaxone, clarithromycin, erythromycin, levofloxacin and trimethoprim/sulfamethoxazole) allowed, for the first time in a SOAR study, the effect of raising the dosage on susceptibility to be quantified. A limitation of the study was the small sample sizes and only one or two sites participating per country; however, since susceptibility data are scarce in some of the participating countries any information concerning antibiotic susceptibility is of value. CONCLUSIONS Antibiotic susceptibility varied across countries and species, with isolates from Vietnam demonstrating the lowest susceptibility. Knowledge of resistance patterns can be helpful for clinicians when choosing empirical therapy options for CA-RTIs.
Collapse
Affiliation(s)
- D Torumkuney
- GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
| | - P H Van
- Nguyen Tri Phuong Hospital, Ho Chi Minh City, Vietnam
| | - L Q Thinh
- Children Hospital 1, Ho Chi Minh City, Vietnam
| | - S H Koo
- Clinical Trials & Research Unit, Changi General Hospital, 2 Simei Street 3, 529889 Singapore
| | - S H Tan
- Department of Laboratory Medicine, 2 Simei Street 3, 529889 Singapore
| | - P Q Lim
- Clinical Trials & Research Unit, Changi General Hospital, 2 Simei Street 3, 529889 Singapore
| | - C Sivhour
- Battambang Provincial Referral Hospital Prek Mohatep Village, Svaypor Commune, Battambang City and Battambang Province, Cambodia
| | - L Lamleav
- Siem Reap Provincial Referral Hospital Mondul 1 Village, Svay Dangum Commune, Siem Reap City, Siem Reap Province, Cambodia
| | - N Somary
- Kampong Cham Provincial Referral Hospital, Praketmealea Road, #7 Village, Kampong Cham Commune, Kampong Cham City, Kampong Cham Province, Cambodia
| | - S Sosorphea
- Takeo Provincial Referral Hospital, Phumi 3 Village, RokaKnong Commune, Daunkeo Town, Takeo Province, Cambodia
| | - E Lagamayo
- St. Luke's Medical Center Quezon City, Institute of Pathology, Microbiology Section, 279 E Rodriguez SR. BLVD Cathedral Heights, Quezon City, Philippines
| | - I Morrissey
- IHMA Europe Sàrl, Route de l'Ile-au-Bois 1A, 1870 Monthey/VS, Switzerland
| |
Collapse
|
3
|
Torumkuney D, Mayanskiy N, Edelstein M, Sidorenko S, Kozhevin R, Morrissey I. Results from the Survey of Antibiotic Resistance (SOAR) 2014-16 in Russia. J Antimicrob Chemother 2019; 73:v14-v21. [PMID: 29659881 DOI: 10.1093/jac/dky065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives To determine antibiotic susceptibility in isolates of Streptococcus pneumoniae and Haemophilus influenzae collected in 2014-16 from Russia. Methods MICs were determined by CLSI broth microdilution and susceptibility was assessed using CLSI, EUCAST and pharmacokinetic/pharmacodynamic (PK/PD) breakpoints. Results A total of 279 S. pneumoniae and 279 H. influenzae were collected. Overall, 67.0% of S. pneumoniae were penicillin susceptible by CLSI oral/EUCAST and 93.2% by CLSI intravenous (iv) breakpoints. All were fluoroquinolone susceptible, with amoxicillin, amoxicillin/clavulanic acid and ceftriaxone susceptibility ≥92.8% by CLSI and PK/PD breakpoints. Isolates showed lower susceptibility to cefuroxime, cefaclor, macrolides and trimethoprim/sulfamethoxazole by CLSI criteria: 85.0%, 76.7%, 68.8% and 67.7%, respectively. Generally, susceptibility was slightly lower by EUCAST criteria, except for cefaclor, for which the difference in susceptibility was much greater. Penicillin-resistant isolates had low susceptibility (≤60%) to all agents except fluoroquinolones. All 279 H. influenzae were ceftriaxone susceptible, 15.4% were β-lactamase positive and ≥97.5% were amoxicillin/clavulanic acid susceptible (CLSI, EUCAST and PK/PD breakpoints). Four isolates were fluoroquinolone non-susceptible by current EUCAST criteria. A major discrepancy was found with azithromycin susceptibility between CLSI (99.3%) and EUCAST and PK/PD (2.2%) breakpoints. Trimethoprim/sulfamethoxazole was poorly active (62.7% susceptible). Conclusions Susceptibility to penicillin (oral), macrolides and trimethoprim/sulfamethoxazole was low in S. pneumoniae from Russia. However, isolates were fully susceptible to fluoroquinolones and ≥92.8% were susceptible to amoxicillin, amoxicillin/clavulanic acid and ceftriaxone. Isolates of H. influenzae only showed reduced susceptibility to ampicillin, cefaclor, clarithromycin and trimethoprim/sulfamethoxazole. Some differences were detected between CLSI, EUCAST and PK/PD breakpoints, especially with cefaclor, cefuroxime and macrolides. These data suggest further efforts are required to harmonize international breakpoints.
Collapse
Affiliation(s)
- D Torumkuney
- GlaxoSmithKline, 980 Great West Road, Brentford, Middlesex TW8 9GS, UK
| | - N Mayanskiy
- Federal State Autonomous Institution 'National Scientific and Practical Center of Children's Health' of the Ministry of Health of the Russian Federation, Lomonosovsky prospekt, 2, b.1, 119991, Moscow, Russia
| | - M Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, Kirova str. 46a, 214019, Smolensk, Russia
| | - S Sidorenko
- Scientific Research Institute of Children's Infections, Professor Popov, str. 9, 191014, St Petersburg, Russia
| | - R Kozhevin
- ZAO GlaxoSmithKline Trading, Krylatskaya st 17/3, 121614, Moscow, Russia
| | - I Morrissey
- IHMA Europe Sàrl, Route de l'Ile-au-Bois 1A, 1870 Monthey/VS, Switzerland
| |
Collapse
|
4
|
Luna-Pineda VM, Reyes-Grajeda JP, Cruz-Córdova A, Saldaña-Ahuactzi Z, Ochoa SA, Maldonado-Bernal C, Cázares-Domínguez V, Moreno-Fierros L, Arellano-Galindo J, Hernández-Castro R, Xicohtencatl-Cortes J. Dimeric and Trimeric Fusion Proteins Generated with Fimbrial Adhesins of Uropathogenic Escherichia coli. Front Cell Infect Microbiol 2016; 6:135. [PMID: 27843814 PMCID: PMC5087080 DOI: 10.3389/fcimb.2016.00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022] Open
Abstract
Urinary tract infections (UTIs) are associated with high rates of morbidity and mortality worldwide, and uropathogenic Escherichia coli (UPEC) is the main etiologic agent. Fimbriae assembled on the bacterial surface are essential for adhesion to the urinary tract epithelium. In this study, the FimH, CsgA, and PapG adhesins were fused to generate biomolecules for use as potential target vaccines against UTIs. The fusion protein design was generated using bioinformatics tools, and template fusion gene sequences were synthesized by GenScript in the following order fimH-csgA-papG-fimH-csgA (fcpfc) linked to the nucleotide sequence encoding the [EAAAK]5 peptide. Monomeric (fimH, csgA, and papG), dimeric (fimH-csgA), and trimeric (fimH-csgA-papG) genes were cloned into the pLATE31 expression vector and generated products of 1040, 539, 1139, 1442, and 2444 bp, respectively. Fusion protein expression in BL21 E. coli was induced with 1 mM IPTG, and His-tagged proteins were purified under denaturing conditions and refolded by dialysis using C-buffer. Coomassie blue-stained SDS-PAGE gels and Western blot analysis revealed bands of 29.5, 11.9, 33.9, 44.9, and 82.1 kDa, corresponding to FimH, CsgA, PapG, FC, and FCP proteins, respectively. Mass spectrometry analysis by MALDI-TOF/TOF revealed specific peptides that confirmed the fusion protein structures. Dynamic light scattering analysis revealed the polydispersed state of the fusion proteins. FimH, CsgA, and PapG stimulated the release of 372–398 pg/mL IL-6; interestingly, FC and FCP stimulated the release of 464.79 pg/mL (p ≤ 0.018) and 521.24 pg/mL (p ≤ 0.002) IL-6, respectively. In addition, FC and FCP stimulated the release of 398.52 pg/mL (p ≤ 0.001) and 450.40 pg/mL (p ≤ 0.002) IL-8, respectively. High levels of IgA and IgG antibodies in human sera reacted against the fusion proteins, and under identical conditions, low levels of IgA and IgG antibodies were detected in human urine. Rabbit polyclonal antibodies generated against FimH, CsgA, PapG, FC, and FCP blocked the adhesion of E. coli strain CFT073 to HTB5 bladder cells. In conclusion, the FC and FCP proteins were highly stable, demonstrated antigenic properties, and induced cytokine release (IL-6 and IL-8); furthermore, antibodies generated against these proteins showed protection against bacterial adhesion.
Collapse
Affiliation(s)
- Víctor M Luna-Pineda
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez"Ciudad de México, Mexico; Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | | | - Ariadnna Cruz-Córdova
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Zeus Saldaña-Ahuactzi
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez"Ciudad de México, Mexico; Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoCiudad de México, Mexico
| | - Sara A Ochoa
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Carmen Maldonado-Bernal
- Laboratorio de Investigación de Inmunología y Proteómica, Hospital Infantil de México "Federico Gómez", Dirección De Investigación Ciudad de México, Mexico
| | - Vicenta Cázares-Domínguez
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Leticia Moreno-Fierros
- Unidad de Biomedicina, Laboratorio de Inmunidad en Mucosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Tlalnepantla, Mexico
| | - José Arellano-Galindo
- Departamento de Infectología, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General "Dr. Manuel Gea González" Ciudad de México, Mexico
| | - Juan Xicohtencatl-Cortes
- Laboratorio de Investigación en Bacteriología Intestinal, Hospital Infantil de México "Federico Gómez" Ciudad de México, Mexico
| |
Collapse
|