1
|
Wei SC, Freeman D, Himschoot A, Clarke KEN, Van Dyke ME, Adjemian J, Ahmad FB, Benoit TJ, Berney K, Gundlapalli AV, Hall AJ, Havers F, Henley SJ, Hilton C, Johns D, Opsomer JD, Pham HT, Stuckey MJ, Taylor CA, Jones JM. Who Gets Sick From COVID-19? Sociodemographic Correlates of Severe Adult Health Outcomes During Alpha- and Delta-Variant Predominant Periods: September 2020-November 2021. J Infect Dis 2024; 229:122-132. [PMID: 37615368 DOI: 10.1093/infdis/jiad357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Because COVID-19 case data do not capture most SARS-CoV-2 infections, the actual risk of severe disease and death per infection is unknown. Integrating sociodemographic data into analysis can show consequential health disparities. METHODS Data were merged from September 2020 to November 2021 from 6 national surveillance systems in matched geographic areas and analyzed to estimate numbers of COVID-19-associated cases, emergency department visits, and deaths per 100 000 infections. Relative risks of outcomes per infection were compared by sociodemographic factors in a data set including 1490 counties from 50 states and the District of Columbia, covering 71% of the US population. RESULTS Per infection with SARS-CoV-2, COVID-19-related morbidity and mortality were higher among non-Hispanic American Indian and Alaska Native persons, non-Hispanic Black persons, and Hispanic or Latino persons vs non-Hispanic White persons; males vs females; older people vs younger; residents in more socially vulnerable counties vs less; those in large central metro areas vs rural; and people in the South vs the Northeast. DISCUSSION Meaningful disparities in COVID-19 morbidity and mortality per infection were associated with sociodemography and geography. Addressing these disparities could have helped prevent the loss of tens of thousands of lives.
Collapse
Affiliation(s)
- Stanley C Wei
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | - Dane Freeman
- Information and Communications Laboratory, Georgia Tech Research Institute
| | - Austin Himschoot
- Information and Communications Laboratory, Georgia Tech Research Institute
| | | | | | | | - Farida B Ahmad
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | - Tina J Benoit
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | - Kevin Berney
- Geospatial Research, Analysis, and Services Program, Agency for Toxic Substances and Disease Registry
| | | | - Aron J Hall
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | - Fiona Havers
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | - S Jane Henley
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | - Charity Hilton
- Information and Communications Laboratory, Georgia Tech Research Institute
| | - Dylan Johns
- COVID-19 Response Team, Centers for Disease Control and Prevention
- Health, Environment, Economics, and Development, ICF International, Reston, Virginia
| | - Jean D Opsomer
- Center of Statistics and Data Science, WESTAT Inc, Rockville, Maryland, USA
| | - Huong T Pham
- COVID-19 Response Team, Centers for Disease Control and Prevention
| | | | | | | |
Collapse
|
2
|
Lavrinenko A, Kolesnichenko S, Kadyrova I, Turmukhambetova A, Akhmaltdinova L, Klyuyev D. Bacterial Co-Infections and Antimicrobial Resistance in Patients Hospitalized with Suspected or Confirmed COVID-19 Pneumonia in Kazakhstan. Pathogens 2023; 12:pathogens12030370. [PMID: 36986292 PMCID: PMC10052929 DOI: 10.3390/pathogens12030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Our study was carried out to characterize respiratory tract microbiota in patients with “COVID-like pneumonia” in Kazakhstan and analyze differences between COVID-19 positive and negative groups. Sputum samples were collected from hospitalized patients, ≥18 years old, in the three cities in Kazakhstan with the highest COVID-19 burden in July 2020. Isolates were identified by MALDI-TOF MS. Susceptibility testing was performed by disk diffusion. We used SPSS 26 and MedCalc 19 for statistical analysis. Among 209 patients with pneumonia, the median age was 62 years and 55% were male. RT-PCR-confirmed SARS-CoV-2 cases were found in 40% of patients, and 46% had a bacterial co-infection. Co-infection was not associated with SARS-CoV-2 RT-PCR test results, but antibiotic use was. The most frequent bacteria were Klebsiella pneumoniae (23%), Escherichia coli (12%), and Acinetobacter baumannii (11%). Notably, 68% of Klebsiella pneumoniae had phenotypic evidence of extended-spectrum beta-lactamases in disk diffusion assays, 87% of Acinetobacter baumannii exhibited resistance to beta-lactams, and >50% of E. coli strains had evidence of ESBL production and 64% were resistant to fluoroquinolones. Patients with a bacterial co-infection had a higher proportion of severe disease than those without a co-infection. The results reinforce the importance of using appropriate targeted antibiotics and effective infection control practices to prevent the spread of resistant nosocomial infections.
Collapse
Affiliation(s)
- Alyona Lavrinenko
- Research Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Svetlana Kolesnichenko
- Research Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan
- Correspondence: ; Tel.: +7-702-599-0225
| | - Irina Kadyrova
- Research Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | - Anar Turmukhambetova
- Management Department, Karaganda Medical University, Karaganda 100008, Kazakhstan
| | | | - Dmitriy Klyuyev
- Research Laboratory, Karaganda Medical University, Karaganda 100008, Kazakhstan
| |
Collapse
|
3
|
Richman S, Lyman C, Nesterova A, Yuryev A, Morris M, Cao H, Cheadle C, Skuse G, Broderick G. Old drugs, new tricks: leveraging known compounds to disrupt coronavirus-induced cytokine storm. NPJ Syst Biol Appl 2022; 8:38. [PMID: 36216820 PMCID: PMC9549818 DOI: 10.1038/s41540-022-00250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
A major complication in COVID-19 infection consists in the onset of acute respiratory distress fueled by a dysregulation of the host immune network that leads to a run-away cytokine storm. Here, we present an in silico approach that captures the host immune system's complex regulatory dynamics, allowing us to identify and rank candidate drugs and drug pairs that engage with minimal subsets of immune mediators such that their downstream interactions effectively disrupt the signaling cascades driving cytokine storm. Drug-target regulatory interactions are extracted from peer-reviewed literature using automated text-mining for over 5000 compounds associated with COVID-induced cytokine storm and elements of the underlying biology. The targets and mode of action of each compound, as well as combinations of compounds, were scored against their functional alignment with sets of competing model-predicted optimal intervention strategies, as well as the availability of like-acting compounds and known off-target effects. Top-ranking individual compounds identified included a number of known immune suppressors such as calcineurin and mTOR inhibitors as well as compounds less frequently associated for their immune-modulatory effects, including antimicrobials, statins, and cholinergic agonists. Pairwise combinations of drugs targeting distinct biological pathways tended to perform significantly better than single drugs with dexamethasone emerging as a frequent high-ranking companion. While these predicted drug combinations aim to disrupt COVID-induced acute respiratory distress syndrome, the approach itself can be applied more broadly to other diseases and may provide a standard tool for drug discovery initiatives in evaluating alternative targets and repurposing approved drugs.
Collapse
Affiliation(s)
- Spencer Richman
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA
| | - Cole Lyman
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA
| | | | - Anton Yuryev
- Elsevier BV, Biology Solutions, Amsterdam, the Netherlands
| | - Matthew Morris
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA
| | - Hongbao Cao
- Elsevier BV, Biology Solutions, Amsterdam, the Netherlands
| | - Chris Cheadle
- Elsevier BV, Biology Solutions, Amsterdam, the Netherlands
| | - Gary Skuse
- Rochester Institute of Technology, Gosnell School of Life Sciences, Rochester, NY, USA
| | - Gordon Broderick
- Rochester General Hospital, Center for Clinical Systems Biology, Rochester, NY, USA.
| |
Collapse
|
4
|
Ahiakpa JK, Cosmas NT, Anyiam FE, Enalume KO, Lawan I, Gabriel IB, Oforka CL, Dahir HG, Fausat ST, Nwobodo MA, Massawe GP, Obagha AS, Okeh DU, Karikari B, Aderonke ST, Awoyemi OM, Aneyo IA, Doherty FV. COVID-19 vaccines uptake: Public knowledge, awareness, perception and acceptance among adult Africans. PLoS One 2022; 17:e0268230. [PMID: 35648745 PMCID: PMC9159554 DOI: 10.1371/journal.pone.0268230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/25/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction The willingness of Africa’s population to patronise the COVID-19 vaccines is critical to the efficiency of national immunisation programmes. This study surveys the views of adult African inhabitants toward vaccination and the possibility of participating or not participating in governments’ efforts to get citizens vaccinated. Method A cross-sectional online survey of adult Africans was undertaken from December 2020 to March 2021. Responses were anonymised. The Pearson Chi-square test was performed to determine whether or not there were any variations in knowledge, awareness, perception and acceptance of the COVID-19 vaccines among the participants. Binomial logistic regression was used to evaluate the factors associated with willingness to accept the COVID-19 vaccines and participate in immunisation programmes. Results The results indicate that COVID-19 vaccines are more likely to be used by adult Africans over the age of 18 who are largely technologically savvy (55 percent) if the vaccine is made broadly available. A total of 33 percent of those who responded said they were unlikely to receive the vaccine, with another 15 percent stating they were undecided. Aside from that, we found that vaccine hesitancy was closely associated with socio-demographic characteristics such as age, gender, education and source of information. We also found that there were widespread conspiracies and myths about the COVID-19 vaccines. Conclusion More than one-third of African adults who participated in the survey indicated they would not receive the COVID-19 vaccine, with majority of them expressing skepticisms about the vaccine’s efficacy. It is possible that many of the people who would not be vaccinated would have an impact on the implementation of a COVID-19 immunisation programme that is meant for all of society. Majority of the respondents were unwilling to pay for the COVID-19 vaccines when made available. An awareness campaign should be focused on promoting the benefits of vaccination at the individual and population levels, as well as on taking preemptive actions to debunk misconceptions about the vaccines before they become further widespread.
Collapse
Affiliation(s)
- John K Ahiakpa
- Research Desk Consulting Limited, Kwabenya-Accra, Ghana.,Organisation of African Academic Doctors, OAAD, Nairobi, Kenya
| | - Nanma T Cosmas
- Department of Medical Microbiology, Faculty of Clinical Sciences, College of Health Sciences, University of Jos, Jos, Nigeria
| | - Felix E Anyiam
- Centre for Health and Development, University of Port Harcourt, River State, Nigeria
| | - Kingsley O Enalume
- Department of Electrical and Electronic Engineering, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria
| | - Ibrahim Lawan
- School of Biology, University of St Andrews, St. Andrews, United Kingdom
| | - Ijuptil B Gabriel
- Yola Department of Biochemistry School of Life Sciences, Modibbo Adama University, Girei, Adamawa State, Nigeria
| | | | - Hamze G Dahir
- School of Public Health and Nutrition, Amoud University Borama, Awdal, Somaliland
| | - Salisu T Fausat
- Department of Zoology and Environmental Biology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State, Nigeria
| | - Maureen A Nwobodo
- Public Health Department of Gregory University Uturu, Abia State, Nigeria
| | | | - Adachukwu S Obagha
- African Regional Postgraduate Programme in Insect Science, University of Ghana, Legon, Ghana
| | - Debra U Okeh
- Department of Community Medicine, Federal Medical Centre Umuahia, Abia State, Nigeria
| | - Benjamin Karikari
- Organisation of African Academic Doctors, OAAD, Nairobi, Kenya.,Department of Crop Science, University for Development Studies, Tamale, Ghana
| | - Samuel T Aderonke
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Lagos, Lagos, Nigeria
| | - Olushola M Awoyemi
- Department of Environmental Toxicology, The Institute Environmental and Human Health, Texas Tech University, Lubbock, Texas, United States of America
| | - Idowu A Aneyo
- Department of Zoology, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | | |
Collapse
|
5
|
Iacopetta D, Ceramella J, Catalano A, Saturnino C, Pellegrino M, Mariconda A, Longo P, Sinicropi MS, Aquaro S. COVID-19 at a Glance: An Up-to-Date Overview on Variants, Drug Design and Therapies. Viruses 2022; 14:573. [PMID: 35336980 PMCID: PMC8950852 DOI: 10.3390/v14030573] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronavirus family which caused the worldwide pandemic of human respiratory illness coronavirus disease 2019 (COVID-19). Presumably emerging at the end of 2019, it poses a severe threat to public health and safety, with a high incidence of transmission, predominately through aerosols and/or direct contact with infected surfaces. In 2020, the search for vaccines began, leading to the obtaining of, to date, about twenty COVID-19 vaccines approved for use in at least one country. However, COVID-19 continues to spread and new genetic mutations and variants have been discovered, requiring pharmacological treatments. The most common therapies for COVID-19 are represented by antiviral and antimalarial agents, antibiotics, immunomodulators, angiotensin II receptor blockers, bradykinin B2 receptor antagonists and corticosteroids. In addition, nutraceuticals, vitamins D and C, omega-3 fatty acids and probiotics are under study. Finally, drug repositioning, which concerns the investigation of existing drugs for new therapeutic target indications, has been widely proposed in the literature for COVID-19 therapies. Considering the importance of this ongoing global public health emergency, this review aims to offer a synthetic up-to-date overview regarding diagnoses, variants and vaccines for COVID-19, with particular attention paid to the adopted treatments.
Collapse
Affiliation(s)
- Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (C.S.); (A.M.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.S.S.); (S.A.)
| |
Collapse
|
6
|
Santos GC, Martins LM, Bregadiolli BA, Moreno VF, Silva‐Filho LC, Silva BHST. Heterocyclic compounds as antiviral drugs: Synthesis, structure–activity relationship and traditional applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vitor Fernandes Moreno
- School of Sciences, Department of Chemistry São Paulo State University (UNESP) Bauru Brazil
| | | | | |
Collapse
|
7
|
Bojkova D, Costa R, Reus P, Bechtel M, Jaboreck MC, Olmer R, Martin U, Ciesek S, Michaelis M, Cinatl J. Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy. Metabolites 2021; 11:metabo11100699. [PMID: 34677415 PMCID: PMC8540749 DOI: 10.3390/metabo11100699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 is causing the coronavirus disease 2019 (COVID-19) pandemic, for which effective pharmacological therapies are needed. SARS-CoV-2 induces a shift of the host cell metabolism towards glycolysis, and the glycolysis inhibitor 2-deoxy-d-glucose (2DG), which interferes with SARS-CoV-2 infection, is under development for the treatment of COVID-19 patients. The glycolytic pathway generates intermediates that supply the non-oxidative branch of the pentose phosphate pathway (PPP). In this study, the analysis of proteomics data indicated increased transketolase (TKT) levels in SARS-CoV-2-infected cells, suggesting that a role is played by the non-oxidative PPP. In agreement, the TKT inhibitor benfooxythiamine (BOT) inhibited SARS-CoV-2 replication and increased the anti-SARS-CoV-2 activity of 2DG. In conclusion, SARS-CoV-2 infection is associated with changes in the regulation of the PPP. The TKT inhibitor BOT inhibited SARS-CoV-2 replication and increased the activity of the glycolysis inhibitor 2DG. Notably, metabolic drugs like BOT and 2DG may also interfere with COVID-19-associated immunopathology by modifying the metabolism of immune cells in addition to inhibiting SARS-CoV-2 replication. Hence, they may improve COVID-19 therapy outcomes by exerting antiviral and immunomodulatory effects.
Collapse
Affiliation(s)
- Denisa Bojkova
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, 1455 Copenhagen, Denmark;
| | - Philipp Reus
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marco Bechtel
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
| | - Mark-Christian Jaboreck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (M.-C.J.); (R.O.); (U.M.)
- Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (M.-C.J.); (R.O.); (U.M.)
- Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (M.-C.J.); (R.O.); (U.M.)
- Member of the German Lung Research Center (DZL), Feulgenstrasse 12, 35392 Giessen, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- German Center for Infection Research, DZIF, External Partner Site, 60596 Frankfurt am Main, Germany
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence: (M.M.); (J.C.J.)
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe University, 60596 Frankfurt am Main, Germany; (D.B.); (P.R.); (M.B.); (S.C.)
- Correspondence: (M.M.); (J.C.J.)
| |
Collapse
|
8
|
A Potential Role of the CD47/SIRPalpha Axis in COVID-19 Pathogenesis. Curr Issues Mol Biol 2021; 43:1212-1225. [PMID: 34698067 PMCID: PMC8929144 DOI: 10.3390/cimb43030086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus SARS-CoV-2 is the cause of the ongoing COVID-19 pandemic. Most SARS-CoV-2 infections are mild or even asymptomatic. However, a small fraction of infected individuals develops severe, life-threatening disease, which is caused by an uncontrolled immune response resulting in hyperinflammation. However, the factors predisposing individuals to severe disease remain poorly understood. Here, we show that levels of CD47, which is known to mediate immune escape in cancer and virus-infected cells, are elevated in SARS-CoV-2-infected Caco-2 cells, Calu-3 cells, and air-liquid interface cultures of primary human bronchial epithelial cells. Moreover, SARS-CoV-2 infection increases SIRPalpha levels, the binding partner of CD47, on primary human monocytes. Systematic literature searches further indicated that known risk factors such as older age and diabetes are associated with increased CD47 levels. High CD47 levels contribute to vascular disease, vasoconstriction, and hypertension, conditions that may predispose SARS-CoV-2-infected individuals to COVID-19-related complications such as pulmonary hypertension, lung fibrosis, myocardial injury, stroke, and acute kidney injury. Hence, age-related and virus-induced CD47 expression is a candidate mechanism potentially contributing to severe COVID-19, as well as a therapeutic target, which may be addressed by antibodies and small molecules. Further research will be needed to investigate the potential involvement of CD47 and SIRPalpha in COVID-19 pathology. Our data should encourage other research groups to consider the potential relevance of the CD47/ SIRPalpha axis in their COVID-19 research.
Collapse
|
9
|
Rasouli M, Vakilian F, Ranjbari J. Therapeutic and protective potential of mesenchymal stem cells, pharmaceutical agents and current vaccines against covid-19. Curr Stem Cell Res Ther 2021; 17:166-185. [PMID: 33349221 DOI: 10.2174/1574888x16666201221151853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 11/22/2022]
Abstract
It has been almost 18 months since the first outbreak of COVID-19 disease was reported in Wuhan, China. This unexpected devastating phenomenon, raised a great deal of concerns and anxiety among people around the world and imposed a huge economic burden on the nations' health care systems. Accordingly, clinical scientists, pharmacologists and physicians worldwide felt an urgent demand for a safe, effective therapeutic agent, treatment strategy or vaccine in order to prevent or cure the recently-emerged disease. Initially, due to lack of specific pharmacological agents and approved vaccines to combat the COVID-19, the disease control in the confirmed cases was limited to supportive care. Accordingly, repositioning or repurposing current drugs and examining their possible therapeutic efficacy received a great deal of attention. Despite revealing promising results in some clinical trials, the overall results are conflicting. For this reason, there is an urgent to seek and investigate other potential therapeutics. Mesenchymal stem cells (MSC) representing immunomodulatory and regenerative capacity to treat both curable and intractable diseases, have been investigated in COVID-19 clinical trials carried out in different parts of the world. Nevertheless, up to now, none of MSC-based approaches has been approved in controlling COVID-19 infection. Thanks to the fact that the final solution for defeating the pandemic is developing a safe, effective vaccine, enormous efforts and clinical research have been carried out. In this review, we will concisely discuss the safety and efficacy of the most relevant pharmacological agents, MSC-based approaches and candidate vaccines for treating and preventing COVID-19 infection.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | | | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| |
Collapse
|
10
|
Shindo Y, Kondoh Y, Kada A, Doi Y, Tomii K, Mukae H, Murata N, Imai R, Okamoto M, Yamano Y, Miyazaki Y, Shinoda M, Aso H, Izumi S, Ishii H, Ito R, Saito AM, Saito TI, Hasegawa Y. Phase II Clinical Trial of Combination Therapy with Favipiravir and Methylprednisolone for COVID-19 with Non-Critical Respiratory Failure. Infect Dis Ther 2021; 10:2353-2369. [PMID: 34368914 PMCID: PMC8349598 DOI: 10.1007/s40121-021-00512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction The administration of systemic corticosteroids is a key strategy for improving COVID-19 outcomes. However, evidence is lacking on combination therapies of antiviral agents and systemic corticosteroids. The objective of this study was to investigate the efficacy and safety of the combination therapy of favipiravir and methylprednisolone in preventing respiratory failure progression in patients with COVID-19 and non-critical respiratory failure. Methods We conducted a multicenter, open-label, single-arm phase II study. The patients received favipiravir 3600 mg on the first day, followed by 1600 mg for a total of 10–14 days. Methylprednisolone was administered intravenously at 1 mg/ideal body weight (IBW)/day from days 1 to 5, followed by 0.5 mg/IBW/day from days 6 to 10 if clinically indicated. The primary endpoint was the proportion of patients requiring mechanical ventilation (MV) (including noninvasive positive pressure ventilation) or those who met the criteria for tracheal intubation within 14 days of the study treatment initiation (MVCTI-14). Results Sixty-nine patients were enrolled and underwent the study treatment. Of them, the MVCTI-14 proportion was 29.2% (90% confidence interval 20.1–39.9, p = 0.200). The proportion of patients who required MV or who died within 30 days was 26.2%, and 30-day mortality was 4.9%. The most significant risk factor for MVCTI-14 was a smoking history (odds ratio 4.1, 95% confidence interval 1.2–14.2). The most common grade 3–4 treatment-related adverse event was hyperglycemia, which was observed in 21.7%. Conclusion The MVCTI-14 proportion did not reach a favorable level in the clinical trial setting with the threshold of 35%. However, the proportion of MV or death within 30 days was 26.6%, which might be close to the findings (28.1%) of the RECOVERY trial, which showed the efficacy of dexamethasone for patients with COVID-19 and non-critical respiratory failure. Further evaluation of this combination therapy is needed. Clinical Trial Registration Japan Registry of Clinical Trials (jRCT) identifier jRCTs041200025. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-021-00512-9.
Collapse
Affiliation(s)
- Yuichiro Shindo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Akiko Kada
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yohei Doi
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Keisuke Tomii
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Naohiko Murata
- Department of Respiratory Medicine, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Ryosuke Imai
- Department of Pulmonary Medicine, St. Luke's International Hospital, Tokyo, Japan
| | - Masaki Okamoto
- Department of Respirology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Respiratory Medicine, Tokyo Shinagawa Hospital, Tokyo, Japan
| | - Hiromichi Aso
- Department of Respiratory Medicine, Ichinomiya Municipal Hospital, Ichinomiya, Japan
| | - Shinyu Izumi
- Department of Respiratory Medicine, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Haruyuki Ishii
- Department of Respiratory Medicine, Kyorin University, Tokyo, Japan
| | - Ryota Ito
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Toshiki I Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | | |
Collapse
|