1
|
Shi Y, Hao R, Ji H, Gao L, Yang J. Dietary zinc supplements: beneficial health effects and application in food, medicine and animals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5660-5674. [PMID: 38415843 DOI: 10.1002/jsfa.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024]
Abstract
Zinc, a crucial trace element is vital for the growth and development of humans. It is frequently described as 'the flower of life' and 'the source of intelligence'. Zinc supplements play a pivotal role in addressing zinc deficiency by serving as a vital source of this essential micronutrients, effectively replenishing depleted zinc levels in the body. In this paper, we first described the biological behavior of zinc in the human body and briefly described the physiological phenomena associated with zinc levels. The benefits and drawbacks of various zinc supplement forms are then discussed, with emphasis on the most recent zinc supplement formulations. Finally, the application of zinc supplements in food, medicine, and animal husbandry is further summarized. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ying Shi
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Rui Hao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Haixia Ji
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Li Gao
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| | - Junyan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
3
|
Guerrero-Romero F, Micke O, Simental-Mendía LE, Rodríguez-Morán M, Vormann J, Iotti S, Banjanin N, Rosanoff A, Baniasadi S, Pourdowlat G, Nechifor M. Importance of Magnesium Status in COVID-19. BIOLOGY 2023; 12:735. [PMID: 37237547 PMCID: PMC10215232 DOI: 10.3390/biology12050735] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
A large amount of published research points to the interesting concept (hypothesis) that magnesium (Mg) status may have relevance for the outcome of COVID-19 and that Mg could be protective during the COVID disease course. As an essential element, Mg plays basic biochemical, cellular, and physiological roles required for cardiovascular, immunological, respiratory, and neurological functions. Both low serum and dietary Mg have been associated with the severity of COVID-19 outcomes, including mortality; both are also associated with COVID-19 risk factors such as older age, obesity, type 2 diabetes, kidney disease, cardiovascular disease, hypertension, and asthma. In addition, populations with high rates of COVID-19 mortality and hospitalization tend to consume diets high in modern processed foods, which are generally low in Mg. In this review, we review the research to describe and consider the possible impact of Mg and Mg status on COVID-19 showing that (1) serum Mg between 2.19 and 2.26 mg/dL and dietary Mg intakes > 329 mg/day could be protective during the disease course and (2) inhaled Mg may improve oxygenation of hypoxic COVID-19 patients. In spite of such promise, oral Mg for COVID-19 has thus far been studied only in combination with other nutrients. Mg deficiency is involved in the occurrence and aggravation of neuropsychiatric complications of COVID-19, including memory loss, cognition, loss of taste and smell, ataxia, confusion, dizziness, and headache. Potential of zinc and/or Mg as useful for increasing drug therapy effectiveness or reducing adverse effect of anti-COVID-19 drugs is reviewed. Oral Mg trials of patients with COVID-19 are warranted.
Collapse
Affiliation(s)
- Fernando Guerrero-Romero
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Oliver Micke
- Department of Radiation Therapy and Radiation Oncology, Franziskus Hospital, 33615 Bielefeld, Germany;
| | - Luis E. Simental-Mendía
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Martha Rodríguez-Morán
- Biomedical Research Unit, Mexican Social Security Institute, Durango 34067, Mexico; (F.G.-R.); (L.E.S.-M.); (M.R.-M.)
| | - Juergen Vormann
- Institute for Prevention and Nutrition, 85737 Ismaning, Germany;
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Universita di Bologna, 40126 Bologna, Italy;
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| | - Nikolina Banjanin
- Institute of Hygiene and Medical Ecology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Andrea Rosanoff
- CMER Center for Magnesium Education & Research, Pahoa, HI 96778, USA
| | - Shadi Baniasadi
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Guitti Pourdowlat
- Chronic Respiratory Diseases Research Centre, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran;
| | - Mihai Nechifor
- Department of Pharmacology, Gr. T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Metallo-antiviral aspirants: Answer to the upcoming virusoutbreak. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 8:100104. [PMID: 37035854 PMCID: PMC10070197 DOI: 10.1016/j.ejmcr.2023.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
In light of the current SARS-CoV-2 outbreak, about one million research papers (articles, reviews, communications, etc.) were published in the last one and a half years. It was also noticed that in the past few years; infectious diseases, mainly those of viral origin, burdened the public health systems worldwide. The current wave of the Covid-19 pandemic has unmasked critical demand for compounds that can be swiftly mobilized for the treatment of re-emerging or emerging viral infections. With the potential chemical and structural characteristics of organic motifs, the coordination compounds might be a promising and flexible option for drug development. Their therapeutic consequence may be tuned by varying metal nature and its oxidation number, ligands characteristics, and stereochemistry of the species formed. The emerging successes of cisplatin in cancer chemotherapy inspire researchers to make new efforts for studying metallodrugs as antivirals. Metal-based compounds have immense therapeutic potential in terms of structural diversity and possible mechanisms of action; therefore, they might offer an excellent opportunity to achieve new antivirals. This review is an attempt to summarize the current status of antiviral therapies against SARS-CoV-2 from the available literature sources, discuss the specific challenges and solutions in the development of metal-based antivirals, and also talk about the possibility to accelerate discovery efforts in this direction.
Collapse
|
5
|
Radpay R, Eghtesadi S. Relationship between Plasma Levels of Zinc and Magnesium with the Treatment Process and Mortality Risk in COVID-19 Patients. TANAFFOS 2023; 22:236-247. [PMID: 38628887 PMCID: PMC11016917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/20/2023] [Indexed: 04/19/2024]
Abstract
Background The COVID-19 pandemic is considered a major health problem all over the world which has caused extensive and worldwide mortality and morbidities along with vast economic and political impact. Limitations of our knowledge and controversies in treatment modalities make the control and management of this disease more difficult. The status of electrolytes especially Mg and Zn in plasma and its correlation with the clinical situation and criteria for recovery has been investigated in various studies. Limited data in Iran mandate the design of a trial for evaluating our critically ill patients. We designed this study to investigate the correlation between plasma levels of Mg and Zn and the outcome including patients' need for assisted/controlled ventilation, time required for weaning, length of ICU stay, and probable cause of death. Materials and Methods 413 patients with severe respiratory signs of COVID-19 disease who were admitted to the ICUs of 3 medical centers of Shahid Beheshti University of Medical Sciences were evaluated for plasma levels of Mg and Zn. Supplemental therapy was introduced when needed and was followed until discharge from ICU or death. All recorded data were analyzed by statistical methods and results were compared with similar studies. Results 20.6% and 35.1% of all participants had low serum levels of Mg and Zn, respectively. 11 patients (2.7%) died through the treatment period. 56.9% and 61.0% of participants received Mg and Zn supplements, respectively. Conclusion According to our results, serum Mg and Zn levels did not show a significant correlation with the risk of death due to severe COVID-19 disease, prolonged assisted ventilation, or duration of ICU stay. There was no significant association between Mg and Zn supplementation with the risk of death due to severe COVID-19; however, it showed an inverse relationship with the time required for assisted ventilation and the duration of ICU stay. It seems that Mg and Zn supplementation can be useful in preventing or managing some of the morbidities among COVID-19 patients.
Collapse
Affiliation(s)
- Rojan Radpay
- Master Science Student, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahryar Eghtesadi
- Professor at Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Rombel‐Bryzek A, Miller A, Witkowska D. Thermodynamic analysis of the interactions between human ACE2 and spike RBD of Betacoronaviruses (SARS-CoV-1 and SARS-CoV-2). FEBS Open Bio 2022; 13:174-184. [PMID: 36416453 PMCID: PMC9808565 DOI: 10.1002/2211-5463.13525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022] Open
Abstract
There are many scientific reports on the interaction of the SARS-CoV-2 virus S protein (and its RBD) with the human ACE2 receptor protein. However, there are no reliable data on how this interaction differs from the interaction of the receptor binding domain of SARS-CoV-1 with ACE2, in terms of binding strength and changes in reaction enthalpy and entropy. Our studies have revealed these differences and the impact of zinc ions on this interaction. Intriguingly, the binding affinity of both RBDs (of SARS-CoV-1 and of SARS-CoV-2) to the ACE2 receptor protein is almost identical; however, there are some differences in the entropic and enthalpic contributions to these interactions.
Collapse
|
7
|
Wang F, Zhong J, Zhang R, Sun Y, Dong Y, Wang M, Sun C. Zinc and COVID-19: Immunity, Susceptibility, Severity and Intervention. Crit Rev Food Sci Nutr 2022; 64:1969-1987. [PMID: 36094452 DOI: 10.1080/10408398.2022.2119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic and continuing emergence of viral mutants, there has been a lack of effective treatment methods. Zinc maintains immune function, with direct and indirect antiviral activities. Zinc nutritional status is a critical factor in antiviral immune responses. Importantly, COVID-19 and zinc deficiency overlap in high-risk population. Hence, the potential effect of zinc as a preventive and adjunct therapy for COVID-19 is intriguing. Here, this review summarizes the immune and antiviral function of zinc, the relationship between zinc levels, susceptibility, and severity of COVID-19, and the effect of zinc supplementation on COVID-19. Existing studies have confirmed that zinc deficiency was associated with COVID-19 susceptibility and severity. Zinc supplementation plays a potentially protective role in enhancing immunity, decreasing susceptibility, shortening illness duration, and reducing the severity of COVID-19. We recommend that zinc levels should be monitored, particularly in COVID-19 patients, and zinc as a preventive and adjunct therapy for COVID-19 should be considered for groups at risk of zinc deficiency to reduce susceptibility and disease severity.
Collapse
Affiliation(s)
- Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jiayi Zhong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Rui Zhang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yongzhi Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Yingran Dong
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| | - Changhao Sun
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
8
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Hou R, He Y, Yan G, Hou S, Xie Z, Liao C. Zinc enzymes in medicinal chemistry. Eur J Med Chem 2021; 226:113877. [PMID: 34624823 DOI: 10.1016/j.ejmech.2021.113877] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022]
Abstract
In humans, more than three hundred diverse enzymes that require zinc as an essential cofactor have been identified. These zinc enzymes have demonstrated different and important physiological functions and some of them have been considered as valuable therapeutic targets for drug discovery. Indeed, many drugs targeting a few zinc enzymes have been marketed to treat a variety of diseases. This review discusses drug discovery and drug development based on a dozen of zinc enzymes, including their biological functions and pathogenic roles, their best in class inhibitors (and clinical trial data when available), coordination and binding modes of representative inhibitors, and their implications for further drug design. The opportunities and challenges in developing zinc enzyme inhibitors for the treatment of human disorders are highlighted, too.
Collapse
Affiliation(s)
- Rui Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yan He
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guangwei Yan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuzeng Hou
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
10
|
Verschelden G, Noeparast M, Noparast M, Goossens MC, Lauwers M, Cotton F, Michel C, Goyvaerts C, Hites M. Plasma zinc status and hyperinflammatory syndrome in hospitalized COVID-19 patients: An observational study. Int Immunopharmacol 2021; 100:108163. [PMID: 34583122 PMCID: PMC8450071 DOI: 10.1016/j.intimp.2021.108163] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
Zinc deficiency is associated with impaired antiviral response, cytokine releasing syndrome (CRS), and acute respiratory distress syndrome. Notably, similar complications are being observed during severe SARS-CoV-2 infection. We conducted a prospective, single-center, observational study in a tertiary university hospital (CUB-Hôpital Erasme, Brussels) to address the zinc status, the association between the plasma zinc concentration, development of CRS, and the clinical outcomes in PCR-confirmed and hospitalized COVID-19 patients. One hundred and thirty-nine eligible patients were included between May 2020 and November 2020 (median age of 65 years [IQR = 54, 77]). Our cohort's median plasma zinc concentration was 57 µg/dL (interquartile range [IQR] = 45, 67) compared to 74 µg/dL (IQR = 64, 84) in the retrospective non-COVID-19 control group (N = 1513; p < 0.001). Markedly, the absolute majority of COVID-19 patients (96%) were zinc deficient (<80 µg/dL). The median zinc concentration was lower in patients with CRS compared to those without CRS (-5 µg/dL; 95% CI = -10.5, 0.051; p = 0.048). Among the tested outcomes, zinc concentration is significantly correlated with only the length of hospital stay (rho = -0.19; p = 0.022), but not with mortality or morbidity. As such, our findings do not support the role of zinc as a robust prognostic marker among hospitalized COVID-19 patients who in our cohort presented a high prevalence of zinc deficiency. It might be more beneficial to explore the role of zinc as a biomarker for assessing the risk of developing a tissue-damaging CRS and predicting outcomes in patients diagnosed with COVID-19 at the early stage of the disease.
Collapse
Affiliation(s)
- Gil Verschelden
- Clinic of Infectious Diseases, Cliniques Universitaires de Bruxelles (CUB), Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.
| | - Maxim Noeparast
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University, 35043 Marburg, Germany; Fonds Wetenschappelijk Onderzoek (FWO) - Vlaanderen, Belgium.
| | - Maryam Noparast
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | - Maïlis Lauwers
- Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Cotton
- Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Charlotte Michel
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Maya Hites
- Clinic of Infectious Diseases, Cliniques Universitaires de Bruxelles (CUB), Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| |
Collapse
|