1
|
Groh AM, Vehreschild MJGT, Diaz D, Kuchta AL, Dodoo C, Alvarado LA, Parkin NT, Robbins EM, Moonsamy P, Toptan T, Ciesek S, Berger A. Kinetics of SARS-CoV-2 infection biomarkers in a household transmission study. Sci Rep 2024; 14:12365. [PMID: 38811590 PMCID: PMC11136983 DOI: 10.1038/s41598-024-62835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19. Timely and accurate diagnostic testing is vital to contain the spread of infection, reduce delays in treatment and care, and inform patient management. Optimal specimen type (e.g. nasal swabs or saliva), timing of sampling, viral marker assayed (RNA or antigen), and correlation with viral infectivity and COVID-19 symptoms severity remain incompletely defined. We conducted a field study to evaluate SARS-CoV-2 viral marker kinetics starting from very early times after infection. We measured RNA and antigen levels in nasal swabs and saliva, virus outgrowth in cell culture from nasal swabs, and antibody levels in blood in a cohort of 30 households. Nine household contacts (HHC) became infected with SARS-CoV-2 during the study. Viral RNA was detected in saliva specimens approximately 1-2 days before nasal swabs in six HHC. Detection of RNA was more sensitive than of antigen, but antigen detection was better correlated with culture positivity, a proxy for contagiousness. Anti-nucleocapsid antibodies peaked one to three weeks post-infection. Viral RNA and antigen levels were higher in specimens yielding replication competent virus in cell culture. This study provides important data that can inform how to optimally interpret SARS-CoV-2 diagnostic test results.
Collapse
Affiliation(s)
- Ana M Groh
- Goethe University Frankfurt, University Hospital Frankfurt, Department 2 of Internal Medicine, Infectious Diseases, Frankfurt am Main, Germany
| | - Maria J G T Vehreschild
- Goethe University Frankfurt, University Hospital Frankfurt, Department 2 of Internal Medicine, Infectious Diseases, Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Damian Diaz
- Goethe University Frankfurt, University Hospital Frankfurt, Department 2 of Internal Medicine, Infectious Diseases, Frankfurt am Main, Germany
| | | | | | - Luis A Alvarado
- Roche Molecular Systems, Pleasanton, CA, USA
- EP Statistical Consulting, LLC, El Paso, TX, USA
| | | | | | | | - Tuna Toptan
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sandra Ciesek
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Annemarie Berger
- Institute of Medical Virology, Goethe University Frankfurt, University Hospital Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Jiang Y, Li W, Wang Z, Lu J. Lipid-Based Nanotechnology: Liposome. Pharmaceutics 2023; 16:34. [PMID: 38258045 PMCID: PMC10820119 DOI: 10.3390/pharmaceutics16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/24/2024] Open
Abstract
Over the past several decades, liposomes have been extensively developed and used for various clinical applications such as in pharmaceutical, cosmetic, and dietetic fields, due to its versatility, biocompatibility, and biodegradability, as well as the ability to enhance the therapeutic index of free drugs. However, some challenges remain unsolved, including liposome premature leakage, manufacturing irreproducibility, and limited translation success. This article reviews various aspects of liposomes, including its advantages, major compositions, and common preparation techniques, and discusses present U.S. FDA-approved, clinical, and preclinical liposomal nanotherapeutics for treating and preventing a variety of human diseases. In addition, we summarize the significance of and challenges in liposome-enabled nanotherapeutic development and hope it provides the fundamental knowledge and concepts about liposomes and their applications and contributions in contemporary pharmaceutical advancement.
Collapse
Affiliation(s)
- Yanhao Jiang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Wenpan Li
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Zhiren Wang
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
| | - Jianqin Lu
- Pharmaceutics and Pharmacokinetics Track, Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (Y.J.); (W.L.); (Z.W.)
- Clinical and Translational Oncology Program, NCI-Designated University of Arizona Comprehensive Cancer Center, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
3
|
Di Meo A, Ma L, Yau K, Abe KT, Colwill K, Gingras AC, Kozak R, Hladunewich MA, Yip PM. Evaluation of commercial assays for the assessment of SARS-CoV-2 antibody response in hemodialysis patients. Clin Biochem 2023; 121-122:110681. [PMID: 37913837 DOI: 10.1016/j.clinbiochem.2023.110681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Hemodialysis patients exhibit variable immunogenicity following administration of the SARS-CoV-2 mRNA vaccine. The aim of the current study was to evaluate the use of two commercial assays in the assessment of SARS-CoV-2 antibody response in hemodialysis patients and to compare their utility to commonly used SARS-CoV-2 serological assays developed in Canada. METHODS We evaluated serologic antibody response in 85 hemodialysis patients up to 6 months after receiving both doses of the Pfizer-BioNTech BNT162b2 COVID-19 mRNA vaccine. In addition, antibody response was assessed in 46 chronic kidney disease patients and 40 COVID-19 naïve health care workers (HCW) up to 3 months and 9 months, respectively. Anti-spike (S) and anti-nucleocapsid (N) levels were measured using Elecsys anti-SARS-CoV-2 immunoassays on the Roche analyzer and compared to ELISA-based detection of anti-S, anti-receptor binding domain (RBD), and anti-N. RESULTS The Elecsys anti-N immunoassay showed 93 % concordance with the anti-N ELISA. The Elecsys anti-S immunoassay showed 97 % concordance with the anti-S ELISA and 89 % concordance with the anti-RBD ELISA. HCWs exhibited significantly higher anti-S levels relative to hemodialysis patients. Anti-S levels decreased significantly over a 6-month period (p < 0.001) in patients receiving maintenance hemodialysis. In addition, anti-S levels decreased significantly over a 9-month (p < 0.001) and 3-month period (p < 0.001) in HCWs and CKD patients, respectively. CONCLUSIONS There is high concordance between commercial SARS-CoV-2 serological assays and SARS-CoV-2 serological assays developed in Canada. Hemodialysis patients exhibited varying immunogenicity following two doses of the COVID-19 mRNA vaccine with anti-S levels decreasing over time.
Collapse
Affiliation(s)
- Ashley Di Meo
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Liyan Ma
- Precision Medicine & Therapeutics Program (Laboratory Medicine), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kevin Yau
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kento T Abe
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Karen Colwill
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert Kozak
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Precision Medicine & Therapeutics Program (Laboratory Medicine), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Michelle A Hladunewich
- Division of Nephrology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Paul M Yip
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Precision Medicine & Therapeutics Program (Laboratory Medicine), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| |
Collapse
|