1
|
Pennesi ME, Wang YZ, Birch DG. Deep learning aided measurement of outer retinal layer metrics as biomarkers for inherited retinal degenerations: opportunities and challenges. Curr Opin Ophthalmol 2024; 35:447-454. [PMID: 39259656 DOI: 10.1097/icu.0000000000001088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs. RECENT FINDINGS (clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes). SUMMARY Assessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.
Collapse
Affiliation(s)
- Mark E Pennesi
- Retina Foundation of the Southwest, Dallas, Texas
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Yi-Zhong Wang
- Retina Foundation of the Southwest, Dallas, Texas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - David G Birch
- Retina Foundation of the Southwest, Dallas, Texas
- Department of Ophthalmology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
2
|
Kang C, Lo JE, Zhang H, Ng SM, Lin JC, Scott IU, Kalpathy-Cramer J, Liu SHA, Greenberg PB. Artificial intelligence for diagnosing exudative age-related macular degeneration. Cochrane Database Syst Rev 2024; 10:CD015522. [PMID: 39417312 PMCID: PMC11483348 DOI: 10.1002/14651858.cd015522.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a retinal disorder characterized by central retinal (macular) damage. Approximately 10% to 20% of non-exudative AMD cases progress to the exudative form, which may result in rapid deterioration of central vision. Individuals with exudative AMD (eAMD) need prompt consultation with retinal specialists to minimize the risk and extent of vision loss. Traditional methods of diagnosing ophthalmic disease rely on clinical evaluation and multiple imaging techniques, which can be resource-consuming. Tests leveraging artificial intelligence (AI) hold the promise of automatically identifying and categorizing pathological features, enabling the timely diagnosis and treatment of eAMD. OBJECTIVES To determine the diagnostic accuracy of artificial intelligence (AI) as a triaging tool for exudative age-related macular degeneration (eAMD). SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, three clinical trials registries, and Data Archiving and Networked Services (DANS) for gray literature. We did not restrict searches by language or publication date. The date of the last search was April 2024. SELECTION CRITERIA Included studies compared the test performance of algorithms with that of human readers to detect eAMD on retinal images collected from people with AMD who were evaluated at eye clinics in community or academic medical centers, and who were not receiving treatment for eAMD when the images were taken. We included algorithms that were either internally or externally validated or both. DATA COLLECTION AND ANALYSIS Pairs of review authors independently extracted data and assessed study quality using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool with revised signaling questions. For studies that reported more than one set of performance results, we extracted only one set of diagnostic accuracy data per study based on the last development stage or the optimal algorithm as indicated by the study authors. For two-class algorithms, we collected data from the 2x2 table whenever feasible. For multi-class algorithms, we first consolidated data from all classes other than eAMD before constructing the corresponding 2x2 tables. Assuming a common positivity threshold applied by the included studies, we chose random-effects, bivariate logistic models to estimate summary sensitivity and specificity as the primary performance metrics. MAIN RESULTS We identified 36 eligible studies that reported 40 sets of algorithm performance data, encompassing over 16,000 participants and 62,000 images. We included 28 studies (78%) that reported 31 algorithms with performance data in the meta-analysis. The remaining nine studies (25%) reported eight algorithms that lacked usable performance data; we reported them in the qualitative synthesis. Study characteristics and risk of bias Most studies were conducted in Asia, followed by Europe, the USA, and collaborative efforts spanning multiple countries. Most studies identified study participants from the hospital setting, while others used retinal images from public repositories; a few studies did not specify image sources. Based on four of the 36 studies reporting demographic information, the age of the study participants ranged from 62 to 82 years. The included algorithms used various retinal image types as model input, such as optical coherence tomography (OCT) images (N = 15), fundus images (N = 6), and multi-modal imaging (N = 7). The predominant core method used was deep neural networks. All studies that reported externally validated algorithms were at high risk of bias mainly due to potential selection bias from either a two-gate design or the inappropriate exclusion of potentially eligible retinal images (or participants). Findings Only three of the 40 included algorithms were externally validated (7.5%, 3/40). The summary sensitivity and specificity were 0.94 (95% confidence interval (CI) 0.90 to 0.97) and 0.99 (95% CI 0.76 to 1.00), respectively, when compared to human graders (3 studies; 27,872 images; low-certainty evidence). The prevalence of images with eAMD ranged from 0.3% to 49%. Twenty-eight algorithms were reportedly either internally validated (20%, 8/40) or tested on a development set (50%, 20/40); the pooled sensitivity and specificity were 0.93 (95% CI 0.89 to 0.96) and 0.96 (95% CI 0.94 to 0.98), respectively, when compared to human graders (28 studies; 33,409 images; low-certainty evidence). We did not identify significant sources of heterogeneity among these 28 algorithms. Although algorithms using OCT images appeared more homogeneous and had the highest summary specificity (0.97, 95% CI 0.93 to 0.98), they were not superior to algorithms using fundus images alone (0.94, 95% CI 0.89 to 0.97) or multimodal imaging (0.96, 95% CI 0.88 to 0.99; P for meta-regression = 0.239). The median prevalence of images with eAMD was 30% (interquartile range [IQR] 22% to 39%). We did not include eight studies that described nine algorithms (one study reported two sets of algorithm results) to distinguish eAMD from normal images, images of other AMD, or other non-AMD retinal lesions in the meta-analysis. Five of these algorithms were generally based on smaller datasets (range 21 to 218 participants per study) yet with a higher prevalence of eAMD images (range 33% to 66%). Relative to human graders, the reported sensitivity in these studies ranged from 0.95 and 0.97, while the specificity ranged from 0.94 to 0.99. Similarly, using small datasets (range 46 to 106), an additional four algorithms for detecting eAMD from other retinal lesions showed high sensitivity (range 0.96 to 1.00) and specificity (range 0.77 to 1.00). AUTHORS' CONCLUSIONS Low- to very low-certainty evidence suggests that an algorithm-based test may correctly identify most individuals with eAMD without increasing unnecessary referrals (false positives) in either the primary or the specialty care settings. There were significant concerns for applying the review findings due to variations in the eAMD prevalence in the included studies. In addition, among the included algorithm-based tests, diagnostic accuracy estimates were at risk of bias due to study participants not reflecting real-world characteristics, inadequate model validation, and the likelihood of selective results reporting. Limited quality and quantity of externally validated algorithms highlighted the need for high-certainty evidence. This evidence will require a standardized definition for eAMD on different imaging modalities and external validation of the algorithm to assess generalizability.
Collapse
Affiliation(s)
- Chaerim Kang
- Division of Ophthalmology, Brown University, Providence, RI, USA
| | - Jui-En Lo
- Department of Internal Medicine, MetroHealth Medical Center/Case Western Reserve University, Cleveland, USA
| | - Helen Zhang
- Program in Liberal Medical Education, Brown University, Providence, RI, USA
| | - Sueko M Ng
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Lin
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ingrid U Scott
- Department of Ophthalmology and Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | | | - Su-Hsun Alison Liu
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Paul B Greenberg
- Division of Ophthalmology, Brown University, Providence, RI, USA
- Section of Ophthalmology, VA Providence Healthcare System, Providence, RI, USA
| |
Collapse
|
3
|
Wang J, Wang SZ, Qin XL, Chen M, Zhang HM, Liu X, Xiang MJ, Hu JB, Huang HY, Lan CJ. Algorithm of automatic identification of diabetic retinopathy foci based on ultra-widefield scanning laser ophthalmoscopy. Int J Ophthalmol 2024; 17:610-615. [PMID: 38638262 PMCID: PMC10988084 DOI: 10.18240/ijo.2024.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 04/20/2024] Open
Abstract
AIM To propose an algorithm for automatic detection of diabetic retinopathy (DR) lesions based on ultra-widefield scanning laser ophthalmoscopy (SLO). METHODS The algorithm utilized the FasterRCNN (Faster Regions with CNN features)+ResNet50 (Residua Network 50)+FPN (Feature Pyramid Networks) method for detecting hemorrhagic spots, cotton wool spots, exudates, and microaneurysms in DR ultra-widefield SLO. Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate. Feature fusion was carried out by the feature pyramid network FPN, which significantly improved lesion detection rates in SLO fundus images. RESULTS By analyzing 1076 ultra-widefield SLO images provided by our hospital, with a resolution of 2600×2048 dpi, the accuracy rates for hemorrhagic spots, cotton wool spots, exudates, and microaneurysms were found to be 87.23%, 83.57%, 86.75%, and 54.94%, respectively. CONCLUSION The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO, providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.
Collapse
Affiliation(s)
- Jie Wang
- Aier Eye Hospital (East of Chengdu), Chengdu 610051, Sichuan Province, China
| | - Su-Zhen Wang
- Department of Ophthalmology, Chengdu First People's Hospital, Chengdu 610095, Sichuan Province, China
| | - Xiao-Lin Qin
- Aier Eye Hospital (East of Chengdu), Chengdu 610051, Sichuan Province, China
| | - Meng Chen
- Aier Eye Hospital (East of Chengdu), Chengdu 610051, Sichuan Province, China
| | - Heng-Ming Zhang
- School of Computer and Artificial Intelligence, Southwest Jiaotong University, Chengdu 610097, Sichuan Province, China
| | - Xin Liu
- Aier Eye Hospital (East of Chengdu), Chengdu 610051, Sichuan Province, China
| | - Meng-Jun Xiang
- Aier Eye Hospital (East of Chengdu), Chengdu 610051, Sichuan Province, China
| | - Jian-Bin Hu
- Chengdu Aier Eye Hospital, Chengdu 610041, Sichuan Province, China
| | - Hai-Yu Huang
- School of Computer and Artificial Intelligence, Southwest Jiaotong University, Chengdu 610097, Sichuan Province, China
| | - Chang-Jun Lan
- Aier Eye Hospital (East of Chengdu), Chengdu 610051, Sichuan Province, China
| |
Collapse
|
4
|
Li H, Cao J, You K, Zhang Y, Ye J. Artificial intelligence-assisted management of retinal detachment from ultra-widefield fundus images based on weakly-supervised approach. Front Med (Lausanne) 2024; 11:1326004. [PMID: 38379556 PMCID: PMC10876892 DOI: 10.3389/fmed.2024.1326004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Background Retinal detachment (RD) is a common sight-threatening condition in the emergency department. Early postural intervention based on detachment regions can improve visual prognosis. Methods We developed a weakly supervised model with 24,208 ultra-widefield fundus images to localize and coarsely outline the anatomical RD regions. The customized preoperative postural guidance was generated for patients accordingly. The localization performance was then compared with the baseline model and an ophthalmologist according to the reference standard established by the retina experts. Results In the 48-partition lesion detection, our proposed model reached an 86.42% (95% confidence interval (CI): 85.81-87.01%) precision and an 83.27% (95%CI: 82.62-83.90%) recall with an average precision (PA) of 0.9132. In contrast, the baseline model achieved a 92.67% (95%CI: 92.11-93.19%) precision and limited recall of 68.07% (95%CI: 67.25-68.88%). Our holistic lesion localization performance was comparable to the ophthalmologist's 89.16% (95%CI: 88.75-89.55%) precision and 83.38% (95%CI: 82.91-83.84%) recall. As to the performance of four-zone anatomical localization, compared with the ground truth, the un-weighted Cohen's κ coefficients were 0.710(95%CI: 0.659-0.761) and 0.753(95%CI: 0.702-0.804) for the weakly-supervised model and the general ophthalmologist, respectively. Conclusion The proposed weakly-supervised deep learning model showed outstanding performance comparable to that of the general ophthalmologist in localizing and outlining the RD regions. Hopefully, it would greatly facilitate managing RD patients, especially for medical referral and patient education.
Collapse
Affiliation(s)
- Huimin Li
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Cao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun You
- Zhejiang Feitu Medical Imaging Co., Ltd, Hangzhou, Zhejiang, China
| | - Yuehua Zhang
- Zhejiang Feitu Medical Imaging Co., Ltd, Hangzhou, Zhejiang, China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Liu YF, Ji YK, Fei FQ, Chen NM, Zhu ZT, Fei XZ. Research progress in artificial intelligence assisted diabetic retinopathy diagnosis. Int J Ophthalmol 2023; 16:1395-1405. [PMID: 37724288 PMCID: PMC10475636 DOI: 10.18240/ijo.2023.09.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/14/2023] [Indexed: 09/20/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most common retinal vascular diseases and one of the main causes of blindness worldwide. Early detection and treatment can effectively delay vision decline and even blindness in patients with DR. In recent years, artificial intelligence (AI) models constructed by machine learning and deep learning (DL) algorithms have been widely used in ophthalmology research, especially in diagnosing and treating ophthalmic diseases, particularly DR. Regarding DR, AI has mainly been used in its diagnosis, grading, and lesion recognition and segmentation, and good research and application results have been achieved. This study summarizes the research progress in AI models based on machine learning and DL algorithms for DR diagnosis and discusses some limitations and challenges in AI research.
Collapse
Affiliation(s)
- Yun-Fang Liu
- Department of Ophthalmology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Yu-Ke Ji
- Eye Hospital, Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Fang-Qin Fei
- Department of Endocrinology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| | - Nai-Mei Chen
- Department of Ophthalmology, Huai'an Hospital of Huai'an City, Huai'an 223000, Jiangsu Province, China
| | - Zhen-Tao Zhu
- Department of Ophthalmology, Huai'an Hospital of Huai'an City, Huai'an 223000, Jiangsu Province, China
| | - Xing-Zhen Fei
- Department of Endocrinology, First People's Hospital of Huzhou, Huzhou University, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
6
|
Pham VN, Le DT, Bum J, Kim SH, Song SJ, Choo H. Discriminative-Region Multi-Label Classification of Ultra-Widefield Fundus Images. Bioengineering (Basel) 2023; 10:1048. [PMID: 37760150 PMCID: PMC10525847 DOI: 10.3390/bioengineering10091048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Ultra-widefield fundus image (UFI) has become a crucial tool for ophthalmologists in diagnosing ocular diseases because of its ability to capture a wide field of the retina. Nevertheless, detecting and classifying multiple diseases within this imaging modality continues to pose a significant challenge for ophthalmologists. An automated disease classification system for UFI can support ophthalmologists in making faster and more precise diagnoses. However, existing works for UFI classification often focus on a single disease or assume each image only contains one disease when tackling multi-disease issues. Furthermore, the distinctive characteristics of each disease are typically not utilized to improve the performance of the classification systems. To address these limitations, we propose a novel approach that leverages disease-specific regions of interest for the multi-label classification of UFI. Our method uses three regions, including the optic disc area, the macula area, and the entire UFI, which serve as the most informative regions for diagnosing one or multiple ocular diseases. Experimental results on a dataset comprising 5930 UFIs with six common ocular diseases showcase that our proposed approach attains exceptional performance, with the area under the receiver operating characteristic curve scores for each class spanning from 95.07% to 99.14%. These results not only surpass existing state-of-the-art methods but also exhibit significant enhancements, with improvements of up to 5.29%. These results demonstrate the potential of our method to provide ophthalmologists with valuable information for early and accurate diagnosis of ocular diseases, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Van-Nguyen Pham
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Duc-Tai Le
- College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Junghyun Bum
- Sungkyun AI Research Institute, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Seong Ho Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
| | - Su Jeong Song
- Department of Ophthalmology, Kangbuk Samsung Hospital, School of Medicine, Sungkyunkwan University, Seoul 03181, Republic of Korea;
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyunseung Choo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
- Department of Superintelligence Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Chou YB, Kale AU, Lanzetta P, Aslam T, Barratt J, Danese C, Eldem B, Eter N, Gale R, Korobelnik JF, Kozak I, Li X, Li X, Loewenstein A, Ruamviboonsuk P, Sakamoto T, Ting DS, van Wijngaarden P, Waldstein SM, Wong D, Wu L, Zapata MA, Zarranz-Ventura J. Current status and practical considerations of artificial intelligence use in screening and diagnosing retinal diseases: Vision Academy retinal expert consensus. Curr Opin Ophthalmol 2023; 34:403-413. [PMID: 37326222 PMCID: PMC10399944 DOI: 10.1097/icu.0000000000000979] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
PURPOSE OF REVIEW The application of artificial intelligence (AI) technologies in screening and diagnosing retinal diseases may play an important role in telemedicine and has potential to shape modern healthcare ecosystems, including within ophthalmology. RECENT FINDINGS In this article, we examine the latest publications relevant to AI in retinal disease and discuss the currently available algorithms. We summarize four key requirements underlining the successful application of AI algorithms in real-world practice: processing massive data; practicability of an AI model in ophthalmology; policy compliance and the regulatory environment; and balancing profit and cost when developing and maintaining AI models. SUMMARY The Vision Academy recognizes the advantages and disadvantages of AI-based technologies and gives insightful recommendations for future directions.
Collapse
Affiliation(s)
- Yu-Bai Chou
- Department of Ophthalmology, Taipei Veterans General Hospital
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Aditya U. Kale
- Academic Unit of Ophthalmology, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Paolo Lanzetta
- Department of Medicine – Ophthalmology, University of Udine
- Istituto Europeo di Microchirurgia Oculare, Udine, Italy
| | - Tariq Aslam
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester School of Health Sciences, Manchester, UK
| | - Jane Barratt
- International Federation on Ageing, Toronto, Canada
| | - Carla Danese
- Department of Medicine – Ophthalmology, University of Udine
- Department of Ophthalmology, AP-HP Hôpital Lariboisière, Université Paris Cité, Paris, France
| | - Bora Eldem
- Department of Ophthalmology, Hacettepe University, Ankara, Turkey
| | - Nicole Eter
- Department of Ophthalmology, University of Münster Medical Center, Münster, Germany
| | - Richard Gale
- Department of Ophthalmology, York Teaching Hospital NHS Foundation Trust, York, UK
| | - Jean-François Korobelnik
- Service d’ophtalmologie, CHU Bordeaux
- University of Bordeaux, INSERM, BPH, UMR1219, F-33000 Bordeaux, France
| | - Igor Kozak
- Moorfields Eye Hospital Centre, Abu Dhabi, UAE
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin
| | - Xiaoxin Li
- Xiamen Eye Center, Xiamen University, Xiamen, China
| | - Anat Loewenstein
- Division of Ophthalmology, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paisan Ruamviboonsuk
- Department of Ophthalmology, College of Medicine, Rangsit University, Rajavithi Hospital, Bangkok, Thailand
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University, Kagoshima, Japan
| | - Daniel S.W. Ting
- Singapore National Eye Center, Duke-NUS Medical School, Singapore
| | - Peter van Wijngaarden
- Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | | | - David Wong
- Unity Health Toronto – St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Lihteh Wu
- Macula, Vitreous and Retina Associates of Costa Rica, San José, Costa Rica
| | | | | |
Collapse
|