1
|
Burek-Huntington KA, Shelden KEW, Guilfoyle C, Thewissen JGM, Migura M, Armien AG, Romero CH. Congenital defects and herpesvirus infection in beluga whale Delphinapterus leucas calves from the Critically Endangered Cook Inlet population. DISEASES OF AQUATIC ORGANISMS 2022; 151:29-35. [PMID: 36106714 DOI: 10.3354/dao03690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cook Inlet beluga whales (CIBs) Delphinapterus leucas are Critically Endangered and genetically distinct from other beluga populations in Alaska. CIBs are exposed to numerous natural and anthropogenic sources of mortality and morbidity. This study describes congenital defects observed in 2 CIB calves. The first case, an aborted fetus, was characterized by lack of a peduncle and flukes, anorectal and genitourinary dysgenesis, and probable biliary dysplasia. The second case, a male calf, had a perineal groove defect and suspected secondary peritonitis; it also had a systemic herpesvirus infection. Further studies are needed to determine if such defects are due to genetic mutation, infectious diseases, nutritional imbalances, or contaminant exposure.
Collapse
|
2
|
A Comparison of Pseudorabies Virus Latency to Other A-Herpesvirinae Subfamily Members. Viruses 2022; 14:v14071386. [PMID: 35891367 PMCID: PMC9316381 DOI: 10.3390/v14071386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022] Open
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky’s disease, is one of the most important infectious pathogens threatening the global pig industry. Like other members of alphaherpesviruses, PRV establishes a lifelong latent infection and occasionally reactivates from latency after stress stimulus in infected pigs. Latent infected pigs can then serve as the source of recurrent infection, which is one of the difficulties for PRV eradication. Virus latency refers to the retention of viral complete genomes without production of infectious progeny virus; however, following stress stimulus, the virus can be reactivated into lytic infection, which is known as the latency-reactivation cycle. Recently, several research have indicated that alphaherpesvirus latency and reactivation is regulated by a complex interplay between virus, neurons, and the immune system. However, with those limited reports, the relevant advances in PRV latency are lagging behind. Therefore, in this review we focus on the regulatory mechanisms in PRV latency via summarizing the progress of PRV itself and that of other alphaherpesviruses, which will improve our understanding in the underlying mechanism of PRV latency and help design novel therapeutic strategies to control PRV latency.
Collapse
|
3
|
Kumar S, Ramamurthy C, Choudhary D, Sekar A, Patra A, Bhavesh NS, Vivekanandan P. Contrasting roles for G-quadruplexes in regulating human Bcl-2 and virus homologues KSHV KS-Bcl-2 and EBV BHRF1. Sci Rep 2022; 12:5019. [PMID: 35322051 PMCID: PMC8943185 DOI: 10.1038/s41598-022-08161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/03/2022] [Indexed: 01/14/2023] Open
Abstract
Herpesviruses are known to acquire several genes from their hosts during evolution. We found that a significant proportion of virus homologues encoded by HSV-1, HSV-2, EBV and KSHV and their human counterparts contain G-quadruplex motifs in their promoters. We sought to understand the role of G-quadruplexes in the regulatory regions of viral Bcl-2 homologues encoded by KSHV (KS-Bcl-2) and EBV (BHRF1). We demonstrate that the KSHV KS-Bcl-2 and the EBV BHRF1 promoter G-quadruplex motifs (KSHV-GQ and EBV-GQ) form stable intramolecular G-quadruplexes. Ligand-mediated stabilization of KS-Bcl-2 and BHRF1 promoter G-quadruplexes significantly increased the promoter activity resulting in enhanced transcription of these viral Bcl-2 homologues. Mutations disrupting KSHV-GQ and EBV-GQ inhibit promoter activity and render the KS-Bcl-2 and the BHRF1 promoters non-responsive to G-quadruplex ligand. In contrast, promoter G-quadruplexes of human bcl-2 gene inhibit promoter activity. Further, KS-Bcl-2 and BHRF1 promoter G-quadruplexes augment RTA (a virus-encoded transcription factor)-mediated increase in viral bcl-2 promoter activity. In sum, this work highlights how human herpesviruses have evolved to exploit promoter G-quadruplexes to regulate virus homologues to counter their cellular counterparts.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chitteti Ramamurthy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Aashika Sekar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Delhi, New Delhi, 110067, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
4
|
Herpes Simplex Virus 1 MicroRNA miR-H8 Is Dispensable for Latency and Reactivation In Vivo. J Virol 2021; 95:JVI.02179-20. [PMID: 33208453 DOI: 10.1128/jvi.02179-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The regulatory functions of 10 individual viral microRNAs (miRNAs) that are abundantly expressed from the herpes simplex virus 1 (HSV-1) latency-associated transcript (LAT) region remain largely unknown. Here, we focus on HSV-1 miRNA miR-H8, which is within the LAT 3p exon, antisense to the first intron of ICP0, and has previously been shown to target a host glycosylphosphatidylinositol (GPI)-anchoring pathway. However, the functions of this miRNA have not been assessed in the context of the viral genome during infection. Therefore, we constructed a recombinant virus lacking miR-H8 (17dmiR-H8) and compared it to the parental wild-type and rescue viruses to characterize phenotypic differences. In rabbit skin cells, 17dmiR-H8 exhibited only subtle reductions in viral yields. In contrast, we found significant decreases in both viral yields (8-fold) and DNA replication (9.9-fold) in murine neuroblastoma cells, while 17dmiR-H8 exhibited a 3.6-fold increase in DNA replication in differentiated human neuronal cells (Lund human mesencephalic [LUHMES] cells). These cell culture phenotypes suggested potential host- and/or neuron-specific roles for miR-H8 in acute viral replication. To assess whether miR-H8 plays a role in HSV latency or reactivation, we used a human in vitro reactivation model as well as mouse and rabbit reactivation models. In the LUHMES cell-induced reactivation model, there was no difference in viral yields at 48 h postreactivation. In the murine dorsal root ganglion explant and rabbit ocular adrenergic reactivation models, the deletion of miR-H8 had no detectable effect on genome loads during latency or reactivation. These results indicate that miR-H8 is dispensable for the establishment of HSV-1 latency and reactivation.IMPORTANCE Herpesviruses have a remarkable ability to sustain lifelong infections by evading host immune responses, establishing a latent reservoir, and maintaining the ability to reactivate the lytic cascade to transmit the virus to the next host. The HSV-1 latency-associated transcript region is known to regulate many aspects of HSV-1 latency and reactivation, although the mechanisms for these functions remain unknown. To this end, we characterize an HSV-1 recombinant containing a deletion of a LAT-encoded miRNA, miR-H8, and demonstrate that it plays no detectable role in the establishment of latency or reactivation in differentiated human neurons (LUHMES cells) and mouse and rabbit models. Therefore, this study allows us to exclude miR-H8 from phenotypes previously attributed to the LAT region. Elucidating the genetic elements of HSV-1 responsible for establishment, maintenance, and reactivation from latency may lead to novel strategies for combating persistent herpesvirus infections.
Collapse
|
5
|
Tagawa T, Serquiña A, Kook I, Ziegelbauer J. Viral non-coding RNAs: Stealth strategies in the tug-of-war between humans and herpesviruses. Semin Cell Dev Biol 2020; 111:135-147. [PMID: 32631785 DOI: 10.1016/j.semcdb.2020.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Oncogenic DNA viruses establish lifelong infections in humans, and they cause cancers, often in immunocompromised patients, despite anti-viral immune surveillance targeted against viral antigens. High-throughput sequencing techniques allowed the field to identify novel viral non-coding RNAs (ncRNAs). ncRNAs are ideal factors for DNA viruses to exploit; they are non-immunogenic to T cells, thus viral ncRNAs can manipulate host cells without evoking adaptive immune responses. Viral ncRNAs may still trigger the host innate immune response, but many viruses encode decoys/inhibitors to counter-act and evade recognition. In addition, ncRNAs can be secreted to the extracellular space and influence adjacent cells to create a pro-viral microenvironment. In this review, we present recent progress in understanding interactions between oncoviruses and ncRNAs including small and long ncRNAs, microRNAs, and recently identified viral circular RNAs. In addition, potential clinical applications for ncRNA will be discussed. Extracellular ncRNAs are suggested to be diagnostic and prognostic biomarkers and, with the realization of the importance of viral ncRNAs in tumorigenesis, approaches to target critical viral ncRNAs are emerging. Further understanding of viral utilization of ncRNAs will advance anti-viral therapeutics beyond conventional medication and vaccination.
Collapse
Affiliation(s)
- Takanobu Tagawa
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Anna Serquiña
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Insun Kook
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, Maryland 20892, United States.
| |
Collapse
|
6
|
Human alpha and beta herpesviruses and cancer: passengers or foes? Folia Microbiol (Praha) 2020; 65:439-449. [PMID: 32072398 DOI: 10.1007/s12223-020-00780-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/10/2020] [Indexed: 10/25/2022]
Abstract
Based on seroepidemiological studies, human herpes simplex virus types 1 and 2 (HSV-1, HSV-2) are put in relation with a number of cancer diseases; however, they do not appear to play a direct role, being only considered cofactors. Their ability to transform the cells in vitro could be demonstrated experimentally by removing their high lytic ability by a certain dose of UV radiation or by photoinactivation in the presence of photosensitizers, such as neutral red or methylene blue, or culturing under conditions suppressing their lytic activity. However, recent studies indicate that UV irradiated or photoinactivated HSV-1 and HSV-2, able to transform non-transformed cells, behave differently in transformed cells suppressing their transformed phenotype. Furthermore, both transforming and transformed phenotype suppressing activities are pertaining only to non-syncytial virus strains. There are some proposed mechanisms explaining their transforming activity. According to the "hit and run" mechanism, viral DNA induces only initiation of transformation by interacting with cellular DNA bringing about mutations and epigenetic changes and is no longer involved in other processes of neoplastic progression. According to the "hijacking" mechanism, virus products in infected cells may activate signalling pathways and thus induce uncontrolled proliferation. Such a product is e.g. a product of HSV-2 gene designated ICP10 that encodes an oncoprotein RR1PK that activates the Ras pathway. In two cases of cancer, in the case of serous ovarian carcinoma and in some prostate tumours, virus-encoded microRNAs (miRNAs) were detected as a possible cofactor in tumorigenesis. And, recently described herpes virus-associated growth factors with transforming and transformation repressing activity might be considered important factors playing a role in tumour formation. And finally, there is a number of evidence that HSV-2 may increase the risk of cervical cancer after infection with human papillomaviruses. A similar situation is with human cytomegalovirus; however, here, a novel mechanism named oncomodulation has been proposed. Oncomodulation means that HCMV infects tumour cells and modulates their malignant properties without having a direct effect on cell transformation.
Collapse
|
7
|
Bullard WL, Flemington EK, Renne R, Tibbetts SA. Connivance, Complicity, or Collusion? The Role of Noncoding RNAs in Promoting Gammaherpesvirus Tumorigenesis. Trends Cancer 2018; 4:729-740. [PMID: 30352676 DOI: 10.1016/j.trecan.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
EBV and KSHV are etiologic agents of multiple types of lymphomas and carcinomas. The frequency of EBV+ or KSHV+ malignancies arising in immunocompromised individuals reflects the intricate evolutionary balance established between these viruses and their immunocompetent hosts. However, the specific mechanisms by which these pathogens drive tumorigenesis remain poorly understood. In recent years an enormous array of cellular and viral noncoding RNAs (ncRNAs) have been discovered, and host ncRNAs have been revealed as contributory factors to every single cancer hallmark cellular process. As new evidence emerges that gammaherpesvirus ncRNAs also alter host processes and viral factors dysregulate host ncRNA expression, and as novel viral ncRNAs continue to be discovered, we examine the contribution of small, non-miRNA ncRNAs and long ncRNAs to gammaherpesvirus tumorigenesis.
Collapse
Affiliation(s)
- Whitney L Bullard
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Erik K Flemington
- Department of Pathology, Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Li Z, Lan Y, Zhao K, Lv X, Ding N, Lu H, Zhang J, Yue H, Shi J, Song D, Gao F, He W. miR-142-5p Disrupts Neuronal Morphogenesis Underlying Porcine Hemagglutinating Encephalomyelitis Virus Infection by Targeting Ulk1. Front Cell Infect Microbiol 2017; 7:155. [PMID: 28516065 PMCID: PMC5413507 DOI: 10.3389/fcimb.2017.00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 04/12/2017] [Indexed: 12/17/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) invades the central nervous system (CNS) and causes neurodegenerative disease in suckling piglets, but the understanding of its neuropathogenicity for neurological dysfunction remains limited. Here, we report that miR-142-5p is localized to neurons and negatively regulates neuronal morphogenesis in porcine hemagglutinating encephalomyelitis (PHE). This phenotype was mediated by miR-142-5p inhibition of an mRNA encoding unc-51-like-kinase1 (Ulk1), which controls axon outgrowth and dendrite formation. Modulating miR-142-5p activity by microRNA mimics or inhibitors induced neurodegeneration, including stunted axon elongation, unstable dendritic spine formation, and irregular swelling and disconnection in neurites. Relieving Ulk1 mRNA repression in primary cortical neurons by miR-142-5p antagomirs or replication-deficient adenoviruses encoding Ulk1 (Ad5-Ulk1), which improved rescue of nerve injury, restricted viral replication, and increased survival rate in mice underlying PHEV infection. In contrast, disrupting Ulk1 in RNAi-expressing neurons mostly led to significantly shortened axon elongation and/or an abnormally large number of branched dendrites. Taken together, we demonstrated that the abnormal neuronal morphogenesis underlying PHEV infection was mainly caused by functional mRNA repression of the miR-142-5p target Ulk1. Our data revealed that PHEV adapted to use spatiotemporal control of host microRNAs to invade CNS, and provided new insights into the virus-associated neurological dysfunction microenvironment.
Collapse
Affiliation(s)
- Zi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Xiaoling Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Ning Ding
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin UniversityChangchun, China
| | - Jing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Huiqing Yue
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Junchao Shi
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin UniversityChangchun, China
| |
Collapse
|
9
|
The small noncoding RNAs (sncRNAs) of murine gammaherpesvirus 68 (MHV-68) are involved in regulating the latent-to-lytic switch in vivo. Sci Rep 2016; 6:32128. [PMID: 27561205 PMCID: PMC4999806 DOI: 10.1038/srep32128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/02/2016] [Indexed: 01/05/2023] Open
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), which are associated with a variety of diseases including tumors, produce various small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Like all herpesviruses, they show two stages in their life cycle: lytic replication and latency. During latency, hardly any viral proteins are expressed to avoid recognition by the immune system. Thus, sncRNAs might be exploited since they are less likely to be recognized. Specifically, it has been proposed that sncRNAs might contribute to the maintenance of latency. This has already been shown in vitro, but the respective evidence in vivo is very limited. A natural model system to explore this question in vivo is infection of mice with murine gammaherpesvirus 68 (MHV-68). We used this model to analyze a MHV-68 mutant lacking the expression of all miRNAs. In the absence of the miRNAs, we observed a higher viral genomic load during late latency in the spleens of mice. We propose that this is due to a disturbed regulation of the latent-to-lytic switch, altering the balance between latent and lytic infection. Hence, we provide for the first time evidence that gammaherpesvirus sncRNAs contribute to the maintenance of latency in vivo.
Collapse
|
10
|
Ng KR, Li JYZ, Gleadle JM. Human cytomegalovirus encoded microRNAs: hitting targets. Expert Rev Anti Infect Ther 2015; 13:1469-79. [PMID: 26509290 DOI: 10.1586/14787210.2015.1106939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human cytomegalovirus (HCMV) infection is of particular concern in immunodeficient individuals notably transplant recipients, leading to increased morbidity and mortality. HCMV is predicted to encode multiple microRNAs (miRNAs) and several have been characterized in vitro. Furthermore, these miRNAs have been shown to target human and viral mRNAs. Pathways involved in human cellular targets have key roles in vesicle trafficking, immune evasion and cell cycle control. This demonstration of viral miRNA targets provides novel insights into viral pathogenesis. This review details the evidence for the existence of HCMV-encoded miRNA and their targets. HCMV miRNA in blood and other tissues is a potential diagnostic tool and blocking the effects of specific HCMV-encoded miRNA with sequence specific antagomirs is a potential new therapy.
Collapse
Affiliation(s)
- Kiat Rui Ng
- a School of Medicine , Flinders University , Adelaide , Australia
| | - Jordan Y Z Li
- a School of Medicine , Flinders University , Adelaide , Australia.,b Department of Renal Medicine , Flinders Medical Centre , Adelaide , Australia.,c Department of General Medicine , Flinders Medical Centre , Adelaide , Australia
| | - Jonathan M Gleadle
- a School of Medicine , Flinders University , Adelaide , Australia.,b Department of Renal Medicine , Flinders Medical Centre , Adelaide , Australia
| |
Collapse
|