1
|
Imam AL, Okesina AA, Sulaimon FA, Imam A, Ibiyeye RY, Oyewole LA, Biliaminu SA, Shehu M, Alli AO, Omoola OO, Ajao SM. Thymoquinone ameliorate oxidative stress, GABAergic neuronal depletion and memory impairment through Nrf2/ARE signaling pathway in the dentate gyrus following cypermethrin administration. BMC Neurosci 2024; 25:45. [PMID: 39333878 PMCID: PMC11428341 DOI: 10.1186/s12868-024-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Exposure to chemical toxins, including insecticides, harms bodily organs like the brain. This study examined the neuroprotective of thymoquinone on the cypermethrin's harmful effects on the histoarchitecture of the dentate gyrus and motor deficit in the dentate gyrus. METHODS Forty adult male rats (180-200 g) were randomly divided into 5 groups (n = 8 per group). Groups I, II, III, IV, and V received oral administration of 0.5 ml of phosphate-buffered saline, cypermethrin (20 mg/kg), thymoquinone (10 mg/kg), cypermethrin (20 mg/kg) + thymoquinone (5 mg/kg), and cypermethrin (20 mg/kg) + thymoquinone (10 mg/kg) for 14 days respectively. The novel object recognition test that assesses intermediate-term memory was done on days 14 and 21 of the experiment. At the end of these treatments, the animals were euthanized and taken for cytoarchitectural (hematoxylin and eosin; Cresyl violet) and immunohistochemical studies (Nuclear factor erythroid 2-related factor 2 (Nrf2), Parvalbumin, and B-cell lymphoma 2 (Bcl2). RESULT The study shows that thymoquinone at 5 and 10 mg/kg improved Novelty preference and discrimination index. Thymoquinone enhanced Nissl body integrity, increased GABBAergic interneuron expression, nuclear factor erythroid 2-derived factor 2, and enhanced Bcl-2 expression in the dentate gyrus. It also improved the concentration of nuclear factor erythroid 2-derived factor 2, increased the activities of superoxide dismutase and glutathione, and decreased the concentration of malondialdehyde level against cypermethrin-induced neurotoxicity. CONCLUSION thymoquinone could be a therapeutic agent against cypermethrin poisoning.
Collapse
Affiliation(s)
- Abubakar Lekan Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Akeem Ayodeji Okesina
- Department of Clinical Medicine and Community Health, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.
| | - Fatimo Ajoke Sulaimon
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Aminu Imam
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Ruqayyah Yetunde Ibiyeye
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Kwara State University, Malete, Nigeria
| | - Lukuman Aboyeji Oyewole
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Sikiru Abayomi Biliaminu
- Department of Chemical Pathology, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Monsur Shehu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| | | | - Oluwatosin Olasheu Omoola
- Department of Human Anatomy, Faculty of Biomedical Sciences, Kampala International University, Western Campus, Ishaka/Bushenyi, Uganda
| | - Salihu Moyosore Ajao
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
2
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
3
|
Aslani MR, Saadat S, Boskabady MH. Comprehensive and updated review on anti-oxidant effects of Nigella sativa and its constituent, thymoquinone, in various disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:923-951. [PMID: 38911247 PMCID: PMC11193497 DOI: 10.22038/ijbms.2024.75985.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
Several pharmacological effects were described for Nigella sativa (N. sativa) seed and it has been used traditionally to treat various diseases. In this review article, the updated and comprehensive anti-oxidant effects of N. sativa and its main constituent, thymoquinone (TQ), on various disorders are described. The relevant articles were retrieved through PubMed, Science Direct, and Scopus up to December 31, 2023. Various extracts and essential oils of N. sativa showed anti-oxidant effects on cardiovascular, endocrine, gastrointestinal and liver, neurologic, respiratory, and urogenital diseases by decreasing and increasing various oxidant and anti-oxidant marketers, respectively. The main constituent of the plant, TQ, also showed similar anti-oxidant effects as the plant itself. The anti-oxidant effects of different extracts and essential oils of N. sativa were demonstrated in various studies which were perhaps due to the main constituent of the plant, TQ. The findings of this review article suggest the possible therapeutic effect of N. sativa and TQ in oxidative stress disorders.
Collapse
Affiliation(s)
- Mohammad Reza Aslani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Öztüzün A, Çeker T, Yılmaz Ç, Aslan M. Inflammatory signal transduction pathways induced by prilocaine toxicity in cultured ARPE-19 cells. J Biochem Mol Toxicol 2023; 37:e23491. [PMID: 37561044 DOI: 10.1002/jbt.23491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
Prilocaine (PRL) is a common local anesthetic. Despite the successful use of regional anesthesia for intraocular surgery, there are associated side effects that may affect the retina in case of accidental intravitreal injection. This study examined the signal transduction pathways activated by PRL toxicity and determined the protective role of nitric oxide synthase-2 (NOS2) inhibition in cultured human-derived retinal pigment epithelial cells (ARPE-19). Toxicity analysis was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay to detect the toxic dose of PRL and protective effectiveness of asperglaucide (ASP), an NOS2 inhibitor. Nuclear factor kappa B p65 (NF-κB p65), phosphorylated NF-κB p65, phospho-protein kinase B (AKT), NOS2, nitrotyrosine, and cleaved caspase-3 protein levels were evaluated by immunofluorescence staining and/or western blot analysis. Interleukin-6 (IL-6) and nitrated protein levels were quantified using an immunoassay, whereas caspase-3 activity and nitrite/nitrate levels were measured using a fluorometric method. A significant increase in NF-κB p65, and phosphorylated NF-κB p65 and AKT levels due to PRL toxicity was observed. Similarly, IL-6, NOS2, nitrite/nitrate, and nitrotyrosine levels were significantly higher in PRL-treated cells than in control cells. Application of ASP to PRL-treated cells reduced NF-κB p65, and phosphorylated NF-κB p65 and AKT to basal levels. IL-6, NOS2, nitrite/nitrate, and nitrotyrosine levels also considerably decreased following ASP treatment in cells experiencing PRL-induced toxicity. Moreover, the caspase-3-dependent apoptotic pathway was not activated. Our results indicate that ASP could ameliorate PRL-induced activation of NF-κB p65 that led to inflammation in cultured ARPE-19 cells.
Collapse
Affiliation(s)
- Aleyna Öztüzün
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Department of Gene and Cell Therapy, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
5
|
Aslan M, Basralı F, Ülker P, Barut Z, Yılmaz Ç, Çeker T, Özen N, Öztüzün A, Elpek Ö. Effects of aurantiamide on a rat model of renovascular arterial hypertension. Pflugers Arch 2023; 475:1177-1192. [PMID: 37582694 PMCID: PMC10499692 DOI: 10.1007/s00424-023-02850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
Asperglaucide (ASP) is an aurantiamide, an effective constituent of purslane (Portulaca oleracea L.), a safe to eat greenery. Effects of ASP on endothelial function, endothelial nitric oxide synthase (eNOS) expression, vascular fluidity, renal and vascular reactive oxygen, and nitrogen species (ROS/RNS) production was examined in the two-kidney one-clip (2 K-1C) rat model of renovascular arterial hypertension. ASP toxicity, dose dependent eNOS gene expression and protein levels were also analyzed in human umbilical vein endothelial cells (HUVEC). The 2 K-1C model of hypertension was created via surgery and mean blood pressure (MBP) was measured by tail-cuff method during four weeks of ASP treatment. Erythrocyte deformability was monitored by rotational ektacytometry, while vascular constrictor and dilator responses were determined in organ baths. eNOS gene expression and protein levels were assessed in thoracic aorta and HUVEC. MBP was significantly decreased in hypertensive rats treated with ASP. Endothelium dependent vascular dilator and constrictor responses were also considerably improved following ASP treatment. There was a notable increase in red blood cell deformability in hypertensive rats treated with ASP as compared to hypertensive rats alone. A significant increase was observed in eNOS gene expression and protein levels in both normotensive and hypertensive rats treated with ASP. Treatment of HUVEC with 3 µM ASP notably increased eNOS mRNA and protein levels. In conclusion, ASP lowered blood pressure, improved endothelium-mediated relaxation, decreased renovascular ROS/RNS production in hypertensive rats. ASP also increased eNOS protein expression in aorta and HUVEC at nontoxic doses. ASP may have future potential as an anti-hypertensive agent.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Filiz Basralı
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Pınar Ülker
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Zerrin Barut
- Faculty of Dentistry, Antalya Bilim University, Antalya, Turkey
| | - Çağatay Yılmaz
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Tuğçe Çeker
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Nur Özen
- Department of Physiology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Aleyna Öztüzün
- Department of Medical Biochemistry, Akdeniz University Faculty of Medicine, Antalya, 07070 Turkey
| | - Özlem Elpek
- Department of Pathology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Sadeghi E, Imenshahidi M, Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep 2023; 50:5439-5454. [PMID: 37155017 DOI: 10.1007/s11033-023-08363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways. METHODS The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article. RESULTS Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy. CONCLUSIONS Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.
Collapse
Affiliation(s)
- Ehsan Sadeghi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, P.O.Box: 1365-91775, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Nithya G, Santhanasabapathy R, Vanitha MK, Anandakumar P, Sakthisekaran D. Antioxidant, antiproliferative, and apoptotic activity of thymoquinone against benzo(a)pyrene-induced experimental lung cancer. J Biochem Mol Toxicol 2023; 37:e23230. [PMID: 36193556 DOI: 10.1002/jbt.23230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 08/09/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
Several studies have suggested that increased consumption of phytochemicals is a comparatively easy and practical strategy to significantly decrease the incidence of cancer. In the present study, we have reported the protective effect of a natural compound, thymoquinone (TQ) against benzo(a)pyrene (B(a)P)-induced lung carcinogenesis in Swiss albino mice. B(a)P (50 mg/kg body weight) was administered twice weekly for four successive weeks and left until 20 weeks to induce lung cancer in mice. TQ (20 mg/kg body weight) was given orally as a pretreatment and posttreatment drug to determine its chemopreventive and therapeutic effects. B(a)P-induced lung cancer-bearing animals displayed cachexia-like symptoms along with an abnormal increase in lung weight and the activities of marker enzymes adenosine deaminase, aryl hydrocarbon hydroxylase, gamma-glutamyl transpeptidase, 5'-nucleotidase and lactate dehydrogenase; tumor marker carcinoembryonic antigen levels. Furthermore, B(a)P-induced animals showed elevated levels of lipid peroxides with subsequent depletion in the antioxidant status and histological aberrations. These anomalies were accompanied by increased expressions of proliferating cell nuclear antigen and cyclin D1 in the lung sections derived from B(a)P-induced animals. On TQ treatment, all the above alterations were returned to near normalcy. Furthermore, TQ administration in B(a)P-induced animals downregulated phosphatidylinositol 3-kinase/protein kinase B signaling pathway and induced apoptosis as evidenced by a decrease in cytochrome c, proapoptotic Bax, caspase-3, and p53 with a parallel increase in antiapoptotic Bcl-2. Our present results demonstrate the potential effectiveness of TQ as an antioxidant, antiproliferative, and apoptotic agent against B(a)P-induced experimental lung tumorigenesis.
Collapse
Affiliation(s)
- Gajendran Nithya
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Manickam Kalappan Vanitha
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| | | | - Dhanapalan Sakthisekaran
- Department of Medical Biochemistry, Dr. ALM PGIBMS, University of Madras, Taramani Campus, Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Pottoo FH, Ibrahim AM, Alammar A, Alsinan R, Aleid M, Alshehhi A, Alshehri M, Mishra S, Alhajri N. Thymoquinone: Review of Its Potential in the Treatment of Neurological Diseases. Pharmaceuticals (Basel) 2022; 15:ph15040408. [PMID: 35455405 PMCID: PMC9026861 DOI: 10.3390/ph15040408] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/13/2022] Open
Abstract
Thymoquinone (TQ) possesses anticonvulsant, antianxiety, antidepressant, and antipsychotic properties. It could be utilized to treat drug misuse or dependence, and those with memory and cognitive impairment. TQ protects brain cells from oxidative stress, which is especially pronounced in memory-related regions. TQ exhibits antineurotoxin characteristics, implying its role in preventing neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease. TQ’s antioxidant and anti-inflammatory properties protect brain cells from damage and inflammation. Glutamate can trigger cell death by causing mitochondrial malfunction and the formation of reactive oxygen species (ROS). Reduction in ROS production can explain TQ effects in neuroinflammation. TQ can help prevent glutamate-induced apoptosis by suppressing mitochondrial malfunction. Several studies have demonstrated TQ’s role in inhibiting Toll-like receptors (TLRs) and some inflammatory mediators, leading to reduced inflammation and neurotoxicity. Several studies did not show any signs of dopaminergic neuron loss after TQ treatment in various animals. TQ has been shown in clinical studies to block acetylcholinesterase (AChE) activity, which increases acetylcholine (ACh). As a result, fresh memories are programmed to preserve the effects. Treatment with TQ has been linked to better outcomes and decreased side effects than other drugs.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
- Correspondence: (F.H.P.); (A.M.I.)
| | - Abdallah Mohammad Ibrahim
- Department of Fundamentals of Nursing, College of Nursing, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (F.H.P.); (A.M.I.)
| | - Ali Alammar
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Rida Alsinan
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Mahdi Aleid
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Ali Alshehhi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Muruj Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.A.); (R.A.); (M.A.); (M.A.)
| | - Supriya Mishra
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad 201204, UP, India;
| | - Noora Alhajri
- Department of Medicine, Sheikh Shakhbout Medical City (SSMC), Abu Dhabi P.O. Box 127788, United Arab Emirates;
| |
Collapse
|
9
|
Anaeigoudari A. Hepato- and reno-protective effects of thymoquinone, crocin, and carvacrol: A comprehensive review. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.343386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
10
|
Hematological and biochemical investigations on the effect of curcumin and Thymoquinone in male mice exposed to Thioacetamide. Saudi J Biol Sci 2022; 29:660-665. [PMID: 35002463 PMCID: PMC8716955 DOI: 10.1016/j.sjbs.2021.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/09/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, living organisms are increasingly exposed to many toxic chemicals in the environment. These substances pose a threat to human life, other living organisms and ecosystem. In fact, there is an increasing requirement to search for safe therapeutic sources today. Medicinal plants and natural products have become of great importance globally because of their therapeutic potential and medicinal properties, as well as their availability and the absence of harmful side effects for most of them. The present study was designed to explore the potential protective effect of curcumin (CUR) and thymoquinone (TQ) in male rats exposed to thioacetamide (TAA). The experimental mice were divided into eight groups. Group 1 was served as control. Group 2 was exposed to 50 mg/ kg body weight of TAA. Group 3 was exposed to CUR and TAA. Mice of group 4 were treated with TQ and TAA. Mice of group 5 were exposed to CUR plus TQ and TAA. Group 6 was supplemented with CUR. Group 7 was subjected to TQ. Mice of group 8 were treated with CUR and TQ. Hematological and biochemical alterations were evaluated after one month. Significant increases of white blood corpuscles (WBC), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TB), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) values were observed in group 2, while the values of red blood corpuscles (RBC), hemoglobin (Hb(, hematocrit (Hct), glutathione (GSH) and superoxide dismutase (SOD) were statistically decreased. Treatment with CUR, TQ and their combination inhibited the hematological and biochemical alterations induced by TAA toxicity. Moreover, the most protective effect was observed in mice treated with CUR plus TQ. These new results suggested that the protective effect of CUR and TQ attributed to their antioxidant properties.
Collapse
|