1
|
Taneera J, Mahgoub E, Qannita R, Alalami A, Shehadat OA, Youssef M, Dib A, Hajji AA, Hajji AA, Al-Khaja F, Dewedar H, Hamad M. β-Thalassemia and Diabetes Mellitus: Current State and Future Directions. Horm Metab Res 2024; 56:272-278. [PMID: 37871612 DOI: 10.1055/a-2185-5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
β-Thalassemia major is a congenital hemoglobin disorder that requires regular blood transfusion. The disease is often associated with iron overload and diabetes mellitus, among other complications. Pancreatic iron overload in β-thalassemia patients disrupts β-cell function and insulin secretion and induces insulin resistance. Several risk factors, including family history of diabetes, sedentary lifestyle, obesity, gender, and advanced age increase the risk of diabetes in β-thalassemia patients. Precautionary measures such as blood glucose monitoring, anti-diabetic medications, and healthy living in β-thalassemia patients notwithstanding, the prevalence of diabetes in β-thalassemia patients continues to rise. This review aims to address the relationship between β-thalassemia and diabetes in an attempt to understand how the pathology and management of β-thalassemia precipitate diabetes mellitus. The possible employment of surrogate biomarkers for early prediction and intervention is discussed. More work is still needed to better understand the molecular mechanism(s) underlying the link between β-thalassemia and diabetes and to identify novel prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Eglal Mahgoub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Reem Qannita
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayah Alalami
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ola Al Shehadat
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Mona Youssef
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Ayah Dib
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Alaa Al Hajji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Amani Al Hajji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Hany Dewedar
- Dubai Thalassemia Center, Dubai, United Arab Emirates
| | - Mawieh Hamad
- University of Sharjah College of Health Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Li Y, Laws SM, Miles LA, Wiley JS, Huang X, Masters CL, Gu BJ. Genomics of Alzheimer's disease implicates the innate and adaptive immune systems. Cell Mol Life Sci 2021; 78:7397-7426. [PMID: 34708251 PMCID: PMC11073066 DOI: 10.1007/s00018-021-03986-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/14/2021] [Accepted: 10/16/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease characterised by cognitive impairment, behavioural alteration, and functional decline. Over 130 AD-associated susceptibility loci have been identified by genome-wide association studies (GWAS), while whole genome sequencing (WGS) and whole exome sequencing (WES) studies have identified AD-associated rare variants. These variants are enriched in APOE, TREM2, CR1, CD33, CLU, BIN1, CD2AP, PILRA, SCIMP, PICALM, SORL1, SPI1, RIN3, and more genes. Given that aging is the single largest risk factor for late-onset AD (LOAD), the accumulation of somatic mutations in the brain and blood of AD patients have also been explored. Collectively, these genetic findings implicate the role of innate and adaptive immunity in LOAD pathogenesis and suggest that a systemic failure of cell-mediated amyloid-β (Aβ) clearance contributes to AD onset and progression. AD-associated variants are particularly enriched in myeloid-specific regulatory regions, implying that AD risk variants are likely to perturbate the expression of myeloid-specific AD-associated genes to interfere Aβ clearance. Defective phagocytosis, endocytosis, and autophagy may drive Aβ accumulation, which may be related to naturally-occurring antibodies to Aβ (Nabs-Aβ) produced by adaptive responses. Passive immunisation is providing efficiency in clearing Aβ and slowing cognitive decline, such as aducanumab, donanemab, and lecanemab (ban2401). Causation of AD by impairment of the innate immunity and treatment using the tools of adaptive immunity is emerging as a new paradigm for AD, but immunotherapy that boosts the innate immune functions of myeloid cells is highly expected to modulate disease progression at asymptomatic stage.
Collapse
Affiliation(s)
- Yihan Li
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Simon M Laws
- Centre for Precision Health, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Dr, Joondalup, WA, 6027, Australia
| | - Luke A Miles
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - James S Wiley
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Xin Huang
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
3
|
Al-Hakeim HK, Al-Mayali HH, Moustafa SR, Maes M. Cytokine dependent hematopoietic cell linker (CLNK) is highly elevated in blood transfusion dependent beta-thalassemia major patients. Transfus Clin Biol 2021; 28:194-198. [PMID: 33453373 DOI: 10.1016/j.tracli.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Transfusion-dependent β-thalassemia (TDT) is a severe form of thalassemia caused by mutations in the β-globin gene, resulting in partial or complete deficiency of β-globin chains. This deficiency results in oxidative stress, dyserythropoiesis, and chronic anemia. Cytokine-dependent hematopoietic cell linker (CLNK) belongs to adaptor proteins that have the capacity to interact with multiple signalling proteins and function in the organisation of the molecular components required for signal transduction. OBJECTIVES This is the first study which measured serum CLNK in TDT patients and examines the correlation between CLNK and iron overload biomarkers. PATIENTS AND METHODS Sixty children with TDT and 30 normal children (aged 3-12 years old) participated in the present study. The patients were on blood transfusion as a part of their treatment regimen. Serum C-reactive protein was negative in all samples. RESULTS The results showed significantly higher (P<0.001) serum CLNK levels in TDT patients as compared with controls. The TDT diagnosis explained 19.4% of the variance in CLNK levels. The increased levels of CLNK were significantly associated with indicants of iron overload, namely increased ferritin levels. CONCLUSIONS Increased CLNK levels in TDT may be explained by reciprocal effects between immune signalling and immature erythrocytes, which release soluble receptors and signalling molecules, including CLNK, in the blood.
Collapse
Affiliation(s)
- H K Al-Hakeim
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq.
| | - H H Al-Mayali
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq.
| | - S R Moustafa
- Clinical analysis department, College of Pharmacy, Hawler Medical University, Havalan City, Erbil, Iraq.
| | - M Maes
- Department of psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of psychiatry, Medical University Plovdiv, Plovdiv, Bulgaria; IMPACT research centre, Deakin University, Geelong, Australia.
| |
Collapse
|