1
|
Jiang T, Dong Y, Zhu W, Wu T, Chen L, Cao Y, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. Underlying mechanisms and molecular targets of genistein in the management of type 2 diabetes mellitus and related complications. Crit Rev Food Sci Nutr 2024; 64:11543-11555. [PMID: 37497995 DOI: 10.1080/10408398.2023.2240886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease caused by a complex interaction of genetic and environmental factors and is characterized by persistent hyperglycemia. Long-term hyperglycemia can cause macrovascular and microvascular damage, and compromise the heart, brain, kidney, peripheral nerves, eyes and other organs, leading to serious complications. Genistein, a phytoestrogen derived from soybean, is known for its various biological activities and therapeutic properties. Recent studies found that genistein not only has hypoglycemic activity but can also decrease insulin resistance. In addition, genistein has particular activity in the prevention and treatment of diabetic complications, such as nephropathy, cardiovascular disease, osteoarthrosis, encephalopathy and retinopathy. Therefore, the purpose of this review is to summarize the latest medical research and progress of genistein in DM and related complications and highlights its potential molecular mechanisms and therapeutic targets. Meanwhile, evidence is provided for the development and application of genistein as a potential drug or functional food in the prevention and treatment of diabetes and its related complications.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
- School of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao SAR, China
| |
Collapse
|
2
|
Wang Z, Li R, Chen X, Ren H, Wang C, Min R, Zhang X. Network pharmacology, molecular docking and experimental validation to elucidate the anti-T2DM mechanism of Lanxangia tsaoko. Fitoterapia 2024; 178:106117. [PMID: 38996878 DOI: 10.1016/j.fitote.2024.106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Lanxangia tsaoko (L. tsaoko) is a natural medicine which could be used to treat type 2 diabetes mellitus (T2DM). However, there is no systematic and comprehensive research on the its active compounds and mechanism. This study aimed to investigate the active ingredients and potential mechanism of L. tsaoko for the treatment of T2DM. The chemical constituents of L. tsaoko were identified by UPLC-Q-Exactive Orbitrap/MS. The active compounds and mechanism of L. tsaoko were predicted by network pharmacology. Then the docking modes of key components and core targets were analyzed by molecular docking. Finally, animal experiments were conducted to verify the efficacy and targets of L. tsaoko in T2DM treatment. 70 compounds from L. tsaoko were identified. We obtained 37 active components, including quercetin, genistein and kaempferol, 5 core targets were AKT1, INS, TP53, TNF and IL-6. Mainly involved in PI3K/Akt, MAPK, RAGE/AGE, HIF-1, FoxO signaling pathways. Molecular docking results showed that the L. tsaoko had good binding potential to TNF. Therefore, we took the inflammatory mechanism as the prediction target for experimental verification. Animal experiments showed that L. tsaoko could alleviated colon injury of T2DM mice, improve glucose metabolism and decrease inflammatory levels. L. tsaoko exerted therapeutic effects on T2DM through multi-component, multi-target and multi-pathway regulation. Its action mechanisms were related to PI3K/Akt, MAPK, RAGE/AGE, HIF-1 and FoxO signaling pathways. This study provided new insights for the clinical treatment of T2DM.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Huilin Ren
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Syngkli S, Singh SK, Rani RM, Das B. Genistein and metformin regulate glycerol kinase and the enzymes of glycerol 3-phosphate shuttle in a differential manner in myocytes, hepatocytes and adipocytes. Int J Biol Macromol 2024; 270:132296. [PMID: 38740159 DOI: 10.1016/j.ijbiomac.2024.132296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Glycerol kinase (GK) and glycerol 3-phosphate dehydrogenase (GPDH) are critical in glucose homeostasis. The role of genistein and metformin on these enzymes and glucose production was investigated in C2C12, HepG2, and 3T3-L1 cells. Enzyme kinetics, Real-Time PCR and western blots were performed to determine enzyme activities and expressions of mRNAs and proteins. Glucose production and uptake were also measured in these cells. siRNAs were used to assess their impact on the enzymes and glucose production. Ki values for the compounds were determined using purified GK and GPDH. Genistein decreased GK activity by ∼45 %, while metformin reduced cGPDH and mGPDH activities by ∼32 % and ∼43 %, respectively. Insignificant changes in expressions (mRNAs and proteins) of the enzymes were observed. The compounds showed dose-dependent alterations in glucose production and uptake in these cells. Genistein non-competitively inhibited His-GK activity (Ki 19.12 μM), while metformin non-competitively inhibited His-cGPDH (Ki 75.52 μM) and mGPDH (Ki 54.70 μM) activities. siRNAs transfection showed ∼50 % and ∼35 % decrease in activities of GK and mGPDH and a decrease in glucose production (0.38-fold and 0.42-fold) in 3T3-L1 cells. Considering the differential effects of the compounds, this study may provide insights into the potential therapeutic strategies for type II diabetes mellitus.
Collapse
Affiliation(s)
- Superior Syngkli
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Sumit K Singh
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Riva M Rani
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Bidyadhar Das
- Biological Chemistry Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
4
|
Liu J, Guo Y, Sun J, Lei Y, Guo M, Wang L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int J Biol Macromol 2024; 263:130473. [PMID: 38423437 DOI: 10.1016/j.ijbiomac.2024.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.
Collapse
Affiliation(s)
- Jinshen Liu
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| | - Yuying Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Jie Sun
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Yuxin Lei
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Mingyi Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Linhong Wang
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| |
Collapse
|
5
|
Cheng J, Li J, Xiong RG, Wu SX, Xu XY, Tang GY, Huang SY, Zhou DD, Li HB, Feng Y, Gan RY. Effects and mechanisms of anti-diabetic dietary natural products: an updated review. Food Funct 2024; 15:1758-1778. [PMID: 38240135 DOI: 10.1039/d3fo04505f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Diabetes is a global public health issue, characterized by an abnormal level of blood glucose. It can be classified into type 1, type 2, gestational, and other rare diabetes. Recent studies have reported that many dietary natural products exhibit anti-diabetic activity. In this narrative review, the effects and underlying mechanisms of dietary natural products on diabetes are summarized based on the results from epidemiological, experimental, and clinical studies. Some fruits (e.g., grape, blueberry, and cherry), vegetables (e.g., bitter melon and Lycium barbarum leaves), grains (e.g., oat, rye, and brown rice), legumes (e.g., soybean and black bean), spices (e.g., cinnamon and turmeric) and medicinal herbs (e.g., Aloe vera leaf and Nigella sativa), and vitamin C and carotenoids could play important roles in the prevention and management of diabetes. Their underlying mechanisms include exerting antioxidant, anti-inflammatory, and anti-glycation effects, inhibiting carbohydrate-hydrolyzing enzymes, enhancing insulin action, alleviating insulin resistance, modulating the gut microbiota, and so on. This review can provide people with a comprehensive knowledge of anti-diabetic dietary natural products, and support their further development into functional food to prevent and manage diabetes.
Collapse
Affiliation(s)
- Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore.
| |
Collapse
|
6
|
Cortez-Navarrete M, Pérez-Rubio KG, Escobedo-Gutiérrez MDJ. Role of Fenugreek, Cinnamon, Curcuma longa, Berberine and Momordica charantia in Type 2 Diabetes Mellitus Treatment: A Review. Pharmaceuticals (Basel) 2023; 16:ph16040515. [PMID: 37111272 PMCID: PMC10145167 DOI: 10.3390/ph16040515] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex disease that has become a major global health concern. Given the efficacy of antidiabetic drugs, pharmacological therapy is considered the first-line treatment of T2DM; however, due to their potential side effects and high costs, new and cost-effective treatments with minimal side effects are needed. Medicinal plants have been used for centuries as part of traditional medicine to treat T2DM. Among these, fenugreek, cinnamon, Curcuma longa, berberine, and Momordica charantia have demonstrated different degrees of hypoglycemic activity in clinical studies and animal models. Therefore, the aim of this review is to synthesize the mechanisms of action of five medicinal plants, as well as the experimental and clinical evidence of their hypoglycemic activity from the published literature.
Collapse
Affiliation(s)
- Marisol Cortez-Navarrete
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Karina G. Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | - Miriam de J. Escobedo-Gutiérrez
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Sierra Mojada 950, Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Makena W, Hambolu JO, Umana UE, Iliya AI, Timbuak JA, Bazabang SA. Antidiabetic and in vitro antioxidant potential of Mormodica charantia L. fruit in Experimentally Induced Wistar Rat Model of Type 2 Diabetes. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2022. [DOI: 10.3233/mnm-220035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND: The liver is a vital organ responsible for regulating the normal glucose homeostasis in the body system, and hepatic glucose metabolic dysregulation is one of the most critical elements in the pathogenesis of DM. METHOD: Twenty-five healthy rats aged seven weeks were divided into the following main groups; non-diabetic, diabetic untreated, diabetic treated with 250 mg/kg and 500 mg/kg of MC fruit, and diabetic treated with Metformin (500 mg/kg). Different models of in vitro antioxidant assays of MC fruit were also determined. RESULTS: The results showed that MC fruit has high antioxidant potential against DPPH, hydrogen peroxide, hydroxyl radicals, good reducing ferric power, significant Inhibition of lipid peroxidation and total antioxidant activities. The FBG levels decreased significantly in MC fruit treatment groups compared to diabetes control (DC) rats. The histology of the hepatic tissue of the diabetic untreated rats revealed a marked depletion in glycogen granules and hepatic DNA. These negative features were ameliorated in the MC fruit treated rats, as consistent glycogen granule storage and improved hepatic DNA presence were observed in the MC fruit treated rats. CONCLUSION: MC fruit reduces blood glucose levels in a diabetic rat model, and it also preserves the hepatic DNA and glycogen granules. MC fruit has a significant in vitro antioxidant activity.
Collapse
Affiliation(s)
- Wusa Makena
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State, Nigeria
| | | | - Uduak Emmanuel Umana
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - James Abrak Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State, Nigeria
| | | |
Collapse
|
8
|
Fan X, Han J, Zhang F, Chen W. Red yeast rice: a functional food used to reduce hyperlipidemia. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2043894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Jun Han
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, China
| |
Collapse
|
9
|
Garbiec E, Cielecka-Piontek J, Kowalówka M, Hołubiec M, Zalewski P. Genistein-Opportunities Related to an Interesting Molecule of Natural Origin. Molecules 2022; 27:815. [PMID: 35164079 PMCID: PMC8840253 DOI: 10.3390/molecules27030815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nowadays, increasingly more attention is being paid to a holistic approach to health, in which diet contributes to disease prevention. There is growing interest in functional food that not only provides basic nutrition but has also been demonstrated to be an opportunity for the prevention of disorders. A promising functional food is soybean, which is the richest source of the isoflavone, genistein. Genistein may be useful in the prevention and treatment of such disorders as psoriasis, cataracts, cystic fibrosis, non-alcoholic fatty liver disease and type 2 diabetes. However, achievable concentrations of genistein in humans are low, and the use of soybean as a functional food is not devoid of concerns, which are related to genistein's potential side effects resulting from its estrogenic and goitrogenic effects.
Collapse
Affiliation(s)
- Ewa Garbiec
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| | - Magdalena Kowalówka
- Department of Bromatology, Faculty of Pharmacy, Poznan University of Medical Sciences, 42 Marcelińska St., 60-354 Poznan, Poland;
| | - Magdalena Hołubiec
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33 St., 60-572 Poznan, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 4 Święcickiego St., 60-780 Poznan, Poland; (E.G.); (P.Z.)
| |
Collapse
|
10
|
Makena W, Iliya AI, Hambolu JO, Timbuak JA, Umana UE, Dibal NI. Genistein and Momordica charantia L. prevent oxidative stress and upregulate proglucagon and insulin receptor mRNA in diabetic rats. Appl Physiol Nutr Metab 2021; 47:1-10. [PMID: 34432988 DOI: 10.1139/apnm-2021-0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes occurs as a result of insulin resistance and dysfunction in insulin signaling. Controlling hyperglycemia and activation of insulin signaling are important in the management of type 2 diabetes. This study aimed to evaluate the effect of genistein and Momordica charantia L. fruit (MCF) on oxidative stress, markers of inflammation, and their role in proglucagon and insulin receptor messenger RNA (mRNA) expression by real-time PCR in diabetic rats. Thirty-five albino rats were divided into 7 groups (n = 5). Group I (non-diabetic) and group II (diabetic control) were treated with distilled water, and groups III and IV received 250 mg/kg and 500 mg/kg lyophilized MCF, respectively. Groups V and VI received 10 mg/kg and 20 mg/kg genistein, respectively, while group VII received 500 mg/kg metformin. The administration lasted for 28 days. MCF and genistein significantly reduced interleukin (IL)-1β and tumor necrosis factor alpha (TNF-α) levels, which were elevated in the serum of diabetic rats. Treatment with MCF and genistein significantly increased the expression of proglucagon mRNA in the small intestine and insulin receptor mRNA in the liver of diabetic rats. In conclusion, MCF and genistein ameliorate type 2 diabetes complications by preventing the loss of insulin-positive cells, inhibiting IL-1β and TNF-α, and upregulating proglucagon and insulin receptor mRNA expression. Novelty: MCF and genistein have an inhibitory effect on diabetic induced IL-1β and TNF-α production. MCF and genistein upregulate proglucagon and insulin receptor mRNA expression.
Collapse
Affiliation(s)
- Wusa Makena
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State, Nigeria
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | | | - James Abrak Timbuak
- Department of Human Anatomy, Yusuf Maitama Sule University, Kano, Kano State, Nigeria
| | - Uduak Emmanuel Umana
- Department of Human Anatomy, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Nathan Isaac Dibal
- Department of Human Anatomy, University of Maiduguri, Maiduguri, Borno State, Nigeria
| |
Collapse
|
11
|
Plants Secondary Metabolites as Blood Glucose-Lowering Molecules. Molecules 2021; 26:molecules26144333. [PMID: 34299610 PMCID: PMC8307461 DOI: 10.3390/molecules26144333] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recently, significant advances in modern medicine and therapeutic agents have been achieved. However, the search for effective antidiabetic drugs is continuous and challenging. Over the past decades, there has been an increasing body of literature related to the effects of secondary metabolites from botanical sources on diabetes. Plants-derived metabolites including alkaloids, phenols, anthocyanins, flavonoids, stilbenoids, saponins, tannins, polysaccharides, coumarins, and terpenes can target cellular and molecular mechanisms involved in carbohydrate metabolism. In addition, they can grant protection to pancreatic beta cells from damage, repairing abnormal insulin signaling, minimizing oxidative stress and inflammation, activating AMP-activated protein kinase (AMPK), and inhibiting carbohydrate digestion and absorption. Studies have highlighted many bioactive naturally occurring plants' secondary metabolites as candidates against diabetes. This review summarizes the current knowledge compiled from the latest studies published during the past decade on the mechanism-based action of plants-derived secondary metabolites that can target various metabolic pathways in humans against diabetes. It is worth mentioning that the compiled data in this review will provide a guide for researchers in the field, to develop candidates into environment-friendly effective, yet safe antidiabetics.
Collapse
|
12
|
Wickramasinghe ASD, Kalansuriya P, Attanayake AP. Herbal Medicines Targeting the Improved β-Cell Functions and β-Cell Regeneration for the Management of Diabetes Mellitus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2920530. [PMID: 34335803 PMCID: PMC8298154 DOI: 10.1155/2021/2920530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022]
Abstract
There is an increasing trend of investigating natural bioactive compounds targeting pancreatic β-cells for the prevention/treatment of diabetes mellitus (DM). With the exploration of multiple mechanisms by which β-cells involve in the pathogenesis of DM, herbal medicines are gaining attention due to their multitasking ability as evidenced by traditional medicine practices. This review attempts to summarize herbal medicines with the potential for improvement of β-cell functions and regeneration as scientifically proven by in vivo/in vitro investigations. Furthermore, attempts have been made to identify the mechanisms of improving the function and regeneration of β-cells by herbal medicines. Relevant data published from January 2009 to March 2020 were collected by searching electronic databases "PubMed," "ScienceDirect," and "Google Scholar" and studied for this review. Single herbal extracts, polyherbal mixtures, and isolated compounds derived from approximately 110 medicinal plants belonging to 51 different plant families had been investigated in recent years and found to be targeting β-cells. Many herbal medicines showed improvement of β-cell function as observed through homeostatic model assessment-β-cell function (HOMA-β). Pancreatic β-cell regeneration as observed in histopathological and immunohistochemical studies in terms of increase of size and number of functional β-cells was also prominent. Increasing β-cell mass via expression of genes/proteins related to antiapoptotic actions and β-cell neogenesis/proliferation, increasing glucose-stimulated insulin secretion via activating glucose transporter-2 (GLUT-2) receptors, and/or increasing intracellular Ca2+ levels were observed upon treatment of some herbal medicines. Some herbal medicines acted on various insulin signaling pathways. Furthermore, many herbal medicines showed protective effects on β-cells via reduction of oxidative stress and inflammation. However, there are many unexplored avenues. Thus, further investigations are warranted in elucidating mechanisms of improving β-cell function and mass by herbal medicines, their structure-activity relationship (SAR), and toxicities of these herbal medicines.
Collapse
Affiliation(s)
| | - Pabasara Kalansuriya
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | | |
Collapse
|
13
|
Zhang S, Xu M, Zhang W, Liu C, Chen S. Natural Polyphenols in Metabolic Syndrome: Protective Mechanisms and Clinical Applications. Int J Mol Sci 2021; 22:ijms22116110. [PMID: 34204038 PMCID: PMC8201163 DOI: 10.3390/ijms22116110] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Metabolic syndrome (MetS) is a chronic disease, including abdominal obesity, dyslipidemia, hyperglycemia, and hypertension. It should be noted that the occurrence of MetS is closely related to oxidative stress-induced mitochondrial dysfunction, ectopic fat accumulation, and the impairment of the antioxidant system, which in turn further aggravates the intracellular oxidative imbalance and inflammatory response. As enriched anti-inflammatory and antioxidant components in plants, natural polyphenols exhibit beneficial effects, including improving liver fat accumulation and dyslipidemia, reducing blood pressure. Hence, they are expected to be useful in the prevention and management of MetS. At present, epidemiological studies indicate a negative correlation between polyphenol intake and MetS incidence. In this review, we summarized and discussed the most promising natural polyphenols (including flavonoid and non-flavonoid drugs) in the precaution and treatment of MetS, including their anti-inflammatory and antioxidant properties, as well as their regulatory functions involved in glycolipid homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Siyu Chen
- Correspondence: ; Tel./Fax: +86-25-86185645
| |
Collapse
|