1
|
Khan A, Nichakornpong N, Wongsalam T, Prathumrat P, Likitaporn C, Kasemsiri P, Okhawilai M. Development of green synthesised AgNPs decorated on MWCNT modified guar gum-based self-healing hydrogel for strain sensors. Sci Rep 2024; 14:29715. [PMID: 39613847 DOI: 10.1038/s41598-024-81085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024] Open
Abstract
Flexible conductive hydrogel strain sensors are gaining popularity due to their exceptional stretchability, sensitivity, and potential for wearable devices. However, their widespread use is hindered by significant issues, such as poor electrical conductivity and weak response time. To address these challenges, new hydrogels based on guar gum, borax, and glycerol have been fabricated via a green synthesis technique. These hydrogels were reinforced with functionalised multiwalled carbon nanotubes (f-MWCNTs) and silver nanoparticle decorated multiwalled carbon nanotubes (AgNP-MWCNTs). The resulting conductive hydrogels exhibited a self-healing capability of 83.2% and effective strain sensing with a gauge factor of 6.58. The incorporation of AgNP-MWCNTs significantly improved the electrical conductivity up to 3.05 ± 0.02 S m- 1, thanks to the tunnelling effect between f-MWCNTs and the synergic interaction of AgNP-MWCNTs. Moreover, the hydrogel sensors displayed excellent durability, enduring 3000 cycles of tensile loading and unloading at 50% strain. This innovative use of green design principles offers a straightforward, cost-effective, and environmentally friendly process for producing high-performance soft materials. These materials hold significant promise for various practical applications, including artificial skins, flexible electronics, and healthcare monitoring, highlighting the high relevance and impact of this research.
Collapse
Affiliation(s)
- Aamir Khan
- Nanoscience and Technology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nichakan Nichakornpong
- Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tawan Wongsalam
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerawat Prathumrat
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chutiwat Likitaporn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pornnapa Kasemsiri
- Sustainable Infrastructure Research and Development Center, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Manunya Okhawilai
- Nanoscience and Technology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Responsive Wearable Materials, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Sun S, Wang Q, Zhang B, Cui Y, Si X, Wang G, Wang J, Xu H, Yuan B, Peng C. Vancomycin-Loaded in situ Gelled Hydrogel as an Antibacterial System for Enhancing Repair of Infected Bone Defects. Int J Nanomedicine 2024; 19:10227-10245. [PMID: 39411352 PMCID: PMC11476785 DOI: 10.2147/ijn.s448876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/19/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose During treatment of infected bone defects, control of infection is necessary for effective bone repair, and hence controlled topical application of antibiotics is required in clinical practice. In this study, a biodegradable drug delivery system with in situ gelation at the site of infection was prepared by integrating vancomycin into a polyethylene glycol/oxidized dextran (PEG/ODEX) hydrogel matrix. Methods In this work, PEG/ODEX hydrogels were prepared by Schiff base reaction, and vancomycin was loaded into them to construct a drug delivery system with controllable release and degradability. We first examined the microstructure, degradation time and drug release of the hydrogels. Then we verified the biocompatibility and in vitro ability of the release system. Finally, we used a rat infected bone defect model for further experiments. Results The results showed that this antibacterial system could be completely biodegradable in vivo for 56 days, and its degradation products did not cause specific inflammatory response. The cumulative release of vancomycin from the antibacterial system was 58.3% ± 3.8% at 14 days and 78.4% ± 3.2% at 35 days. The concentration of vancomycin in the surrounding environment was about 1.2 mg/mL, which can effectively remove bacteria. Further studies in vivo showed that the antibacterial system cleared the infection and accelerated repair of infected bone defects in the femur of rats. There was no infection in rats after 8 weeks of treatment. The 3D image analysis of the experimental group showed that the bone volume fraction (BV/TV) was 1.39-fold higher (p < 0.001), the trabecular number (Tb.N) was 1.31-fold higher (p < 0.05), and the trabecular separation (Tb.Sp) was 0.58-fold higher than those of the control group (p < 0.01). Conclusion In summary, this study clearly demonstrates that a clinical strategy based on biological materials can provide an innovative and effective approach to treatment of infected bone defects.
Collapse
Affiliation(s)
- Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Qian Wang
- Department of Otolaryngology, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Bin Zhang
- Department of Spinal Surgery, The 964th Hospital of PLA Joint Logistic Support Force, Changchun, People’s Republic of China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xinghui Si
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, People’s Republic of China
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Baoming Yuan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuangang Peng
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
3
|
George N, Devi DG. Phytonano silver for cosmetic formulation- synthesis, characterization, and assessment of antimicrobial and antityrosinase potential. DISCOVER NANO 2024; 19:65. [PMID: 38619662 PMCID: PMC11018589 DOI: 10.1186/s11671-024-04008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Novel formulations of silver nanoparticles remain exciting if it is applicable for cosmetic purposes. This study proposes a value-added brand-new nanomaterial for improving skin complexion by inhibiting melanin development. This work aims to develop cost effective, efficient, natural silver nanoparticles phytomediated by aqueous extract of leaf sheath scales of Cocos nucifera (Cn-AgNPs) having potential as tyrosinase inhibitors hindering melanin synthesis. The formation of Cn-AgNPs was assessed spectrophotometrically and confirmed by the sharp SPR spectrum at 425 nm. The chemical composition profiling was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. The morphology was confirmed by Field Emission Scanning Electron Microscopy (FESEM) and the thermal stability was assessed by Thermogravimetric analysis (TGA). Pharmacological application studies supported the materialization of Cn-AgNPs with significant antityrosinase potential and considerably improved antibacterial and antioxidant properties. Cn-AgNPs showed potential antibacterial effects against gram-positive and negative strains, including prominent infectious agents of the skin. Antioxidant capacity was confirmed with an IC50 of 57.8 μg/mL by DPPH radical scavenging assay. Furthermore, in vitro melanin content determination was performed using SK-MEL cells. Cell line studies proved that Cn-AgNPs decrease the melanin content of cells. The IC50 value obtained was 84.82 μg/mL. Hence Cn-AgNPs is proposed to be acting as a whitening agent through lessening cellular melanin content and as a significant inhibitor of tyrosinase activity. The antioxidant properties and antibacterial effects can contribute to skin rejuvenation and can prevent skin infections as well. This evidence proposes the development of a new nanostructured pharmaceutical and cosmetic formulation from Cocos nucifera leaf sheath scales.
Collapse
Affiliation(s)
- Neethu George
- Department of Biochemistry, Pazhassiraja College, Pulpally, Wayanad, Kerala, 673579, India
| | - D Gayathri Devi
- Department of Life Sciences, University of Calicut, Malappuram, Kerala, 673635, India.
| |
Collapse
|
4
|
Omidian H, Chowdhury SD, Wilson RL. Advancements and Challenges in Hydrogel Engineering for Regenerative Medicine. Gels 2024; 10:238. [PMID: 38667657 PMCID: PMC11049258 DOI: 10.3390/gels10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
This manuscript covers the latest advancements and persisting challenges in the domain of tissue engineering, with a focus on the development and engineering of hydrogel scaffolds. It highlights the critical role of these scaffolds in emulating the native tissue environment, thereby providing a supportive matrix for cell growth, tissue integration, and reducing adverse reactions. Despite significant progress, this manuscript emphasizes the ongoing struggle to achieve an optimal balance between biocompatibility, biodegradability, and mechanical stability, crucial for clinical success. It also explores the integration of cutting-edge technologies like 3D bioprinting and biofabrication in constructing complex tissue structures, alongside innovative materials and techniques aimed at enhancing tissue growth and functionality. Through a detailed examination of these efforts, the manuscript sheds light on the potential of hydrogels in advancing regenerative medicine and the necessity for multidisciplinary collaboration to navigate the challenges ahead.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (S.D.C.); (R.L.W.)
| | | | | |
Collapse
|
5
|
Rajesh K, Pitchiah S, Kannan K, Suresh V. Biosynthesis of Silver Nanoparticles From Marine Actinobacterium Micromonospora sp. and Their Bioactive Potential. Cureus 2024; 16:e53870. [PMID: 38465060 PMCID: PMC10924685 DOI: 10.7759/cureus.53870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Background The biosynthesis of nanoparticles represents a rapid, environmentally friendly, cost-effective, and straightforward technology. This approach allows for the production of nanoparticles with a wide range of chemical compositions, sizes, shapes, high uniformity, and scalability. One of the principal advantages of biogenic nanoparticles is their water solubility and compatibility with biological systems. Biologically synthesized nanoparticles have demonstrated superior efficiency compared to conventionally synthesized particles. Among biosynthesis, microbial-mediated biosynthesis is a promising one that has a selectively reducing ability on specific metal ions through electron transfer. Objectives Evaluation of antimicrobial and antioxidant activity of silver nanoparticle synthesized by actinobacteria Micromonospora sp. which is isolated from marine environment. Materials and methods In this study, actinobacteria were isolated from the marine sediment using the spread plate method. The isolates were identified based on morphological observation, cell wall amino acids, sugar analysis, and micromorphological analysis. The silver nanoparticle synthesis from microbes and their inhibition against clinical pathogens have been evaluated by the disc diffusion method. Antioxidant efficiency was evaluated in terms of total antioxidant activity through ammonium molybdenum assay. Results A total of five isolates were isolated from the sediment sample. The cell-free extract of MBIT-MSA4 can synthesize silver nanoparticles that have potential antimicrobial activity against the clinical pathogens Streptococcus mutans at a zone of inhibition 6 mm, 10 mm inhibition zone of Klebsiella pneumonia, and 8 mm zone of inhibition of Staphylococcus aureus. Also, it has significant antioxidant activity up to 73% of free radical inhibition. Conclusion Marine microbial-mediated biosynthesized silver nanoparticles have potential antimicrobial activity against S. mutans and methicillin-resistant Staphylococcus aureus (MRSA) and inhibit the oxidation process through antioxidant activity. This enhanced efficient biosynthesised nanoparticle has significantly reduced the concentration of free radicals caused by pathogens.
Collapse
Affiliation(s)
- Keshav Rajesh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Sivaperumal Pitchiah
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Kamala Kannan
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| | - Vasugi Suresh
- Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Eivazzadeh-Keihan R, Sadat Z, Lalebeigi F, Naderi N, Panahi L, Ganjali F, Mahdian S, Saadatidizaji Z, Mahdavi M, Chidar E, Soleimani E, Ghaee A, Maleki A, Zare I. Effects of mechanical properties of carbon-based nanocomposites on scaffolds for tissue engineering applications: a comprehensive review. NANOSCALE ADVANCES 2024; 6:337-366. [PMID: 38235087 PMCID: PMC10790973 DOI: 10.1039/d3na00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Sadat
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Farnaz Lalebeigi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Nooshin Naderi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Leila Panahi
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Fatemeh Ganjali
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Sakineh Mahdian
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Zahra Saadatidizaji
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Elham Chidar
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Erfan Soleimani
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran P.O. Box 14395-1561 Tehran Iran
| | - Ali Maleki
- Department of Chemistry, Catalysts and Organic Synthesis Research Laboratory, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd Shiraz 7178795844 Iran
| |
Collapse
|
7
|
Sandhu A, Bhatia T. Hydrogels: From Design to Applications in Forensic Investigations. ChemistrySelect 2023. [DOI: 10.1002/slct.202204228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Anuradha Sandhu
- Department of Forensic science School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India 144411
| | - Tejasvi Bhatia
- Department of Forensic science School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab India 144411
| |
Collapse
|
8
|
Vanoli V, Delleani S, Casalegno M, Pizzetti F, Makvandi P, Haugen H, Mele A, Rossi F, Castiglione F. Hyaluronic acid-based hydrogels: Drug diffusion investigated by HR-MAS NMR and release kinetics. Carbohydr Polym 2022; 301:120309. [DOI: 10.1016/j.carbpol.2022.120309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
|
9
|
Saravanakumar K, Park S, Santosh SS, Ganeshalingam A, Thiripuranathar G, Sathiyaseelan A, Vijayasarathy S, Swaminathan A, Priya VV, Wang MH. Application of hyaluronic acid in tissue engineering, regenerative medicine, and nanomedicine: A review. Int J Biol Macromol 2022; 222:2744-2760. [DOI: 10.1016/j.ijbiomac.2022.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
10
|
Franco D, Calabrese G, Guglielmino SPP, Conoci S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022; 10:microorganisms10091778. [PMID: 36144380 PMCID: PMC9503339 DOI: 10.3390/microorganisms10091778] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/21/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
The growing increase in antibiotic-resistant bacteria has led to the search for new antibacterial agents capable of overcoming the resistance problem. In recent years, nanoparticles (NPs) have been increasingly used to target bacteria as an alternative to antibiotics. The most promising nanomaterials for biomedical applications are metal and metal oxide NPs, due to their intrinsic antibacterial activity. Although NPs show interesting antibacterial properties, the mechanisms underlying their action are still poorly understood, limiting their use in clinical applications. In this review, an overview of the mechanisms underlying the antibacterial activity of metal and metal oxide NPs will be provided, relating their efficacy to: (i) bacterial strain; (ii) higher microbial organizations (biofilm); (iii) and physico-chemical properties of NPs. In addition, bacterial resistance strategies will be also discussed to better evaluate the feasibility of the different treatments adopted in the clinical safety fields. Finally, a wide analysis on recent biomedical applications of metal and metal oxide NPs with antibacterial activity will be provided.
Collapse
Affiliation(s)
- Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Correspondence:
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
- Department of Chemistry ‘‘Giacomo Ciamician’’, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- LabSense Beyond Nano, URT Department of Physic, National Research Council (CNR), Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
11
|
Snetkov P, Rogacheva E, Kremleva A, Morozkina S, Uspenskaya M, Kraeva L. In-Vitro Antibacterial Activity of Curcumin-Loaded Nanofibers Based on Hyaluronic Acid against Multidrug-Resistant ESKAPE Pathogens. Pharmaceutics 2022; 14:pharmaceutics14061186. [PMID: 35745759 PMCID: PMC9227118 DOI: 10.3390/pharmaceutics14061186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Bacterial infections have accompanied humanity throughout its history and became vitally important in the pandemic area. The most pathogenic bacteria are multidrug-resistant strains, which have become widespread due to their natural biological response to the use of antibiotics, including uncontrolled use. The current challenge is finding highly effective antibacterial agents of natural origin, which, however, have low solubility and consequently poor bioavailability. Curcumin, derived from Curcuma longa, is an example of a natural biologically active agent with a wide spectrum of biological effects, particularly against Gram-positive bacteria. However, curcumin exhibits extremely low antibacterial activity against Gram-negative bacteria. Curcumin’s hydrophobicity limits its use in medicine. As such, various polymeric systems have been used, especially biopolymer-based electrospun nanofibers. In the present study, the technological features of the fabrication of curcumin-loaded hyaluronic acid-based nanofibers are discussed in detail, their morphological characteristics, wettability, physico-chemical properties, and curcumin release profiles are demonstrated, and their antibacterial activity against multi-drug resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are evaluated. It is noteworthy that the fibers containing a stable HA–curcumin complex showed high antibacterial activity against both Gram-positive and Gram-negative bacteria, which is an undeniable advantage. It is expected that the results of this work will contribute to the development of antibacterial drugs for topical and internal use with high efficacy and considerably lower side effects.
Collapse
Affiliation(s)
- Petr Snetkov
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, bldg. A, 197101 St. Petersburg, Russia; (S.M.); (M.U.)
- Correspondence:
| | - Elizaveta Rogacheva
- Saint-Petersburg Pasteur Institute, Street Mira, 14, 197101 St. Petersburg, Russia; (E.R.); (L.K.)
| | - Arina Kremleva
- Institute of Advanced Data Transfer Systems, ITMO University, Kronverkskiy Prospekt, 49, bldg. A, 197101 St. Petersburg, Russia;
| | - Svetlana Morozkina
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, bldg. A, 197101 St. Petersburg, Russia; (S.M.); (M.U.)
| | - Mayya Uspenskaya
- Center of Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49, bldg. A, 197101 St. Petersburg, Russia; (S.M.); (M.U.)
| | - Liudmila Kraeva
- Saint-Petersburg Pasteur Institute, Street Mira, 14, 197101 St. Petersburg, Russia; (E.R.); (L.K.)
| |
Collapse
|
12
|
Zheng BD, Ye J, Yang YC, Huang YY, Xiao MT. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing. Carbohydr Polym 2022; 275:118770. [PMID: 34742452 DOI: 10.1016/j.carbpol.2021.118770] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Because the wound is difficult to heal, repeated bacterial infection will lead to complex clinical problems. Therefore, it is necessary to find an effective method to strengthen the healing process and resist bacterial infection. Hydrogels have many advantages, such as injectability and self-healing under physiological conditions, so they have been widely studied in recent years. Hydrogels can keep the wound moist and promote the wound healing. In addition, the growth of bacteria can be obviously inhibited by hydrogels themself or by doping some antibacterial active substances. Based on this, herein, this review highlighted the preparation and properties of different polysaccharide-based injectable hydrogels, and discuss their biological applications in antibacterial therapy for wound healing in recent years.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yu-Cheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| |
Collapse
|
13
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|