1
|
Yamauchi J, Raghavan D, Jweehan D, Oygen S, Marineci S, Hall IE, Molnar MZ. Kidney Transplant Outcomes in Amyloidosis: US National Database Study. Transplantation 2025; 109:536-548. [PMID: 39192474 DOI: 10.1097/tp.0000000000005191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND We aimed to assess contemporary transplant outcomes among kidney recipients with amyloidosis, as the treatment and prognosis of amyloidosis have shown improvement over time. METHODS Using the US Organ Procurement and Transplantation Network database, we initially evaluated the changes in patient and graft survival among kidney recipients with amyloidosis from 2002 to 2021. We then compared transplant outcomes between recipients with amyloidosis versus those with diabetic and nondiabetic causes of kidney failure, creating 1:4 matches with highly similar characteristics separately for deceased donor kidney transplant (DDKT) and living donor kidney transplant (LDKT) during the last decade (2012-2021). RESULTS We identified 643 kidney recipients with amyloidosis during 2002-2021. Patient and death-censored graft survival improved over time. In the matching analysis for 207 DDKT and 166 LDKT recipients with amyloidosis during 2012-2021, patient survival was not significantly different between amyloidosis and diabetes groups in both DDKT (log-rank, P = 0.057) and LDKT ( P = 0.99). Compared with the nondiabetes group, patient survival in the amyloidosis group was not significantly different for DDKTs ( P = 0.56) but was significantly lower for LDKTs ( P = 0.04). Death-censored graft failure risk was not significantly different between amyloidosis and diabetes or nondiabetes groups for both DDKTs ( P = 0.78 and 0.75) and LDKTs ( P = 0.40 and 0.24). CONCLUSIONS In this well-matched cohort study, we found no significant differences in patient and graft survival between kidney recipients with amyloidosis and those with diabetes. Similarly, these outcomes were not significantly different between those with amyloidosis versus nondiabetic causes, except for patient survival of LDKT recipients.
Collapse
Affiliation(s)
- Junji Yamauchi
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
- Department of Rare Diseases Research, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan
- Division of Neurology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Divya Raghavan
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Duha Jweehan
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Suayp Oygen
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Silviana Marineci
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Isaac E Hall
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| | - Miklos Z Molnar
- Department of Internal Medicine, Division of Nephrology & Hypertension, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, UT
| |
Collapse
|
2
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
3
|
Nicolela Susanna F, Pavesio C. A review of ocular adverse events of biological anti-TNF drugs. J Ophthalmic Inflamm Infect 2020; 10:11. [PMID: 32337619 PMCID: PMC7184065 DOI: 10.1186/s12348-020-00202-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
The recent introduction of biological agents has revolutionized the treatment of chronic immune-inflammatory diseases; however, this new therapy did not come without significant side effects.Through large controlled studies indicating decrease in the number of uveitis flares, the role of TNF inhibitors therapy for non-infectious uveitis gained more ground. Paradoxically to its therapeutic effect, there are reports associating these drugs with the onset or recurrence of inflammatory eye disease.A number of studies have suggested possible roles for anti-TNF-α agents in precipitating or worsening an underlying inflammatory process, including the hypothesis of a disequilibrium in cytokine balance, but to date the mechanisms responsible for these adverse events are not fully understood.A PubMed literature search was performed using the following terms: ophthalmic complication, uveitis, inflammatory eye disease, optic neuritis, neuropathy, adverse events, anti-TNF, TNF alpha inhibitor, infliximab, etanercept, adalimumab, golimumab, certolizumab, and biologics. The data presented in this study was mainly derived from the use of TNF inhibitors in rheumatology, essentially because these drugs have been used for a longer period in this medical field.Many of the ocular adverse events reported on this review may be considered a paradoxical effect of anti-TNF therapy. We found a variety of data associating new onset of uveitis with anti-TNF therapy for rheumatic conditions, predominantly under etanercept.In conclusion, although there is increasing data on ocular adverse events, it remains to be seen whether the suggested link between TNF inhibitors and the onset of ocular inflammation is substantiated by more quality data. Nevertheless, the awareness of potential treatment side effects with anti-TNF should be highlighted.
Collapse
Affiliation(s)
| | - Carlos Pavesio
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| |
Collapse
|
4
|
Molecular imaging of inflammation - Current and emerging technologies for diagnosis and treatment. Pharmacol Ther 2020; 211:107550. [PMID: 32325067 DOI: 10.1016/j.pharmthera.2020.107550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022]
Abstract
Inflammation is a key factor in multiple diseases including primary immune-mediated inflammatory diseases e.g. rheumatoid arthritis but also, less obviously, in many other common conditions, e.g. cardiovascular disease and diabetes. Together, chronic inflammatory diseases contribute to the majority of global morbidity and mortality. However, our understanding of the underlying processes by which the immune response is activated and sustained is limited by a lack of cellular and molecular information obtained in situ. Molecular imaging is the visualization, detection and quantification of molecules in the body. The ability to reveal information on inflammatory biomarkers, pathways and cells can improve disease diagnosis, guide and monitor therapeutic intervention and identify new targets for research. The optimum molecular imaging modality will possess high sensitivity and high resolution and be capable of non-invasive quantitative imaging of multiple disease biomarkers while maintaining an acceptable safety profile. The mainstays of current clinical imaging are computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US) and nuclear imaging such as positron emission tomography (PET). However, none of these have yet progressed to routine clinical use in the molecular imaging of inflammation, therefore new approaches are required to meet this goal. This review sets out the respective merits and limitations of both established and emerging imaging modalities as clinically useful molecular imaging tools in addition to potential theranostic applications.
Collapse
|
5
|
Elemam NM, Hannawi S, Maghazachi AA. Role of Chemokines and Chemokine Receptors in Rheumatoid Arthritis. Immunotargets Ther 2020; 9:43-56. [PMID: 32211348 PMCID: PMC7074856 DOI: 10.2147/itt.s243636] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases and a prototypic inflammatory disease, affecting the small joints of the hands and feet. Chemokines and chemokine receptors play a critical role in RA pathogenesis via immune cells recruitment. Several chemokines and chemokine receptors are abundant in the peripheral blood and in the local inflamed joints of RA. Furthermore, synthetic and biologics disease modifying anti rheumatic drugs have been reported to affect chemokines expression. Thus, many studies have focused on targeting chemokines and chemokine receptors, where some have shown positive promising results. However, most of the chemokine blockers in human trials of RA treatment displayed some failures that can be attributed to several reasons in their structures and binding affinities. Nevertheless, targeting chemokines will continue to be under development, in order to improve their therapeutic potentials in RA and other autoimmune diseases. In this review we provide an up-to-date knowledge regarding the role of chemokines and chemokine receptors in RA with an emphasis on their activities on immune cells. We also discussed the effects of drugs targeting those molecules in RA. This knowledge might provide impetus for developing new therapeutic modalities to treat this chronic disease.
Collapse
Affiliation(s)
- Noha Mousaad Elemam
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Suad Hannawi
- Ministry of Health and Prevention, Department of Rheumatology, Dubai, United Arab Emirates
| | - Azzam A Maghazachi
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
6
|
De los Santos MI, Bacos DM, Bernal SD. WITHDRAWN: A novel bifunctional T regulatory cell engaging (BiTE) TGF-β1/PD-L1 fusion protein with therapeutic potential for autoimmune diseases. J Transl Autoimmun 2020. [DOI: 10.1016/j.jtauto.2020.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
7
|
Royzman D, Andreev D, Stich L, Rauh M, Bäuerle T, Ellmann S, Boon L, Kindermann M, Peckert K, Bozec A, Schett G, Steinkasserer A, Zinser E. Soluble CD83 Triggers Resolution of Arthritis and Sustained Inflammation Control in IDO Dependent Manner. Front Immunol 2019; 10:633. [PMID: 31001257 PMCID: PMC6455294 DOI: 10.3389/fimmu.2019.00633] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Interference with autoimmune-mediated cytokine production is a key yet poorly developed approach to treat autoimmune and inflammatory diseases such as rheumatoid arthritis. Herein, we show that soluble CD83 (sCD83) enhances the resolution of autoimmune antigen-induced arthritis (AIA) by strongly reducing the expression levels of cytokines such as IL-17A, IFNγ, IL-6, and TNFα within the joints. Noteworthy, also the expression of RANKL, osteoclast differentiation, and joint destruction was significantly inhibited by sCD83. In addition, osteoclasts which were cultured in the presence of synovial T cells, derived from sCD83 treated AIA mice, showed a strongly reduced number of multinuclear large osteoclasts compared to mock controls. Enhanced resolution of arthritis by sCD83 was mechanistically based on IDO, since inhibition of IDO by 1-methyltryptophan completely abrogated sCD83 effects on AIA. Blocking experiments, using anti-TGF-β antibodies further revealed that also TGF-β is mechanistically involved in the sCD83 induced reduction of bone destruction and cartilage damage as well as enhanced resolution of inflammation. Resolution of arthritis was associated with increased numbers of regulatory T cells, which are induced in a sCD83-IDO-TGF-β dependent manner. Taken together, sCD83 represents an interesting approach for downregulating cytokine production, inducing regulatory T cells and inducing resolution of autoimmune arthritis.
Collapse
MESH Headings
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/immunology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Cytokines/immunology
- Female
- Immunoglobulins/immunology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Inflammation/drug therapy
- Inflammation/immunology
- Inflammation/pathology
- Joints/immunology
- Joints/pathology
- Membrane Glycoproteins/immunology
- Mice
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Solubility
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transforming Growth Factor beta/antagonists & inhibitors
- Transforming Growth Factor beta/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- CD83 Antigen
Collapse
Affiliation(s)
- Dmytro Royzman
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Darja Andreev
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lena Stich
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Markus Kindermann
- Department of Internal Medicine 1, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katrin Peckert
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Elisabeth Zinser
- Department of Immune Modulation, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Zafir-Lavie I, Miari R, Sherbo S, Krispel S, Tal O, Liran A, Shatil T, Badinter F, Goltsman H, Shapir N, Benhar I, Neil GA, Panet A. Sustained secretion of anti-tumor necrosis factor α monoclonal antibody from ex vivo genetically engineered dermal tissue demonstrates therapeutic activity in mouse model of rheumatoid arthritis. J Gene Med 2018; 19. [PMID: 28658716 DOI: 10.1002/jgm.2965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a symmetric inflammatory polyarthritis associated with high concentrations of pro-inflammatory, cytokines including tumor necrosis factor (TNF)-α. Adalimumab is a monoclonal antibody (mAb) that binds TNF-α, and is widely used to treat RA. Despite its proven clinical efficacy, adalimumab and other therapeutic mAbs have disadvantages, including the requirement for repeated bolus injections and the appearance of treatment limiting anti-drug antibodies. To address these issues, we have developed an innovative ex vivo gene therapy approach, termed transduced autologous restorative gene therapy (TARGT), to produce and secrete adalimumab for the treatment of RA. METHODS Helper-dependent (HD) adenovirus vector containing adalimumab light and heavy chain coding sequences was used to transduce microdermal tissues and cells of human and mouse origin ex vivo, rendering sustained secretion of active adalimumab. The genetically engineered tissues were subsequently implanted in a mouse model of RA. RESULTS Transduced human microdermal tissues implanted in SCID mice demonstrated 49 days of secretion of active adalimumab in the blood, at levels of tens of microgram per milliliter. In addition, transduced autologous dermal cells were implanted in the RA mouse model and demonstrated statistically significant amelioration in RA symptoms compared to naïve cell implantation and were similar to recombinant adalimumab bolus injections. CONCLUSIONS The results of the present study report microdermal tissues engineered to secrete active adalimumab as a proof of concept for sustained secretion of antibody from the novel ex vivo gene therapy TARGT platform. This technology may now be applied to a range of antibodies for the therapy of other diseases.
Collapse
Affiliation(s)
| | - Reem Miari
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | - Shay Sherbo
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | | | - Osnat Tal
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | - Atar Liran
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | | | | | | | - Nir Shapir
- Medgenics Medical Israel, Ltd, Misgav, Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel
| | - Garry A Neil
- Aevi Genomic Medicine, Inc., Wayne, Pennsylvania, USA
| | - Amos Panet
- Department of Biochemistry (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
9
|
Manoutcharian K, Perez-Garmendia R, Gevorkian G. Recombinant Antibody Fragments for Neurodegenerative Diseases. Curr Neuropharmacol 2018; 15:779-788. [PMID: 27697033 PMCID: PMC5771054 DOI: 10.2174/1570159x01666160930121647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/04/2016] [Accepted: 09/28/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recombinant antibody fragments are promising alternatives to full-length immunoglobulins and offer important advantages compared with conventional monoclonal antibodies: extreme specificity, higher affinity, superior stability and solubility, reduced immunogenicity as well as easy and inexpensive large-scale production. OBJECTIVE In this article we will review and discuss recombinant antibodies that are being evaluated for neurodegenerative diseases in pre-clinical models and in clinical studies and will summarize new strategies that are being developed to optimize their stability, specificity and potency for advancing their use. METHODS Articles describing recombinant antibody fragments used for neurological diseases were selected (PubMed) and evaluated for their significance. RESULTS Different antibody formats such as single-chain fragment variable (scFv), single-domain antibody fragments (VHHs or sdAbs), bispecific antibodies (bsAbs), intrabodies and nanobodies, are currently being studied in pre-clinical models of cancer as well as infectious and autoimmune diseases and many of them are being tested as therapeutics in clinical trials. Immunotherapy approaches have shown therapeutic efficacy in several animal models of Alzheimer´s disease (AD), Parkinson disease (PD), dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), Huntington disease (HD), transmissible spongiform encephalopathies (TSEs) and multiple sclerosis (MS). It has been demonstrated that recombinant antibody fragments may neutralize toxic extra- and intracellular misfolded proteins involved in the pathogenesis of AD, PD, DLB, FTD, HD or TSEs and may target toxic immune cells participating in the pathogenesis of MS. CONCLUSION Recombinant antibody fragments represent a promising tool for the development of antibody-based immunotherapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Manoutcharian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Roxanna Perez-Garmendia
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Mexico DF. Mexico
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico. 0
| |
Collapse
|
10
|
Prado MS, Bendtzen K, Andrade LEC. Biological anti-TNF drugs: immunogenicity underlying treatment failure and adverse events. Expert Opin Drug Metab Toxicol 2017; 13:985-995. [DOI: 10.1080/17425255.2017.1360280] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mônica Simon Prado
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | |
Collapse
|
11
|
Trivillin VA, Bruno LJ, Gatti DA, Stur M, Garabalino MA, Hughes AM, Castillo J, Pozzi ECC, Wentzeis L, Scolari H, Schwint AE, Feldman S. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: radiobiological studies at RA-1 Nuclear Reactor in a model of antigen-induced arthritis in rabbits. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:467-475. [PMID: 27568399 DOI: 10.1007/s00411-016-0664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Rheumatoid arthritis is a chronic autoimmune pathology characterized by the proliferation and inflammation of the synovium. Boron neutron capture synovectomy (BNCS), a binary treatment modality that combines the preferential incorporation of boron carriers to target tissue and neutron irradiation, was proposed to treat the pathological synovium in arthritis. In a previous biodistribution study, we showed the incorporation of therapeutically useful boron concentrations to the pathological synovium in a model of antigen-induced arthritis (AIA) in rabbits, employing two boron compounds approved for their use in humans, i.e., decahydrodecaborate (GB-10) and boronophenylalanine (BPA). The aim of the present study was to perform low-dose BNCS studies at the RA-1 Nuclear Reactor in the same model. Neutron irradiation was performed post intra-articular administration of BPA or GB-10 to deliver 2.4 or 3.9 Gy, respectively, to synovium (BNCS-AIA). AIA and healthy animals (no AIA) were used as controls. The animals were followed clinically for 2 months. At that time, biochemical, magnetic resonance imaging (MRI) and histological studies were performed. BNCS-AIA animals did not show any toxic effects, swelling or pain on palpation. In BNCS-AIA, the post-treatment levels of TNF-α decreased in four of six rabbits and IFN-γ levels decreased in five of six rabbits. In all cases, MRI images of the knee joint in BNCS-AIA resembled those of no AIA, with no necrosis or periarticular effusion. Synovial membranes of BNCS-AIA were histologically similar to no AIA. BPA-BNCS and GB-10-BNCS, even at low doses, would be therapeutically useful for the local treatment of rheumatoid arthritis.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Leandro J Bruno
- LABOATEM (Laboratorio de Biología Osteoarticular, Ingeniería Tisular y Terapias Emergentes), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - David A Gatti
- LABOATEM (Laboratorio de Biología Osteoarticular, Ingeniería Tisular y Terapias Emergentes), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariela Stur
- Cátedra de Diagnóstico por Imágenes, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcela A Garabalino
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina
| | - Andrea Monti Hughes
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina
| | - Jorge Castillo
- Department of Reactors, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Department of Research and Production Reactors, Comisión Nacional de Energía Atómica (CNEA), Presbítero Juan González y Aragon 15, B1802AYA, Ezeiza, Province Buenos Aires, Argentina
| | - Luis Wentzeis
- Department of Reactors, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina
| | - Hugo Scolari
- Department of Reactors, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina
| | - Amanda E Schwint
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara Feldman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- LABOATEM (Laboratorio de Biología Osteoarticular, Ingeniería Tisular y Terapias Emergentes), Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
12
|
Andreev-Andrievskiy AA, Kolosova NG, Stefanova NA, Lovat MV, Egorov MV, Manskikh VN, Zinovkin RA, Galkin II, Prikhodko AS, Skulachev MV, Lukashev AN. Efficacy of Mitochondrial Antioxidant Plastoquinonyl-decyl-triphenylphosphonium Bromide (SkQ1) in the Rat Model of Autoimmune Arthritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8703645. [PMID: 27293517 PMCID: PMC4887630 DOI: 10.1155/2016/8703645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/30/2022]
Abstract
Rheumatoid arthritis is one of the most common autoimmune diseases. Many antioxidants have been tested in arthritis, but their efficacy was, at best, marginal. In this study, a novel mitochondria-targeted antioxidant, plastoquinonyl-decyl-triphenylphosphonium bromide (SkQ1), was tested in vivo to prevent and cure experimental autoimmune arthritis. In conventional Wistar rats, SkQ1 completely prevented the development of clinical signs of arthritis if administered with food before induction. Further, SkQ1 significantly reduced the fraction of animals that developed clinical signs of arthritis and severity of pathological lesions if administration began immediately after induction of arthritis or at the onset of first symptoms (day 14 after induction). In specific pathogen-free Wistar rats, SkQ1 administered via gavage after induction of arthritis did not reduce the fraction of animals with arthritis but decreased the severity of lesions upon pathology examination in a dose-dependent manner. Efficacious doses of SkQ1 were in the range of 0.25-1.25 nmol/kg/day (0.13-0.7 μg/kg/day), which is much lower than doses commonly used for conventional antioxidants. SkQ1 promoted apoptosis of neutrophils in vitro, which may be one of the mechanisms underlying its pharmacological activity. Considering its low toxicity and the wide therapeutic window, SkQ1 may be a valuable additional therapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Alexander A. Andreev-Andrievskiy
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Maxim V. Lovat
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim V. Egorov
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily N. Manskikh
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Roman A. Zinovkin
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan I. Galkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Maxim V. Skulachev
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N. Lukashev
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology and Tropical Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
Espinoza F, Le Blay P, Coulon D, Lieu S, Munro J, Jorgensen C, Pers YM. Handgrip strength measured by a dynamometer connected to a smartphone: a new applied health technology solution for the self-assessment of rheumatoid arthritis disease activity. Rheumatology (Oxford) 2016; 55:897-901. [PMID: 26867731 DOI: 10.1093/rheumatology/kew006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The aim was to analyse the accuracy of a hand dynamometer connected to a smartphone to assess RA disease activity through the measurement of handgrip strength (HGS). METHODS Eighty-two RA patients participated in this prospective study. Three types of HGS were assessed: power (Po), pinch (Pi) and tripod (T). An interactive mobile application was developed to capture grip measures. A unilinear regression analysis between HGS and DAS28 was performed. A multivariate regression analysis to identify independent variables related to HGS was also conducted. RESULTS Sixty-three patients (76.8%) were female. Mean age was 61.3 years. At baseline, a negative correlation between the three HGS measures and DAS28 score was found, as follows: Po, r = -0.65 (95% CI: -0.76, -0.51, P < 0.001); Pi, r= -0.42 (95% CI: -0.59, -0.23, P < 0.001); and T, r = -0.47 (95% CI: -0.63, -0.29, P < 0.001). In a longitudinal analysis of 32 patients, a negative correlation between ΔPo grip and ΔDAS28 was found (r = -0.76, 95% CI: -0.88, -0.56). Po grip was independently correlated with male sex (95% CI: 1.49, 4.14, P = 0.002), whereas variables inversely correlated with Po grip were disease duration (95% CI: -2.71, -1.34, P = 0.03), patient global assessment (95% CI: -2.41, -1.1, P < 0.001) and CRP level (95% CI: -3.56, -1.08, P < 0.001). CONCLUSION HGS assessed by a hand dynamometer connected to a smartphone represents an innovative health technology solution that could prompt the self-assessment of RA disease activity in an outpatient setting.
Collapse
Affiliation(s)
- Francisco Espinoza
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpellier
| | - Pierre Le Blay
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpellier
| | | | | | | | - Christian Jorgensen
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpellier
| | - Yves-Marie Pers
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Lapeyronie University Hospital, Montpellier,
| |
Collapse
|
14
|
Wang Y, Zhu R, Xiao J, Davis JC, Mandema JW, Jin JY, Tang MT. Short-Term Efficacy Reliably Predicts Long-Term Clinical Benefit in Rheumatoid Arthritis Clinical Trials as Demonstrated by Model-Based Meta-Analysis. J Clin Pharmacol 2015; 56:835-44. [PMID: 26517752 PMCID: PMC5064749 DOI: 10.1002/jcph.668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/27/2015] [Indexed: 12/17/2022]
Abstract
The objective of this study was to assess the relationship between short‐term and long‐term treatment effects measured by the American College of Rheumatology (ACR) 50 responses and to assess the feasibility of predicting 6‐month efficacy from short‐term data. A rheumatoid arthritis (RA) database was constructed from 68 reported trials. We focused on the relationship between 3‐ and 6‐month ACR50 treatment effects and developed a generalized nonlinear model to quantify the relationship and test the impact of covariates. The ΔACR50 at 6 months strongly correlated with that at 3 months, moderately correlated with that at 2 months, and only weakly correlated with results obtained at <2 months. A scaling factor that reflected the ratio of 6‐ to 3‐month treatment effects was estimated to be 0.997, suggesting that the treatment effects at 3 months are approaching a “plateau.” Drug classes, baseline Disease Activity Score in 28 Joints, and the magnitude of control arm response did not show significant impacts on the scaling factor. This work quantitatively supports the empirical clinical development paradigm of using 3‐month efficacy data to predict long‐term efficacy and to inform the probability of clinical success based on early efficacy readout.
Collapse
Affiliation(s)
- Yehong Wang
- Clinical Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Rui Zhu
- Clinical Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Jim Xiao
- Clinical Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - John C Davis
- Clinical Sciences, Genentech, South San Francisco, CA, USA
| | | | - Jin Y Jin
- Clinical Pharmacology, Genentech, Inc, South San Francisco, CA, USA
| | - Meina T Tang
- Clinical Pharmacology, Genentech, Inc, South San Francisco, CA, USA.,Member of the American College of Clinical Pharmacology
| |
Collapse
|
15
|
Ling J, Koren G. Challenges in vaccinating infants born to mothers taking immunoglobulin biologicals during pregnancy. Expert Rev Vaccines 2015; 15:239-56. [DOI: 10.1586/14760584.2016.1115351] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Juejing Ling
- Department of Pharmaceutical Sciences, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gideon Koren
- Department of Pharmaceutical Sciences, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Smilek DE, Ehlers MR, Nepom GT. Restoring the balance: immunotherapeutic combinations for autoimmune disease. Dis Model Mech 2014; 7:503-13. [PMID: 24795433 PMCID: PMC4007402 DOI: 10.1242/dmm.015099] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autoimmunity occurs when T cells, B cells or both are inappropriately activated, resulting in damage to one or more organ systems. Normally, high-affinity self-reactive T and B cells are eliminated in the thymus and bone marrow through a process known as central immune tolerance. However, low-affinity self-reactive T and B cells escape central tolerance and enter the blood and tissues, where they are kept in check by complex and non-redundant peripheral tolerance mechanisms. Dysfunction or imbalance of the immune system can lead to autoimmunity, and thus elucidation of normal tolerance mechanisms has led to identification of therapeutic targets for treating autoimmune disease. In the past 15 years, a number of disease-modifying monoclonal antibodies and genetically engineered biologic agents targeting the immune system have been approved, notably for the treatment of rheumatoid arthritis, inflammatory bowel disease and psoriasis. Although these agents represent a major advance, effective therapy for other autoimmune conditions, such as type 1 diabetes, remain elusive and will likely require intervention aimed at multiple components of the immune system. To this end, approaches that manipulate cells ex vivo and harness their complex behaviors are being tested in preclinical and clinical settings. In addition, approved biologic agents are being examined in combination with one another and with cell-based therapies. Substantial development and regulatory hurdles must be overcome in order to successfully combine immunotherapeutic biologic agents. Nevertheless, such combinations might ultimately be necessary to control autoimmune disease manifestations and restore the tolerant state.
Collapse
Affiliation(s)
- Dawn E Smilek
- The Immune Tolerance Network, 185 Berry Street #3515, San Francisco, CA 94107, USA
| | | | | |
Collapse
|
17
|
Chu SY, Yeter K, Kotha R, Pong E, Miranda Y, Phung S, Chen H, Lee SH, Leung I, Bonzon C, Desjarlais JR, Stohl W, Szymkowski DE. Suppression of Rheumatoid Arthritis B Cells by XmAb5871, an Anti-CD19 Antibody That Coengages B Cell Antigen Receptor Complex and Fcγ Receptor IIb Inhibitory Receptor. Arthritis Rheumatol 2014; 66:1153-64. [DOI: 10.1002/art.38334] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022]
Affiliation(s)
| | - Karen Yeter
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | - Roshan Kotha
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | | | | | | | | | | | | | | | | | - William Stohl
- Los Angeles County + University of Southern California Medical Center and University of Southern California, Keck School of Medicine; Los Angeles
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW None of the medications used in clinical practice to treat sarcoidosis have been approved by the regulatory authorities. Understanding how to use disease-modifying antisarcoid drugs, however, is essential for physicians treating patients with sarcoidosis. This review summarizes the recent studies of medications used for sarcoidosis with a focus on nonsteroidal therapies. Studies from 2006 to 2013 were considered for review to update clinicians on the most relevant literature published over the last few years. RECENT FINDINGS Several recently published pieces of evidence have helped expand our ability to more appropriately sequence second-line and third-line therapies for sarcoidosis. For instance, methotrexate and azathioprine may be useful and well tolerated medications as second-line treatment. Mycophenolate mofetil might have a role in neurosarcoidosis. TNF-α blockers and other biologics seem to be well tolerated medications for the most severely affected patients. SUMMARY Corticosteroids remain the first-line therapy for sarcoidosis as many patients never require treatment or only necessitate a short treatment duration. Second-line and third-line therapies described in this article should be used in patients with progressive or refractory disease or when life-threatening complications are evident at the time of presentation.
Collapse
|
19
|
Birnbaum J, Bingham CO. Non-length-dependent and length-dependent small-fiber neuropathies associated with tumor necrosis factor (TNF)-inhibitor therapy in patients with rheumatoid arthritis: expanding the spectrum of neurological disease associated with TNF-inhibitors. Semin Arthritis Rheum 2013; 43:638-47. [PMID: 24439654 DOI: 10.1016/j.semarthrit.2013.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Small-fiber neuropathy causes severe burning pain, requires diagnostic approaches such as skin biopsy, and encompasses two subtypes based on distribution of neuropathic pain. Such biopsy-proven subtypes of small-fiber neuropathies have not been previously described as complications of tumor necrosis factor (TNF)-inhibitor therapy. METHODS We therefore characterized clinical and skin biopsy findings in three rheumatoid arthritis (RA) patients who developed small-fiber neuropathies associated with TNF-inhibitors. We also conducted a systematic review of the literature to characterize subtypes of neuropathies previously reported in association with TNF-inhibitor therapy. RESULTS Two patients presented with a "non-length-dependent" small-fiber neuropathy, experiencing unorthodox patterns of burning pain affecting the face, torso, and proximal extremities. Abnormal skin biopsy findings were limited to the proximal thigh, which is a marker of proximal-most dorsal root ganglia degeneration. In contrast, one patient presented with a "length-dependent" small-fiber neuropathy, experiencing burning pain only in the feet. Abnormal skin biopsy findings were limited to the distal feet, which is a marker of distal-most axonal degeneration. One patient developed a small-fiber neuropathy in the context of TNF-inhibitor-induced lupus. In all patients, neuropathies occurred during TNF-inhibitor-induced remission of RA disease activity and improved on withdrawal of TNF-inhibitors. CONCLUSIONS We describe a spectrum of small-fiber neuropathies not previously reported in association with TNF-inhibitor therapy, with clinical and skin biopsy findings suggestive of dorsal root ganglia as well as axonal degeneration. The development of small-fiber neuropathies during inactive joint disease and improvement of neuropathic pain upon withdrawal of TNF-inhibitor suggest a causative role of TNF-inhibitors.
Collapse
Affiliation(s)
- Julius Birnbaum
- Division of Rheumatology, The Johns Hopkins University School of Medicine, 5200 Eastern Ave, Baltimore, MD 21224.
| | - Clifton O Bingham
- Department of Neurology, The Johns Hopkins University School of Medicine, 5200 Eastern Ave, Baltimore, MD 21224
| |
Collapse
|