1
|
Silva V, Matos C. Recent updates in the therapeutic uses of Pembrolizumab: a brief narrative review. Clin Transl Oncol 2024; 26:2431-2443. [PMID: 38658461 DOI: 10.1007/s12094-024-03491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Treatment of cancer has been improved with the discovery of biological drugs that act as immune checkpoint inhibitors. In 2017, FDA designated pembrolizumab, an immune checkpoint inhibitor employed in immunotherapy, as the first tissue-agnostic cancer treatment. OBJECTIVES To review pembrolizumab's use in oncology, gather and examine the latest discoveries regarding the effectiveness of pembrolizumab in cancer treatment. METHODOLOGY A literature review was conducted through PubMed(Medline) from January 2015 to December 2023 using "pembrolizumab", "cancer" and "treatment" as search terms. RESULTS Pembrolizumab demonstrated effectiveness as primary treatment for metastatic nonsmall cell lung cancer, unresectable esophageal cancer, head and neck squamous cell carcinoma and alternative treatment for notable triple-negative breast cancer, biliary, colorectal, endometrial, renal cell, cervical carcinoma, and high microsatellite instability or mismatch repair deficiencies tumors. Pediatric applications include treatment for refractory Hodgkin lymphoma. CONCLUSION Evolving research on pembrolizumab allows a deeper clinical understanding, despite challenges as variable patient responses. Pembrolizumab has emerged as a pivotal breakthrough in cancer treatment, improving patient outcomes and safety.
Collapse
Affiliation(s)
- Vítor Silva
- Centro Hospitalar e Universitário de Coimbra, EPE, 3004-561, Coimbra, Portugal
| | - Cristiano Matos
- QLV Research Consulting, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School Pharmacy, 3046-854, Coimbra, Portugal.
| |
Collapse
|
2
|
Sutanto H, Safira A, Fetarayani D. From tumor to tolerance: A comprehensive review of immune checkpoint inhibitors and immune-related adverse events. Asia Pac Allergy 2024; 14:124-138. [PMID: 39220570 PMCID: PMC11365684 DOI: 10.5415/apallergy.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/02/2024] [Indexed: 09/04/2024] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for various malignancies by harnessing the body's immune system to target cancer cells. However, their widespread use has unveiled a spectrum of immune-related adverse events, highlighting a critical balance between antitumor immunity and autoimmunity. This review article delves into the molecular immunology of ICIs, mapping the journey from their therapeutic action to the unintended induction of immune-related adverse events. We provide a comprehensive overview of all available ICIs, including cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1, programmed death-ligand 1 inhibitors, and emerging targets, discussing their mechanisms of action, clinical applications, and the molecular underpinnings of associated immune-related adverse events. Special attention is given to the activation of autoreactive T cells, B cells, cytokine release, and the inflammatory cascade, which together contribute to the development of immune-related adverse events. Through a molecular lens, we explore the clinical manifestations of immune-related adverse events across organ systems, offering insights into diagnosis, management, and strategies to mitigate these adverse effects. The review underscores the importance of understanding the delicate interplay between enhancing antitumor responses and minimizing immune-related adverse events, aiming to guide future research and the development of next-generation ICIs with improved drug safety profiles.
Collapse
Affiliation(s)
- Henry Sutanto
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Ardea Safira
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Deasy Fetarayani
- Internal Medicine Study Program, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Chen H, Guan X, He C, Lu T, Lin X, Liao X. Current strategies for targeting HPK1 in cancer and the barriers to preclinical progress. Expert Opin Ther Targets 2024; 28:237-250. [PMID: 38650383 DOI: 10.1080/14728222.2024.2344697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Hematopoietic progenitor kinase 1 (HPK1), a 97-kDa serine/threonine Ste20-related protein kinase, functions as an intracellular negative regulator, primarily in hematopoietic lineage cells, where it regulates T cells, B cells, dendritic cells, and other immune cells. Loss of HPK1 kinase activity results in exacerbated cytokine secretion, enhanced T cell signaling, improved viral clearance, and thus increased restraint of tumor growth. These findings highlight HPK1 as a promising target for immuno-oncology treatments, culminating in the advancement of candidate compounds targeting HPK1 to clinical trials by several biotech enterprises. AREAS COVERED Through searching PubMed, Espacenet-patent search, and clinicaltrials.gov, this review provides a comprehensive analysis of HPK1, encompassing its structure and roles in various downstream signaling pathways, the consequences of constitutive activation of HPK1, and potential therapeutic strategies to treat HPK1-driven malignancies. Moreover, the review outlines the patents issued for small molecule inhibitors and clinical investigations of HPK1. EXPERT OPINION To enhance the success of tumor immunotherapy in clinical trials, it is important to develop protein degraders, allosteric inhibitors, and antibody-drug conjugates based on the crystal structure of HPK1, and to explore combination therapy approaches. Although several challenges remain, the development of HPK1 inhibitors display promising in preclinical and clinical studies.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Xiangna Guan
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Chi He
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| | - Tingting Lu
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xingyu Lin
- Zhuhai Yufan Biotechnologies Co., Ltd, Zhuhai, Guangdong, China
| | - Xuebin Liao
- State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Science, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Lin MX, Zang D, Liu CG, Han X, Chen J. Immune checkpoint inhibitor-related pneumonitis: research advances in prediction and management. Front Immunol 2024; 15:1266850. [PMID: 38426102 PMCID: PMC10902117 DOI: 10.3389/fimmu.2024.1266850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
The advent of immune-checkpoint inhibitors (ICIs) has revolutionized the treatment of malignant solid tumors in the last decade, producing lasting benefits in a subset of patients. However, unattended excessive immune responses may lead to immune-related adverse events (irAEs). IrAEs can manifest in different organs within the body, with pulmonary toxicity commonly referred to as immune checkpoint inhibitor-related pneumonitis (CIP). The CIP incidence remains high and is anticipated to rise further as the therapeutic indications for ICIs expand to encompass a wider range of malignancies. The diagnosis and treatment of CIP is difficult due to the large individual differences in its pathogenesis and severity, and severe CIP often leads to a poor prognosis for patients. This review summarizes the current state of clinical research on the incidence, risk factors, predictive biomarkers, diagnosis, and treatment for CIP, and we address future directions for the prevention and accurate prediction of CIP.
Collapse
Affiliation(s)
| | | | | | | | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sci 2024; 338:122387. [PMID: 38154609 DOI: 10.1016/j.lfs.2023.122387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
Chimeric antigen receptor-modified T (CAR-T) are genetically engineered cells to express tumor-specific antigens revolutionizing the treatment of hematologic malignancies. The hostile tumor microenvironment (TME) remains a challenge for CAR-T cell therapy in solid tumors. As a solution, combinational therapy with immune checkpoint inhibitors (ICIs) is shown to improve the safety and efficacy of CAR-T cell therapy. To avoid side effects related to the application of ICIs in combinational therapy, engineering CARs to express tumor-specific antigens may help improvement of clinical outcomes. Those CARs expressing single chain variable fragments (scFvs) or nanobodies against immune checkpoint stimulatory or inhibitory molecules, such as the programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) signaling axis are being extensively studied in various clinical trials. In this review, we discuss the significance of anti-PD-(L)1 scFv-expressing CAR-T cells in the treatment of human cancers, describing current challenges and potential strategies to overcome such predicaments in the area of cancer immunotherapy.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
6
|
Paloja K, Weiden J, Hellmeier J, Eklund AS, Reinhardt SCM, Parish IA, Jungmann R, Bastings MMC. Balancing the Nanoscale Organization in Multivalent Materials for Functional Inhibition of the Programmed Death-1 Immune Checkpoint. ACS NANO 2024; 18:1381-1395. [PMID: 38126310 PMCID: PMC10795474 DOI: 10.1021/acsnano.3c06552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Dendritic cells (DCs) regulate immune priming by expressing programmed death ligand 1 (PD-L1) and PD-L2, which interact with the inhibitory receptor PD-1 on activated T cells. PD-1 signaling regulates T cell effector functions and limits autoimmunity. Tumor cells can hijack this pathway by overexpressing PD-L1 to suppress antitumor T cell responses. Blocking this inhibitory pathway has been beneficial for the treatment of various cancer types, although only a subset of patients responds. A deepened understanding of the spatial organization and molecular interplay between PD-1 and its ligands may inform the design of more efficacious nanotherapeutics. We visualized the natural molecular PD-L1 organization on DCs by DNA-PAINT microscopy and created a template to engineer DNA-based nanoclusters presenting PD-1 at defined valencies, distances, and patterns. These multivalent nanomaterials were examined for their cellular binding and blocking ability. Our data show that PD-1 nano-organization has profound effects on ligand interaction and that the valency of PD-1 molecules modulates the effectiveness in restoring T cell function. This work highlights the power of spatially controlled functional materials to unravel the importance of multivalent patterns in the PD-1 pathway and presents alternative design strategies for immune-engineering.
Collapse
Affiliation(s)
- Kaltrina Paloja
- Programmable
Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
| | - Jorieke Weiden
- Programmable
Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
| | | | | | - Susanne C. M. Reinhardt
- Max
Planck Institute of Biochemistry, Planegg 82152, Germany
- Faculty
of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich 80539, Germany
| | - Ian A. Parish
- Peter
MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir
Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3128, Australia
| | - Ralf Jungmann
- Max
Planck Institute of Biochemistry, Planegg 82152, Germany
- Faculty
of Physics and Center for Nanoscience, Ludwig
Maximilian University, Munich 80539, Germany
| | - Maartje M. C. Bastings
- Programmable
Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale
de Lausanne, Lausanne 1015, Switzerland
- Interfaculty
Bioengineering Institute, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Shalata W, Attal ZG, Shhadi R, Abu Salman A, Abu Jama A, Shalata S, Halumi K, Yakobson A. Tolerated Re-Challenge of Immunotherapy in a Patient with ICI Associated Myocarditis: A Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1946. [PMID: 38003995 PMCID: PMC10673034 DOI: 10.3390/medicina59111946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023]
Abstract
Many different types of cancer can be treated with immunotherapy drugs called immune checkpoint inhibitors (ICIs). These drugs have altered the landscape of cancer treatment options since they function by triggering a stronger immune response to malignancy. As expected, ICIs' modification of immune regulatory controls leads to a wide range of organ/gland-specific immune-related side effects. These adverse effects are uncommonly deadly and typically improve by discontinuing treatment or administering corticosteroid drugs. As a result of a number of factors-including a lack of specificity in the clinical presentation, the possibility of overlap with other cardiovascular and general medical illnesses, difficulties in diagnosis, and a general lack of awareness-the true incidence of ICI-associated myocarditis is likely underestimated. Currently, protocols for the surveillance, diagnosis, or treatment of this condition are unclear. Several questions remain unanswered, such as how to best screen for this rare toxin, what tests should be run on patients who are suspected of having it, how to treat myocarditis once it has developed, and who is at most risk. In this article, we provide a case study of ICI-associated myocarditis and explain its key characteristics and treatment options.
Collapse
Affiliation(s)
- Walid Shalata
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zoé Gabrielle Attal
- Medical School for International Health, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rajeh Shhadi
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Amjad Abu Salman
- Cardiology Division, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Ashraf Abu Jama
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Sondos Shalata
- Nutrition Unit, Galilee Medical Center, Nahariya 22000, Israel
| | - Kais Halumi
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
| | - Alexander Yakobson
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
8
|
Liao D, Liu C, Chen S, Liu F, Li W, Shangguan D, Shi Y. Recent advances in immune checkpoint inhibitor-induced type 1 diabetes mellitus. Int Immunopharmacol 2023; 122:110414. [PMID: 37390646 DOI: 10.1016/j.intimp.2023.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 07/02/2023]
Abstract
As a new group of anticancer drugs, immune checkpoint inhibitors (ICIs) have exhibited favorable antitumor efficacy in numerous malignant tumors. Anti-cytotoxic T lymphocyte associated antigen-4 (CTLA-4), anti-programmed cell death-1 (PD-1) and anti-programmed cell death ligand-1 (PD-L1) are three kinds of ICIs widely used in clinical practice. However, ICI therapy (monotherapy or combination therapy) is always accompanied by a unique toxicity profile known as immune-related adverse events (irAEs) affecting multiple organs. The endocrine glands are common targets of irAEs induced by ICIs, which cause type 1 diabetes mellitus (T1DM) when the pancreas is affected. Although the incidence rate of ICI-induced T1DM is rare, it will always lead to an irreversible impairment of β-cells and be potentially life-threatening. Hence, it is vital for endocrinologists and oncologists to obtain a comprehensive understanding of ICI-induced T1DM and its management. In our present manuscript, we have reviewed the epidemiology, pathology and mechanism, diagnosis, management, and treatments of ICI-induced T1DM.
Collapse
Affiliation(s)
- Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Chaoyi Liu
- Department of Information, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Shanshan Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Fen Liu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Wei Li
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China
| | - Dangang Shangguan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| | - Yingrui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410011, China.
| |
Collapse
|
9
|
Yakobson A, Rouvinov K, Cohen AY, Goldstein I, Abu Saleh O, Solomon A, Dudnik Y, Shalata W. Carpal Tunnel Syndrome Associated with Immune Checkpoint Inhibitors. J Pers Med 2023; 13:1340. [PMID: 37763109 PMCID: PMC10532569 DOI: 10.3390/jpm13091340] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the therapeutic approach to diverse malignancies, leading to substantial enhancements in patient prognosis. However, along with their benefits, ICIs also increase the incidence of immune-related adverse events (irAEs). In the present paper, we highlight four cases of carpal tunnel syndrome (CTS) as an uncommon manifestation of toxicity induced by ICIs. Although diagnosed with different malignancies, the patients were undergoing ICI therapy when they developed CTS-consistent side effects accompanied by severe neuropathy. Prompt treatment with corticosteroids, intravenous immunoglobulins, or methotrexate resulted in complete symptomatic relief for all patients. This article therefore emphasizes the importance of recognizing and managing rare adverse events associated with ICI use to ensure optimal patient care.
Collapse
Affiliation(s)
- Alexander Yakobson
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Keren Rouvinov
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Aharon Y. Cohen
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Iris Goldstein
- Department of Neurology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Omar Abu Saleh
- Department of Neurology, Soroka University Medical Center, Faculty of Health Sciences, Ben Gurion University, Beer Sheva 84105, Israel
- Department of Dermatology and Venereology, The Emek Medical Centre, Afula 18341, Israel
| | - Adam Solomon
- Medical School for International Health and Sciences, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Yulia Dudnik
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Walid Shalata
- The Legacy Heritage Cancer Center & Larry Norton Institute, Soroka Medical Center, Beer Sheva 84105, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
10
|
Rui R, Zhou L, He S. Cancer immunotherapies: advances and bottlenecks. Front Immunol 2023; 14:1212476. [PMID: 37691932 PMCID: PMC10484345 DOI: 10.3389/fimmu.2023.1212476] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.
Collapse
Affiliation(s)
- Rui Rui
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China
- The Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
11
|
Nikoo M, Rabiee F, Mohebbi H, Eghbalifard N, Rajabi H, Yazdani Y, Sakhaei D, Khosravifarsani M, Akhavan-Sigari R. Nivolumab plus ipilimumab combination therapy in cancer: Current evidence to date. Int Immunopharmacol 2023; 117:109881. [PMID: 37012882 DOI: 10.1016/j.intimp.2023.109881] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy, yielding significant antitumor responses across multiple cancer types. Combination ICI therapy with anti-CTLA-4 and anti-PD-1 antibodies outperforms either antibody alone in terms of clinical efficacy. As a consequence, the U.S. Food and Drug Administration (FDA) approved ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) as the first-ever approved therapies for combined ICI in patients with metastatic melanoma. Despite the success of ICIs, treatment with checkpoint inhibitor combinations poses significant clinical challenges, such as increased rates of immune-related adverse events (irAEs) and drug resistance. Thus, identifying optimal prognostic biomarkers could help to monitor the safety and efficacy of ICIs and identify patients who may benefit the most from these treatments. In this review, we will first go over the fundamentals of the CTLA-4 and PD-1 pathways, as well as the mechanisms of ICI resistance. The results of clinical findings that evaluated the combination of ipilimumab and nivolumab are then summarized to support future research in the field of combination therapy. Finally, the irAEs associated with combined ICI therapy, as well as the underlying biomarkers involved in their management, are discussed.
Collapse
|
12
|
Wang S, Xu G, Li M, Zheng J, Wang Y, Feng X, Luo J, Wang S, Liu H, Duan W, Zhang H, Huang D, Zhao F, Nie Y, Yang J. M1 macrophage predicted efficacy of neoadjuvant camrelizumab combined with chemotherapy vs chemotherapy alone for locally advanced ESCC: A pilot study. Front Oncol 2023; 13:1139990. [PMID: 36969032 PMCID: PMC10038194 DOI: 10.3389/fonc.2023.1139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction The efficacy and safety of immunotherapy have been widely recognized in gastrointestinal-related cancers. However, the efficacy of neoadjuvant camrelizumab for locally advanced esophageal squamous cell carcinoma (ESCC) has not been firmly established. This study compared the efficacy of camrelizumab in combination with neoadjuvant DCF (docetaxel, cisplatin and fluorouracil), with DCF alone for ESCC, and exploring biomarkers related to immune infiltration of the ESCC immunotherapy response. Methods We enrolled and randomly assigned patients with stage II-IVa ESCC to two study treatments: camrelizumab combined with docetaxel, cisplatin and fluorouracil (DCF) regimen and DCF regimen alone. The tissue for multiplex immunofluorescence (mIF) was obtained before and after neoadjuvant therapy. The Response Evaluation Criteria in Solid Tumors RECIST Version 1.1 (RECIST 1.1) and Tumor Regression Grade (TRG) was used to evaluate efficacy. Results A total of 30 patients were enrolled in the study. Following neoadjuvant camrelizumab, the objective response rate (ORR) and the disease control rate (DCR) were 46.7% (7/15) and 95.7% (14/15), respectively. No patients reported complete remission, while ORR and DCR in the chemotherapy group were 26.7% (4/15) and 86.7% (13/15), respectively. R0 resection after neoadjuvant treatment was achieved in 3 out of 15 patients in the combined group and in all patients (15/15) in the chemotherapy group. In the combined group, M1-type tumor-associated macrophages and CD56dim NK cells were more abundant in responders than in non-responders (p < 0.05). A higher M1/M2 ratio was observed in responders (p < 0.05). With respect to the NGS, among the copy number amplified genes, the 11q13 amplicon (CCND1/FGF19/FGF4/FGF3) showed the highest frequency (47%, 7/15). Conclusions Neoadjuvant camrelizumab combined with chemotherapy improved ORR in locally advanced ESCC. M1-type tumor-associated macrophages and CD56dim NK cells might be utilized to predict camrelizumab efficacy.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Guanghui Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Mengbin Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jiyang Zheng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuhao Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xiangying Feng
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Jialin Luo
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shibo Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Huan Liu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Weiming Duan
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Hushan Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Depei Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Feilong Zhao
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Jianjun Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xi-jing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Department of Digestive Surgery, Xi Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
13
|
Möhn N, Mahjoub S, Duzzi L, Narten E, Grote-Levi L, Körner G, Seeliger T, Beutel G, Bollmann BA, Wirth T, Huss A, Tumani H, Grimmelmann I, Gutzmer R, Ivanyi P, Skripuletz T. Monocyte chemoattractant protein 1 as a potential biomarker for immune checkpoint inhibitor-associated neurotoxicity. Cancer Med 2023; 12:9373-9383. [PMID: 36794673 PMCID: PMC10166892 DOI: 10.1002/cam4.5695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Oncological patients can benefit substantially from treatment with immune checkpoint inhibitors (ICI). However, there is a growing awareness of immune-related adverse events (irAE). Especially ICI-mediated neurological adverse events (nAE(+)), are tough to diagnose and biomarkers to identify patients at risk are missing. METHODS A prospective register with prespecified examinations was established for ICI treated patients in December 2019. At the time of data cut-off, 110 patients were enrolled and completed the clinical protocol. Herein, cytokines and serum neurofilament light chain (sNFL) from 21 patients were analyzed. RESULTS nAE of any grade were observed in 31% of the patients (n = 34/110). In nAE(+) patients a significant increase in sNFL concentrations over time was observed. Patients with higher-grade nAE had significantly elevated serum-concentrations of monocyte chemoattractant protein 1 (MCP-1) and brain-derived neurotrophic factor (BDNF) at baseline compared to individuals without any nAE (p < 0.01 and p < 0.05). CONCLUSION Here, we identified nAE to occur more frequently than previously reported. Increase of sNFL during nAE confirms the clinical diagnosis of neurotoxicity and might be a suitable marker for neuronal damage associated with ICI therapy. Furthermore, MCP-1 and BDNF are potentially the first clinical-class nAE predictors for patients under ICI therapy.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Susann Mahjoub
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Laura Duzzi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Emily Narten
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Lea Grote-Levi
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gudrun Körner
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Tabea Seeliger
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Gernot Beutel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Thomas Wirth
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | - André Huss
- Department of Neurology, University Hospital Ulm, Ulm, Germany
| | | | | | - Ralf Gutzmer
- Skin-Cancer-Center, Hannover Medical School, Hannover, Germany
- Department of Dermatology Venerology, Allergy and Phlebology, Hannover Medical School, Minden, Germany
| | - Philipp Ivanyi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
14
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Tan S, Day D, Nicholls SJ, Segelov E. Immune Checkpoint Inhibitor Therapy in Oncology: Current Uses and Future Directions: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2022; 4:579-597. [PMID: 36636451 PMCID: PMC9830229 DOI: 10.1016/j.jaccao.2022.09.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are a major class of immuno-oncology therapeutics that have significantly improved the prognosis of various cancers, both in (neo)adjuvant and metastatic settings. Unlike other conventional therapies, ICIs elicit antitumor effects by enhancing host immune systems to eliminate cancer cells. There are 3 approved ICI classes by the U.S. Food and Drug Administration: inhibitors targeting cytotoxic T lymphocyte associated antigen 4, programmed death 1/programmed death-ligand 1, and lymphocyte-activation gene 3, with many more in development. ICIs are commonly associated with distinct toxicities, known as immune-related adverse events, which can arise during treatment or less frequently be of late onset, usually relating to excessive activation of the immune system. Acute cardiovascular immune-related adverse events such as myocarditis are rare; however, data suggesting chronic cardiovascular sequelae are emerging. This review presents the current landscape of ICIs in oncology, with a focus on important aspects relevant to cardiology.
Collapse
Affiliation(s)
- Sean Tan
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia,Monash Heart, Monash Health, Clayton, Victoria, Australia,Address for correspondence: Dr Sean Tan, Victorian Heart Institute, Monash University, Wellington Road, Victoria 3800, Australia. @_SeanXTan
| | - Daphne Day
- School of Clinical Sciences, Monash Health, Monash University, Melbourne, Victoria, Australia,Department of Oncology, Monash Health, Clayton, Victoria, Australia
| | - Stephen J. Nicholls
- Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia,Monash Heart, Monash Health, Clayton, Victoria, Australia
| | - Eva Segelov
- School of Clinical Sciences, Monash Health, Monash University, Melbourne, Victoria, Australia,Department of Oncology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Fomchenko EI, Bayley JC, Alvarez-Breckenridge C, Rhines LD, Tatsui CE. Spinal Metastases and the Evolving Role of Molecular Targeted Therapy, Chemotherapy, and Immunotherapy. Neurospine 2022; 19:978-993. [PMID: 36597635 PMCID: PMC9816609 DOI: 10.14245/ns.2244290.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/13/2022] [Indexed: 12/27/2022] Open
Abstract
Metastatic involvement of the spine is a common complication of systemic cancer progression. Surgery and external beam radiotherapy are palliative treatment modalities aiming to preserve neurological function, control pain and maintain functional status. More recently, with development of image guidance and stereotactic delivery of high doses of conformal radiation, local tumor control has improved; however recurrent or radiation refractory disease remains a significant clinical problem with limited treatment options. This manuscript represents a narrative overview of novel targeted molecular therapies, chemotherapies, and immunotherapy treatments for patients with breast, lung, melanoma, renal cell, prostate, and thyroid cancers, which resulted in improved responses compared to standard chemotherapy. We present clinical examples of excellent responses in spinal metastatic disease which have not been specifically documented in the literature, as most clinical trials evaluate treatment response based on visceral disease. This review is useful for the spine surgeons treating patients with metastatic disease as knowledge of these responses could help with timing and planning of surgical interventions, as well as promote multidisciplinary discussions, allowing development of an individualized treatment strategy to patients presenting with widespread multifocal progressive disease, where surgery could lead to suboptimal results.
Collapse
Affiliation(s)
| | - James C. Bayley
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Claudio E. Tatsui
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA,Corresponding Author Claudio E. Tatsui Department of Neurosurgery, MD Anderson Cancer Center, Houston, 1515 Holcombe Blvd, Houston, TX, USA
| |
Collapse
|
17
|
Al-Haideri M, Tondok SB, Safa SH, maleki AH, Rostami S, Jalil AT, Al-Gazally ME, Alsaikhan F, Rizaev JA, Mohammad TAM, Tahmasebi S. CAR-T cell combination therapy: the next revolution in cancer treatment. Cancer Cell Int 2022; 22:365. [DOI: 10.1186/s12935-022-02778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
AbstractIn recent decades, the advent of immune-based therapies, most notably Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer treatment. The promising results of numerous studies indicate that CAR-T cell therapy has had a remarkable ability and successful performance in treating blood cancers. However, the heterogeneity and immunosuppressive tumor microenvironment (TME) of solid tumors have challenged the effectiveness of these anti-tumor fighters by creating various barriers. Despite the promising results of this therapeutic approach, including tumor degradation and patient improvement, there are some concerns about the efficacy and safety of the widespread use of this treatment in the clinic. Complex and suppressing tumor microenvironment, tumor antigen heterogeneity, the difficulty of cell trafficking, CAR-T cell exhaustion, and reduced cytotoxicity in the tumor site limit the applicability of CAR-T cell therapy and highlights the requiring to improve the performance of this treatment. With this in mind, in the last decade, many efforts have been made to use other treatments for cancer in combination with tuberculosis to increase the effectiveness of CAR-T cell therapy, especially in solid tumors. The combination therapy results have promising consequences for tumor regression and better cancer control compared to single therapies. Therefore, this study aimed to comprehensively discuss different cancer treatment methods in combination with CAR-T cell therapy and their therapeutic outcomes, which can be a helpful perspective for improving cancer treatment in the near future.
Collapse
|
18
|
Chen L, Huang X, Xiong L, Chen W, An L, Wang H, Hong Y, Wang H. Analysis of prognostic oncogene filaggrin ( FLG) wild-type subtype and its implications for immune checkpoint blockade therapy in bladder urothelial carcinoma. Transl Androl Urol 2022; 11:1419-1432. [PMID: 36386263 PMCID: PMC9641059 DOI: 10.21037/tau-22-573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bladder urothelial carcinoma (BLCA) is one of the most common urinary tract malignant tumors. Immune checkpoint blockade (ICB) therapy has significantly progressed the treatment of BLCA. This study aimed to investigate the role of specific genetic mutations that may serve as immune biomarkers for ICB therapy in BLCA. METHODS Mutation information and expression profiles were acquired from The Cancer Genome Atlas (TCGA) database. Integrated bioinformatics analysis was carried out to explore the subtypes with poor prognosis of BLCA. Functional enrichment analysis was also conducted. The infiltrating immune cells and the prediction of ICB response between different subtypes were explored using the immuCellAI algorithm. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to explore the effect of filaggrin (FLG) knockdown in BLCA 5637 and T24 cell lines. RESULTS An overview of mutation information in BLCA patients was shown. FLG was identified to be strongly associated with the prognosis of BLCA patients and FLG wild-type was associated with poorer outcome. Prognostic FLG wild-type was divided into 2 subtypes (Sub1 and Sub2). Following an investigation of the subtypes, Sub2 of FLG wild-type was found to be associated with poorer outcome in BLCA. The differentially expressed genes (DEGs) between Sub1 and Sub2 were screened out and the DEGs were enriched in malignant tumor proliferation, DNA damage repair, and immune-related pathways. Furthermore, Sub2 of FLG wild-type was associated with infiltrated immune cells, and responded worse to ICB. Sub2 of FLG wild-type may be used as a biomarker to predict the prognosis of BLCA patients receiving ICB. The cellular experiments revealed that knockdown of FLG could suppress BLCA cell proliferation and promote apoptosis. CONCLUSIONS FLG is an oncogene that may affect the prognosis of BLCA patients through mutation. Sub2 of FLG wild-type is associated with poor prognosis and can be used to predict ICB response for BLCA treatment. This research provides a new basis and ideas for guiding the clinical application of BLCA immunotherapy.
Collapse
Affiliation(s)
- Liang Chen
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Xiaobo Huang
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Liulin Xiong
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Weinan Chen
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Lizhe An
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Huanrui Wang
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Yang Hong
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing, China
| | - Huina Wang
- Acornmed Biotechnology Co., Ltd., Beijing, China
| |
Collapse
|
19
|
Foster D, Karam I, Nadella S, Adekunle D, Meyer M, Rana M, Sokhn J. A Therapy-Terminating Event: Programmed Death-1 Inhibitor-Induced Mucositis. Cureus 2022; 14:e29377. [DOI: 10.7759/cureus.29377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2022] [Indexed: 11/05/2022] Open
|
20
|
Lou K, Feng S, Zhang G, Zou J, Zou X. Prevention and Treatment of Side Effects of Immunotherapy for Bladder Cancer. Front Oncol 2022; 12:879391. [PMID: 35669417 PMCID: PMC9164628 DOI: 10.3389/fonc.2022.879391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Bladder cancer (BC) is one of the most important tumors of the genitourinary system, associated with high morbidity and mortality rates. Over the years, various antitumor treatments have been developed, and immunotherapy is one of the most effective methods. Immunotherapy aims to activate the body’s immune system to kill cancer cells. It has been established that immunotherapy drugs can be classified into “non-targeted” and “targeted” drugs depending on their site of action. Immunotherapy is reportedly effective for BC. Even though it can attack cancer cells, it can also cause the immune system to attack healthy cells, which can occur at any time during treatment and sometimes even after immunotherapy is stopped. Importantly, different types of immunotherapies can cause different side effects. Side effects may manifest themselves as signs or as symptoms. The prevention and treatment of side effects caused by immunotherapy is an important part of cancer patient management.
Collapse
Affiliation(s)
- Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, China.,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, China.,Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
21
|
Buch SA, Baba MR. Immune-Related Adverse Events (irAEs) in Cancer, with Inputs from a Nursing Expert: A Review. Indian J Med Paediatr Oncol 2022. [DOI: 10.1055/s-0042-1742442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractImmune checkpoint inhibitors (ICPis) belong to a group of immunotherapeutic agents that act on different immune cells and tumor cells and reactivate the suppressed immune system of the host. The emergence of immunotherapy has resulted in the successful management of many malignancies. High success rates with certain advanced cancers have attributed wide importance and relevance to the use of immunotherapy. Although ICPis have gained huge popularity, their use often leads to side effects that can affect almost any system; immune-related adverse events (irAEs). These adverse events occur due to unrestrained T cell activity that unsettles the immune homeostasis of the host. Although close monitoring for toxicities controls the events on most of the occasions, the inability to diagnose them early may prove fatal on some occasions due to their subtle and nonspecific symptoms. This review summarizes in brief the usual irAEs and their management, besides a very important nursing perspective, from a nursing expert about an overall insight into the routine irAEs.
Collapse
Affiliation(s)
- Sajad Ahmad Buch
- Department of Oral Medicine and Radiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Mudasir Rashid Baba
- Yenepoya Physiotherapy College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
22
|
Zarezadeh Mehrabadi A, Roozbahani F, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Esmaeili Gouvarchin Ghaleh H. Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World J Surg Oncol 2022; 20:16. [PMID: 35027068 PMCID: PMC8756705 DOI: 10.1186/s12957-021-02486-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cancer is one of the critical issues of the global health system with a high mortality rate even with the available therapies, so using novel therapeutic approaches to reduce the mortality rate and increase the quality of life is sensed more than ever. Main body CAR-T cell therapy and oncolytic viruses are innovative cancer therapeutic approaches with fewer complications than common treatments such as chemotherapy and radiotherapy and significantly improve the quality of life. Oncolytic viruses can selectively proliferate in the cancer cells and destroy them. The specificity of oncolytic viruses potentially maintains the normal cells and tissues intact. T-cells are genetically manipulated and armed against the specific antigens of the tumor cells in CAR-T cell therapy. Eventually, they are returned to the body and act against the tumor cells. Nowadays, virology and oncology researchers intend to improve the efficacy of immunotherapy by utilizing CAR-T cells in combination with oncolytic viruses. Conclusion Using CAR-T cells along with oncolytic viruses can enhance the efficacy of CAR-T cell therapy in destroying the solid tumors, increasing the permeability of the tumor cells for T-cells, reducing the disturbing effects of the immune system, and increasing the success chance in the treatment of this hazardous disease. In recent years, significant progress has been achieved in using oncolytic viruses alone and in combination with other therapeutic approaches such as CAR-T cell therapy in pre-clinical and clinical investigations. This principle necessitates a deeper consideration of these treatment strategies. This review intends to curtly investigate each of these therapeutic methods, lonely and in combination form. We will also point to the pre-clinical and clinical studies about the use of CAR-T cell therapy combined with oncolytic viruses.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
23
|
Ishiguro S, Upreti D, Bassette M, Singam ERA, Thakkar R, Loyd M, Inui M, Comer J, Tamura M. Local immune checkpoint blockade therapy by an adenovirus encoding a novel PD-L1 inhibitory peptide inhibits the growth of colon carcinoma in immunocompetent mice. Transl Oncol 2022; 16:101337. [PMID: 34990908 PMCID: PMC8741604 DOI: 10.1016/j.tranon.2021.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022] Open
Abstract
A novel inhibitory peptide interfering with the PD-L1/PD-1 immune checkpoint pathway, dubbed PD-L1ip3, was designed. The affinity of PD-L1ip3 for PD-L1 was only a few times weaker than that of its natural ligand, PD-1. Direct treatment with PD-L1ip3 enhanced the ability of CD8+ T cells primed with cancer antigens to kill cancer cells in culture. A combination treatment including transduction into cancer cells of a gene encoding PD-L1ip3 coupled with direct administration of PD-L1ip3 in peptide form significantly attenuated the growth of murine colon carcinoma in mice.
A novel peptide that interferes with the PD-1/PD-L1 immune checkpoint pathway, termed PD-L1 inhibitory peptide 3 (PD-L1ip3), was computationally designed, experimentally validated for its specific binding to PD-L1, and evaluated for its antitumor effects in cell culture and in a mouse colon carcinoma syngeneic murine model. In several cell culture studies, direct treatment with PD-L1ip3, but not a similar peptide with a scrambled sequence, substantially increased death of CT26 colon carcinoma cells when co-cultured with murine CD8+ T cells primed by CT26 cell antigens. In a syngeneic mouse tumor model, the growth of CT26 tumor cells transduced with the PD-L1ip3 gene by an adenovirus vector was significantly slower than that of un-transduced CT26 cells in immunocompetent mice. This tumor growth attenuation was further enhanced by the coadministration of the peptide form of PD-L1ip3 (10 mg/kg/day). The current study suggests that this peptide can stimulate host antitumor immunity via blockade of the PD-1/PD-L1 pathway, thereby increasing CD8+ T cell-induced death of colon carcinoma cells. The tumor site-specific inhibition of PD-L1 by an adenovirus carrying the PD-L1ip3 gene, together with direct peptide treatment, may be used as a local immune checkpoint blockade therapy to inhibit colon carcinoma growth.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Deepa Upreti
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Molly Bassette
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; Department of Pathology, University of California, San Francisco, CA 94143, USA.
| | - E R Azhagiya Singam
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; Molecular Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, CA 94720, USA.
| | - Ravindra Thakkar
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Mayme Loyd
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Makoto Inui
- Departments of Pharmacology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan.
| | - Jeffrey Comer
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| | - Masaaki Tamura
- Departments of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
24
|
Nardone V, Giannicola R, Giannarelli D, Saladino RE, Azzarello D, Romeo C, Bianco G, Rizzo MR, Di Meo I, Nesci A, Pastina P, Falzea AC, Caracciolo D, Reginelli A, Caraglia M, Luce A, Mutti L, Giordano A, Cappabianca S, Pirtoli L, Barbieri V, Tassone P, Tagliaferri P, Correale P. Distinctive Role of the Systemic Inflammatory Profile in Non-Small-Cell Lung Cancer Younger and Elderly Patients Treated with a PD-1 Immune Checkpoint Blockade: A Real-World Retrospective Multi-Institutional Analysis. Life (Basel) 2021; 11:life11111235. [PMID: 34833111 PMCID: PMC8621400 DOI: 10.3390/life11111235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/17/2022] Open
Abstract
An immune checkpoint blockade with mAbs to PD-1 and PD-L1 is an expanding therapeutic option for mNSCLC patients. This treatment strategy is based on the use of mAbs able to restore the anti-tumor activity of intratumoral T cells inhibited by PD-1 binding to PD-L1/2 on tumor and inflammatory cells. It has been speculated that a chronic status of systemic inflammation as well as the immunosenescence physiologically occurring in elderly patients may affect the efficacy of the treatment and the occurrence of irAEs. We performed a multi-institutional retrospective study aimed at evaluating the effects of these mAbs (nivolumab or atezolizumab) in 117 mNSCLC patients younger (90 cases) and older (27 cases) than 75 years in correlation with multiple inflammatory parameters (NLR, CRP, ESR, LDH and PCT). No differences were observed when the cohorts were compared in terms of the frequency of PFS, OS, inflammatory markers and immune-related adverse events (irAEs). Similarly, the occurrence of irAEs was strictly correlated with a prolonged OS survival in both groups. On the contrary, a negative correlation between the high baseline levels of inflammatory markers and OS could be demonstrated in the younger cohort only. Overall, PD-1/PD-L1-blocking mAbs were equally effective in young and elderly mNSCLC patients; however, the detrimental influence of a systemic inflammation at the baseline was only observed in young patients, suggesting different aging-related inflammation immunoregulative effects.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.R.); (M.C.); (A.L.); (S.C.)
- Correspondence:
| | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (R.G.); (D.A.); (C.R.); (G.B.); (A.C.F.); (P.C.)
| | - Diana Giannarelli
- Biostatistical Unit, National Cancer Institute “Regina Elena”, IRCCS, 00161 Rome, Italy;
| | - Rita Emilena Saladino
- Tissue typing Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Domenico Azzarello
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (R.G.); (D.A.); (C.R.); (G.B.); (A.C.F.); (P.C.)
| | - Caterina Romeo
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (R.G.); (D.A.); (C.R.); (G.B.); (A.C.F.); (P.C.)
| | - Giovanna Bianco
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (R.G.); (D.A.); (C.R.); (G.B.); (A.C.F.); (P.C.)
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.R.R.); (I.D.M.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.R.R.); (I.D.M.)
| | - Antonio Nesci
- Unit of Pharmacy, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy;
| | - Pierpaolo Pastina
- Section of Radiation Oncology, Medical School, University of Siena, 53100 Siena, Italy;
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (R.G.); (D.A.); (C.R.); (G.B.); (A.C.F.); (P.C.)
| | - Daniele Caracciolo
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.C.); (V.B.); (P.T.); (P.T.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.R.); (M.C.); (A.L.); (S.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.R.); (M.C.); (A.L.); (S.C.)
- BiogemScarl, Institute of Genetic Research, Precision and Molecular Oncology Laboratory, Ariano Irpino, 83031 Avellino, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.R.); (M.C.); (A.L.); (S.C.)
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (A.G.); (L.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (A.G.); (L.P.)
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.R.); (M.C.); (A.L.); (S.C.)
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (A.G.); (L.P.)
| | - Vito Barbieri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.C.); (V.B.); (P.T.); (P.T.)
| | - Pierfrancesco Tassone
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.C.); (V.B.); (P.T.); (P.T.)
| | - Pierosandro Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (D.C.); (V.B.); (P.T.); (P.T.)
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (R.G.); (D.A.); (C.R.); (G.B.); (A.C.F.); (P.C.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (A.G.); (L.P.)
| |
Collapse
|
25
|
Thompson LL, Krasnow NA, Chang MS, Yoon J, Li EB, Polyakov NJ, Molina GE, Said JT, Huang K, Kuchroo JR, Hinton AN, Reynolds KL, Chen ST. Patterns of Cutaneous and Noncutaneous Immune-Related Adverse Events Among Patients With Advanced Cancer. JAMA Dermatol 2021; 157:577-582. [PMID: 33760001 DOI: 10.1001/jamadermatol.2021.0326] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Cutaneous immune-related adverse events (cirAEs) are some of the earliest toxic reactions to emerge following immune-checkpoint inhibitor (ICI) initiation. As an early indicator of robust inflammatory response, cirAEs may be associated with patterns of immune-mediated toxic effects, but associations between these events and noncutaneous immune-related adverse events (irAEs) remain underexplored. Objectives To characterize patterns of cirAEs and irAEs across care settings and examine associations between the features of first cirAE, overall irAE risk, and risk of specific irAE subtypes. Design, Setting, and Participants A retrospective cohort study was conducted at a single academic medical center. The cohort included 358 patients with cancer who initiated anti-programmed death 1/ligand 1 and/or anticytotoxic-T-lymphocyte-4 ICI therapy between January 1, 2016, and March 8, 2019, and developed 1 or more cirAEs, identified using International Statistical Classification of Diseases and Related Health Problems, Tenth Revision codes and confirmed via manual medical record review. All relevant information documented before March 31, 2020, was included. Exposures Anti-programmed death 1/ligand 1 and/or anticytotoxic-T-lymphocyte-4 therapy. Main Outcomes and Measures Associations between specific cirAE morphologic classes and patterns of irAEs (occurrence, timeline, organ class, and specific toxic effects). Given the potential that shared underlying factors are associated with the risk of both noncutaneous and cutaneous toxic effects, the presence of observed positive associations between certain cirAE and irAE subtypes was hypothesized. Results Of the 358 patients, 213 were men (59.5%); median age was 65 years (interquartile range, 55-73 years). Nearly half of the patients (177 [49.4%]) with cirAE also developed a noncutaneous irAE. Most patients (128 [72.3%]) experienced their first cirAE before developing any irAE. Several cirAE morphologic classes were found to be associated with overall, organ-based, and specific irAEs. More specifically, mucositis was found to be associated with overall irAE risk (odds ratio [OR], 5.28; 95% CI, 1.11-24.26; P = .04), gastrointestinal irAEs (OR, 5.70; 95% CI, 1.11-29.40; P = .04), and the specific diagnosis of gastroenterocolitis (OR, 6.80; 95% CI, 1.24-37.39; P = .03). In addition, psoriasis was associated with an increased risk of endocrine irAEs (OR, 4.54; 95% CI, 1.21-17.04; P = .03). Conclusions and Relevance In this cohort study, these findings underscore the risk of multisystem toxic effects in patients experiencing cirAEs and highlight potential opportunities for dermatologists in the management of noncutaneous toxic effects.
Collapse
Affiliation(s)
- Leah L Thompson
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Nira A Krasnow
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael S Chang
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jaewon Yoon
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Edward B Li
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Nicole J Polyakov
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gabriel E Molina
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jordan T Said
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kevin Huang
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Juhi R Kuchroo
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Andrea N Hinton
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Kerry L Reynolds
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston
| | - Steven T Chen
- Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
26
|
Correale P, Saladino RE, Giannarelli D, Giannicola R, Agostino R, Staropoli N, Strangio A, Del Giudice T, Nardone V, Altomonte M, Pastina P, Tini P, Falzea AC, Imbesi N, Arcati V, Romeo G, Caracciolo D, Luce A, Caraglia M, Giordano A, Pirtoli L, Necas A, Amler E, Barbieri V, Tassone P, Tagliaferri P. Distinctive germline expression of class I human leukocyte antigen (HLA) alleles and DRB1 heterozygosis predict the outcome of patients with non-small cell lung cancer receiving PD-1/PD-L1 immune checkpoint blockade. J Immunother Cancer 2021; 8:jitc-2020-000733. [PMID: 32554614 PMCID: PMC7304840 DOI: 10.1136/jitc-2020-000733] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nivolumab is a human monoclonal antibody against programmed cell death receptor-1 (PD-1) able to rescue quiescent tumor infiltrating cytotoxic T lymphocytes (CTLs) restoring their ability to kill target cells expressing specific tumor antigen-derived epitope peptides bound to homologue human leukocyte antigen (HLA) molecules. Nivolumab is currently an active but expensive therapeutic agent for metastatic non-small cell lung cancer (mNSCLC), producing, in some cases, immune-related adverse events (irAEs). At the present, no reliable biomarkers have been validated to predict either treatment response or adverse events in treated patients. METHODS We performed a retrospective multi-institutional analysis including 119 patients with mNSCLC who received PD-1 blockade since November 2015 to investigate the predictive role of germinal class I HLA and DRB1 genotype. We investigated the correlation among patients' outcome and irAEs frequency with specific HLA A, B, C and DRB1 alleles by reverse sequence-specific oligonucleotide (SSO) DNA typing. RESULTS A poor outcome in patients negative for the expression of two most frequent HLA-A alleles was detected (HLA: HLA-A*01 and or A*02; progression-free survival (PFS): 7.5 (2.8 to 12.2) vs 15.9 (0 to 39.2) months, p=0.01). In particular, HLA-A*01-positive patients showed a prolonged PFS of 22.6 (10.2 to 35.0) and overall survival (OS) of 30.8 (7.7 to 53.9) months, respectively. We also reported that HLA-A and DRB1 locus heterozygosis (het) were correlated to a worse OS if we considered het in the locus A; in reverse, long survival was correlated to het in DRB1. CONCLUSIONS This study demonstrate that class I and II HLA allele characterization to define tumor immunogenicity has relevant implications in predicting nivolumab efficacy in mNSCLC and provide the rationale for further prospective trials of cancer immunotherapy.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Rita Emilena Saladino
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | | | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Rita Agostino
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Nicoletta Staropoli
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Alessandra Strangio
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Teresa Del Giudice
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Valerio Nardone
- Radiotherapy Unit, "Ospedale del Mare", ASL Napoli 1, Naples, Italy
| | - Maria Altomonte
- Unit of Pharmacy, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Pierpaolo Pastina
- Section of Radiation Oncology, Medical School, University of Siena, Siena, Italy
| | - Paolo Tini
- Section of Radiation Oncology, Medical School, University of Siena, Siena, Italy
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Natale Imbesi
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Valentina Arcati
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Giuseppa Romeo
- Tissue Typing Unit, Grand Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio Calabria, Italy
| | - Daniele Caracciolo
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy .,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Avellino, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Alois Necas
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Evzen Amler
- Department of Biophysics, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Vito Barbieri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierfrancesco Tassone
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - Pierosandro Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
27
|
Granito A, Muratori L, Lalanne C, Quarneti C, Ferri S, Guidi M, Lenzi M, Muratori P. Hepatocellular carcinoma in viral and autoimmune liver diseases: Role of CD4+ CD25+ Foxp3+ regulatory T cells in the immune microenvironment. World J Gastroenterol 2021; 27:2994-3009. [PMID: 34168403 PMCID: PMC8192285 DOI: 10.3748/wjg.v27.i22.2994] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
More than 90% of cases of hepatocellular carcinoma (HCC) occurs in patients with cirrhosis, of which hepatitis B virus and hepatitis C virus are the leading causes, while the tumor less frequently arises in autoimmune liver diseases. Advances in understanding tumor immunity have led to a major shift in the treatment of HCC, with the emergence of immunotherapy where therapeutic agents are used to target immune cells rather than cancer cells. Regulatory T cells (Tregs) are the most abundant suppressive cells in the tumor microenvironment and their presence has been correlated with tumor progression, invasiveness, as well as metastasis. Tregs are characterized by the expression of the transcription factor Foxp3 and various mechanisms ranging from cell-to-cell contact to secretion of inhibitory molecules have been implicated in their function. Notably, Tregs amply express checkpoint molecules such as cytotoxic T lymphocyte-associated antigen 4 and programmed cell-death 1 receptor and therefore represent a direct target of immune checkpoint inhibitor (ICI) immunotherapy. Taking into consideration the critical role of Tregs in maintenance of immune homeostasis as well as avoidance of autoimmunity, it is plausible that targeting of Tregs by ICI immunotherapy results in the development of immune-related adverse events (irAEs). Since the use of ICI becomes common in oncology, with an increasing number of new ICI currently under clinical trials for cancer treatment, the occurrence of irAEs is expected to dramatically rise. Herein, we review the current literature focusing on the role of Tregs in HCC evolution taking into account their opposite etiological function in viral and autoimmune chronic liver disease, and we discuss their involvement in irAEs due to the new immunotherapies.
Collapse
Affiliation(s)
- Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna 40138, Italy
- Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Luigi Muratori
- Division of Internal Medicine and Immunorheumatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Claudine Lalanne
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Chiara Quarneti
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Silvia Ferri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Marcello Guidi
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, Bologna 40138, Italy
| | - Marco Lenzi
- Division of Internal Medicine and Immunorheumatology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Center for the Study and Treatment of Autoimmune Diseases of the Liver and Biliary System, University of Bologna, Bologna 40138, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Paolo Muratori
- Division of Internal Medicine, Morgagni-Pierantoni Hospital, Forlì 47100, Italy
- Department of Science for the Quality of Life, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
28
|
Yamazaki N, Takenouchi T, Nakamura Y, Takahashi A, Namikawa K, Kitano S, Fujita T, Kubota K, Yamanaka T, Kawakami Y. Prospective observational study of the efficacy of nivolumab in Japanese patients with advanced melanoma (CREATIVE study). Jpn J Clin Oncol 2021; 51:1232-1241. [PMID: 34115870 PMCID: PMC8326387 DOI: 10.1093/jjco/hyab064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Background Nivolumab, the anti-programmed cell death protein 1 antibody, has been approved for advanced melanoma, mainly based on evidence from Western countries. The profile of melanoma differs between Caucasian and Asian patients. This study was performed to obtain post-marketing data of nivolumab in Japanese patients with advanced melanoma. Methods This prospective, observational study involved patients with unresectable or metastatic melanoma treated with nivolumab at dosages of 2 mg/kg every 3 weeks or 3 mg/kg every 2 weeks. The primary endpoints were objective response rate and overall survival. The secondary endpoints were progression-free survival and the objective response rate according to immune-related Response Evaluation Criteria in Solid Tumours. Result Among 124 patients analysed, mucosal melanoma was the most common subtype, followed by acral lentiginous, nodular, superficial spreading and lentigo maligna melanoma. Response Evaluation Criteria in Solid Tumours evaluation showed an objective response rate of 17.7%. The median survival time was 15.93 months, and the 1-year overall survival rate was 66%. Outcomes were not significantly different among melanoma subtypes. Better overall survival and/or progression-free survival but not objective response rate were associated with performance status 0, lower levels of lactate dehydrogenase, C-reactive protein and neutrophil-to-lymphocyte ratio. Patients with immune-related adverse events showed a better objective response rate, 3-month landmark overall survival and progression-free survival than patients without immune-related adverse events. Conclusion The objective response rate and median survival time in Japanese patients treated with nivolumab were lower in daily practice than the >30% and >30 months, respectively, seen in global phase III trials. The occurrence of immune-related adverse events may be a predictor for survival and response to treatment with nivolumab.
Collapse
Affiliation(s)
- Naoya Yamazaki
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Tatsuya Takenouchi
- Department of Dermatology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Akira Takahashi
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shigehisa Kitano
- Department of Experimental Therapeutics, National Cancer Center Hospital, Tokyo, Japan.,Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tomonobu Fujita
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kazumi Kubota
- Department of Biostatistics and Epidemiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takeharu Yamanaka
- Department of Biostatistics and Epidemiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Immunology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
29
|
Botta C, Agostino RM, Dattola V, Cianci V, Calandruccio ND, Bianco G, Mafodda A, Maisano R, Iuliano E, Orizzonte G, Mazzacuva D, Falzea AC, Saladino RE, Giannicola R, Restifo G, Aguglia U, Caraglia M, Correale P. Myositis/Myasthenia after Pembrolizumab in a Bladder Cancer Patient with an Autoimmunity-Associated HLA: Immune-Biological Evaluation and Case Report. Int J Mol Sci 2021; 22:6246. [PMID: 34200673 PMCID: PMC8230397 DOI: 10.3390/ijms22126246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Pembrolizumab (mAb to PD-1) has been recently approved for the therapy of pretreated urothelial cancer. Despite the efficacy, it is often accompanied by unpredictable and sometime severe immune-related (ir) adverse events (AEs). Here, we report the clinical and immune-biological characterization of a patient with a metastatic bladder cancer who developed myositis signs (M) and a myasthenia-like syndrome (MLS) during treatment with pembrolizumab. The patient presented an autoimmunity-associated HLA haplotype (HLA-A*02/HLA-B*08/HLA-C*07/HLA-DRB1*03) and experienced an increase in activated CD8 T-cells along the treatment. The symptomatology regressed after pembrolizumab discontinuation and a pyridostigmine and steroids-based therapy. This is the first report of concurrent M and MLS appearance in cancer patients receiving pembrolizumab. More efforts are needed to define early the risk and the clinical meaning of irAEs in this setting.
Collapse
Affiliation(s)
- Cirino Botta
- Unit of Hematology, Azienda Ospedaliera “Annunziata”, 87100 Cosenza, Italy
- Hematology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90128 Palermo, Italy
| | - Rita Maria Agostino
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Vincenzo Dattola
- Unit of Neurology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (V.D.); (V.C.); (U.A.)
| | - Vittoria Cianci
- Unit of Neurology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (V.D.); (V.C.); (U.A.)
| | - Natale Daniele Calandruccio
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Giovanna Bianco
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Antonino Mafodda
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Roberto Maisano
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Eleonora Iuliano
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Giovanna Orizzonte
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Domenico Mazzacuva
- Laboratory of Autoimmunity, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy;
| | - Antonia Consuelo Falzea
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Rita Emilena Saladino
- HLA Tissue Typing Laboratory, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy;
| | - Rocco Giannicola
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| | - Giorgio Restifo
- Nuclear Medicine Unit, Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy;
| | - Umberto Aguglia
- Unit of Neurology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (V.D.); (V.C.); (U.A.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, 83031 Ariano Irpino, Italy
| | - Pierpaolo Correale
- Unit of Oncology, Unit. Grand Metropolitan Hospital “Bianchi Melacrino Morelli”, 89124 Reggio Calabria, Italy; (R.M.A.); (N.D.C.); (G.B.); (A.M.); (R.M.); (E.I.); (G.O.); (A.C.F.); (R.G.)
| |
Collapse
|
30
|
Gülave B, Hew MN, de Groot JS, Rodwell L, Teerenstra S, Fabriek BO. High body mass index and pre-existing autoimmune disease are associated with an increased risk of immune-related adverse events in cancer patients treated with PD-(L)1 inhibitors across different solid tumors. ESMO Open 2021; 6:100107. [PMID: 33887689 PMCID: PMC8086026 DOI: 10.1016/j.esmoop.2021.100107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Treatment with anti-PD-(L)1 antibodies, approved for several oncology indications, can lead to immune-related adverse events (irAEs). We aimed to investigate risk factors associated with an increased reporting of irAEs in patients treated with PD-(L)1 inhibitors approved for solid tumor indications. PATIENTS AND METHODS A retrospective review was performed of individual data from patients in phase II/III registrational studies for PD-(L)1 inhibitors in solid tumors. Data on baseline characteristics and adverse events were extracted. Univariate and multivariable logistic regression models were used to identify risk factors. RESULTS In total, 5123 patients were included from 15 studies reporting on the use of four PD-(L)1 inhibitors for five solid tumor indications. Univariate analysis suggested that type of study drug (P < 0.001), indication (P = 0.003), body mass index (BMI) (P = 0.001), and baseline autoimmune disease (P < 0.001) were associated with an increased occurrence of any irAE. Using logistic regression analyses, three factors were identified as increasing the risk of irAE: BMI ≥ 30 kg/m2 [odds ratio (OR) 1.5, 95% confidence interval (CI) 1.2-1.8] in comparison to normal BMI, having an autoimmune disease at baseline (OR 1.8, 95% CI 1.1-2.7), and use of a PD-L1 inhibitor (OR 1.6, 95% CI 1.2-2.0). The latter finding is probably biased due to the selection of the studies in the dataset with complete information on baseline characteristics. CONCLUSION This study was conducted using a large dataset of individual patient data from clinical trials comprising multiple solid tumor indications. We demonstrated that patients with obesity and concurrent autoimmune disease were at increased risk of developing irAEs.
Collapse
Affiliation(s)
- B Gülave
- Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands
| | - M N Hew
- Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands.
| | - J S de Groot
- Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands
| | - L Rodwell
- Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Biostatistics Section, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S Teerenstra
- Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands; Biostatistics Section, Department for Health Evidence, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B O Fabriek
- Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, The Netherlands
| |
Collapse
|
31
|
Risk of Ophthalmic Adverse Events in Patients Treated with Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. Ocul Immunol Inflamm 2021; 30:1449-1459. [PMID: 33970759 DOI: 10.1080/09273948.2021.1890133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Immune checkpoint inhibitors (ICIs) -induced adverse events (AEs) have been reported affecting almost all human organs. However, studies about ocular AEs are few. A meta-analysis was performed to evaluate the risks of ICI-related ophthalmic AEs compare to chemotherapy.Methods: Eligible studies were selected from phase II/III randomized controlled trials investigating ICIs. The data were analyzed by R software and Stata.Results: Odds ratio of treatment-related AE (trAEs) and nonspecific ophthalmic trAEs (NS-trAEs) were lower for PD-1/PD-L1 inhibitors than chemotherapy (OR 0.44, p < .05; OR 0.28, p < .001; OR 0.18, p < . 05; OR: 0.18, p < .001respectively). Compared with monotherapy, PD-1 plus CTLA-4 inhibitors increased the risks of immune-related AEs (irAEs) (OR 4.52, p < .01); ICIs plus chemotherapy increased the risks of trAEs and irAEs (OR 2.82, p < .001; OR 3.63, p < .05 respectively).Conclusions: PD-L1/PD-1 inhibitors had lower risks of trAEs and NS-trAEs than chemotherapy; Compared with monotherapy, combination therapy had higher risks of ophthalmic trAEs and irAEs.Abbreviation PD-1: programmed cell death protein 1; PD-L1: programmed cell death protein ligand 1; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; ICI: immune checkpoint inhibitor; AE: adverse event; trAE: treatment-related adverse event;irAE: immune-related adverse events; NS-trAE: nonspecific ophthalmic treatment-related adverse event; RCT: randomized controlled trials; PFS: progression-free survival; OS: overall survival; ORR: objective response rate; MM: melanoma; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; HNSCC: head-neck squamous cell carcinoma; PICOL: patient, intervention, comparison, and outcome; Versus: VS; Chem: chemotherapy; 95%CI: 95% confidence interval; FEM: fixed-effects model; REM: random-effects model; NA: not applicable; MeSH: medical subject heading.
Collapse
|
32
|
Sasikumar PG, Ramachandra M. Peptide and peptide-inspired checkpoint inhibitors: Protein fragments to cancer immunotherapy. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Das JP, Postow MA, Friedman CF, Do RK, Halpenny DF. Imaging findings of immune checkpoint inhibitor associated pancreatitis. Eur J Radiol 2020; 131:109250. [PMID: 32905952 DOI: 10.1016/j.ejrad.2020.109250] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To describe contrast-enhanced computed tomography (CECT), 18-Fluorine (18F)-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT and magnetic resonance imaging (MRI) findings of immune checkpoint inhibitor (ICI) associated pancreatitis in patients undergoing immunotherapy for solid malignant tumours. METHOD In this retrospective study, 25 patients with clinical and/or biochemical evidence of pancreatitis who underwent CECT, MRI and 18F-FDG-PET/CT while being treated with ICIs were included. Imaging features of acute pancreatitis included: pancreatic enlargement, heterogeneous enhancement, peripancreatic stranding, fluid collection, pseudocyst, necrosis, atrophy and calcification. 18F-FDG PET/CT imaging was reviewed for pattern of abnormally increased pancreatic FDG uptake. ICI-associated pancreatitis diagnosis was based on clinical, imaging and biochemical findings. RESULTS Imaging findings of ICI-associated pancreatitis included diffuse (n = 14) or focal (n = 11) pancreatic enlargement; heterogenous enhancement (n = 21); focal (n = 9) or diffuse (n = 15) peripancreatic infiltration on CECT and MRI. A pattern consistent with acute interstitial pancreatitis was present in 20/25 (80 %) patients, and a pattern consistent with autoimmune pancreatitis in 4/25 (16 %). A mixed pattern was present in one patient (4%). No patient developed necrotizing pancreatitis or a pseudocyst. The CT severity index was < 3 in all patients, consistent with mild pancreatitis. Focal pancreatic FDG uptake was noted in 2/3 (66 %) of patients. Acute imaging findings resolved with treatment in all 25 patients. Pancreatic atrophy developed in 11/25 (44 %). CONCLUSIONS ICI-associated pancreatitis typically presents as either focal or diffuse acute interstitial pancreatitis. Post-pancreatitis atrophy is common. The ICI-associated pancreatitis cases in our study were mild, managed conservatively and did not result in local acute complications.
Collapse
Affiliation(s)
- Jeeban P Das
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Claire F Friedman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| | - Darragh F Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Correale P, Saladino RE, Giannarelli D, Sergi A, Mazzei MA, Bianco G, Giannicola R, Iuliano E, Forte IM, Calandruccio ND, Falzea AC, Strangio A, Nardone V, Pastina P, Tini P, Luce A, Caraglia M, Caracciolo D, Mutti L, Tassone P, Pirtoli L, Giordano A, Tagliaferri P. HLA Expression Correlates to the Risk of Immune Checkpoint Inhibitor-Induced Pneumonitis. Cells 2020; 9:cells9091964. [PMID: 32854442 PMCID: PMC7564884 DOI: 10.3390/cells9091964] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor-infiltrating T cell rescue by programmed cell death receptor-1 (PD-1)/PD-1 ligand-1 (PD-L1) immune checkpoint blockade is a recommended treatment for malignant diseases, including metastatic non-small-cell lung cancer (mNSCLC), malignant melanoma (MM), head and neck, kidney, and urothelial cancer. Monoclonal antibodies (mAbs) against either PD-1 or PD-L1 are active agents for these patients; however, their use may be complicated by unpredictable immune-related adverse events (irAEs), including immune-related pneumonitis (IRP). We carried out a retrospective multi-institutional statistical analysis to investigate clinical and biological parameters correlated with IRP rate on a cohort of 256 patients who received real-world treatment with PD-1/PD-L1 blocking mAbs. An independent radiological review board detected IRP in 29 patients. We did not find statistical IRP rate correlation with gender, tumor type, specific PD-1 or PD-L1 blocking mAbs, radiation therapy, inflammatory profile, or different irAEs. A higher IRP risk was detected only in mNSCLC patients who received metronomic chemotherapy +/− bevacizumab compared with other treatments prior PD-1/PD-L1 blockade. Moreover, we detected a strong correlation among the IRP rate and germinal expression of HLA-B*35 and DRB1*11, alleles associated to autoimmune diseases. Our findings may have relevant implications in predicting the IRP rate in mNSCLC patients receiving PD-1/PD-L1 blockade and need to be validated on a larger patient series.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Rita Emilena Saladino
- Tissue Typing Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC);
| | - Diana Giannarelli
- Biostatistical Unit, National Cancer Institute “Regina Elena”, IRCCS, 00161 Rome, Italy;
| | - Andrea Sergi
- Radiology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC);
| | - Maria Antonietta Mazzei
- Department of Medical, Surgical and Neuro-Sciences, Diagnostic Imaging, University of Siena, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy (RU-SI);
| | - Giovanna Bianco
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Eleonora Iuliano
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy;
| | - Natale Daniele Calandruccio
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Antonia Consuelo Falzea
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Alessandra Strangio
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy (OU-RC); (P.C.); (G.B.); (R.G.), (E.I.); (N.D.C.); (A.C.F.); (A.S.)
| | - Valerio Nardone
- Radiotherapy Unit, “Ospedale del Mare”, ASL Napoli 1, 80147 Naples, Italy;
| | - Pierpaolo Pastina
- Section of Radiation Oncology, Medical School, University of Siena, 53100 Siena, Italy (ROU-SI); (P.P.); (P.T.)
| | - Paolo Tini
- Section of Radiation Oncology, Medical School, University of Siena, 53100 Siena, Italy (ROU-SI); (P.P.); (P.T.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy;
- Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, 83031 Ariano Irpino, Avellino, Italy
- Correspondence: ; Tel.: +39-081-5665874; Fax: +39-081-5665863
| | - Daniele Caracciolo
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (MOU-CZ); (D.C.); (P.T.); (P.T.)
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (L.P.); (A.G.)
| | - Pierfrancesco Tassone
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (MOU-CZ); (D.C.); (P.T.); (P.T.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (L.P.); (A.G.)
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (L.P.); (A.G.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (L.M.); (L.P.); (A.G.)
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy
| | - Pierosandro Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy (MOU-CZ); (D.C.); (P.T.); (P.T.)
| |
Collapse
|
35
|
Diagnosis and Treatment of Rheumatic Adverse Events Related to Immune Checkpoint Inhibitors. J Immunol Res 2020; 2020:2640273. [PMID: 32832568 PMCID: PMC7424376 DOI: 10.1155/2020/2640273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/14/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have completely changed the treatment of cancer, and they also can cause multiple organ immune-related adverse reactions (irAEs). Among them, rheumatic irAE is less common, mainly including inflammatory arthritis, rheumatic myalgia/giant cell arteritis, inflammatory myopathy, and Sjogren's syndrome. For oncologists, rheumatism is a relatively new field, and early diagnosis and treatment is very important, and we need to work closely with experienced rheumatologists. In this review, we focused on the incidence, clinical characteristics, and treatment strategies of rheumatic irAE.
Collapse
|
36
|
Gaffuri P, Espeli V, Fulciniti F, Paone G, Bergmann M. Immune-related acute and lymphocytic gastritis in a patient with metastatic melanoma treated with pembrolizumab immunotherapy. Pathologica 2020; 111:92-97. [PMID: 31748755 PMCID: PMC8138491 DOI: 10.32074/1591-951x-24-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/22/2019] [Indexed: 01/10/2023] Open
Abstract
Here, we present a case of acute and lymphocytic gastritis related to therapy with pembrolizumab for metastatic melanoma. After an asymptomatic phase with moderate histological inflammation (observed at 9 months of immunotherapy), gastritis became symptomatic and severe on repeated biopsies (13 months after the beginning of pembrolizumab). Symptoms and histological lesions both improved with proton pump inhibitor and steroid therapy, as well as interruption of pembrozulimab. The interest of this case lays in the relative rarity of gastritis over small and large intestinal inflammatory lesions caused by immune checkpoint inhibitors as well as in the features of the inflammatory infiltrate, which may be purely lymphocytic (mainly T-cells, with a prevalence of CD8+ over CD4+ lymphocytes) or mixed lymphocytic and granulocytic, requiring the exclusion of other causes of disease. To our knowledge, only 7 cases of immune-related gastritis have been previously documented in the current literature, of which 4, included the current one, were exclusively associated with pembrozulimab therapy.
Collapse
Affiliation(s)
- P Gaffuri
- Repubblica e Cantone Ticino Istituto Cantonale di Patologia, Pathology
| | - V Espeli
- Istituto Oncologico della Svizzera Italiana, Oncology
| | - F Fulciniti
- Repubblica e Cantone Ticino Istituto Cantonale di Patologia, Pathology
| | - G Paone
- Department of Nuclear Medicine and TC-PET, Istituto Oncologico della Svizzera Italiana
| | - M Bergmann
- Repubblica e Cantone Ticino Istituto Cantonale di Patologia, Pathology
| |
Collapse
|
37
|
López Sala P, Alberdi Aldasoro N, Unzué García-Falces G. Adverse events of targeted anticancer therapies: What radiologists need to know. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
López Sala P, Alberdi Aldasoro N, Unzué García-Falces G. Efectos adversos de las terapias dirigidas contra el cáncer: lo que el radiólogo debe saber. RADIOLOGIA 2020; 62:229-242. [DOI: 10.1016/j.rx.2019.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/03/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022]
|
39
|
Schaefer A, Sachpekidis C, Diella F, Doerks A, Kratz AS, Meisel C, Jackson DB, Soldatos TG. Public Adverse Event Data Insights into the Safety of Pembrolizumab in Melanoma Patients. Cancers (Basel) 2020; 12:E1008. [PMID: 32325840 PMCID: PMC7226447 DOI: 10.3390/cancers12041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibition represents an important therapeutic option for advanced melanoma patients. Results from clinical studies have shown that treatment with the PD-1 inhibitors Pembrolizumab and Nivolumab provides improved response and survival rates. Moreover, combining Nivolumab with the CTLA-4 inhibitor Ipilimumab is superior to the respective monotherapies. However, use of these immunotherapies frequently associated with, sometimes life-threatening, immune-related adverse events. Thus, more evidence-based studies are required to characterize the underlying mechanisms, towards more effective clinical management and treatment monitoring. Our study examines two sets of public adverse event data coming from FAERS and VigiBase, each with more than two thousand melanoma patients treated with Pembrolizumab. Standard disproportionality metrics are utilized to characterize the safety of Pembrolizumab and its reaction profile is compared to those of the widely used Ipilimumab and Nivolumab based on melanoma cases that report only one of them. Our results confirm known toxicological considerations for their related and distinct side-effect profiles and highlight specific immune-related adverse reactions. Our retrospective computational analysis includes more patients than examined in other studies and relies on evidence coming from public pharmacovigilance data that contain safety reports from clinical and controlled studies as well as reports of suspected adverse events coming from real-world post-marketing setting. Despite these informative insights, more prospective studies are necessary to fully characterize the efficacy of these agents.
Collapse
Affiliation(s)
| | - Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | | | - Anja Doerks
- Molecular Health GmbH, 69115 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
40
|
Imaging of Adverse Events Related to Checkpoint Inhibitor Therapy. Diagnostics (Basel) 2020; 10:diagnostics10040216. [PMID: 32294888 PMCID: PMC7235714 DOI: 10.3390/diagnostics10040216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors (ICIs) is becoming standard of practice for an increasing number of cancer types. ICIs enhance T-cell action against the cancer cells. By unbalancing the immune system ICIs may cause dysimmune toxicities, a series of disorders broadly defined immune-related adverse events (irAEs). IrAEs may affect any organ or apparatus and most frequently involve skin, colon, endocrine organs, liver, and lungs. Early identification and appropriate treatment of irAEs can improve patient outcome. The paper aims at reviewing mechanisms of the occurrence of irAEs, the importance of a proper diagnosis and the main pillars of therapy. To provide effective guidance to the comprehension of major irAEs imaging findings will be reviewed.
Collapse
|
41
|
Romanski NA, Holmstroem RB, Ellebaek E, Svane IM. Characterization of risk factors and efficacy of medical management of immune-related hepatotoxicity in real-world patients with metastatic melanoma treated with immune checkpoint inhibitors. Eur J Cancer 2020; 130:211-218. [PMID: 32229418 DOI: 10.1016/j.ejca.2020.02.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/01/2020] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Immune-related hepatitis (ir-hepatitis) is a common side-effect of checkpoint inhibitors (CPIs). Here, we characterise ir-hepatitis in a large cohort of patients with metastatic melanoma (MM) treated with CPIs and describe potential risk factors and efficacy of medical management. METHODS The retrospective study included a large cohort of patients with MM treated with CPIs between 2010 and 2019. Patients were retrieved from the national Danish Metastatic Melanoma Database. RESULTS Five hundred twenty one patients were included. Ir-hepatitis was found in 6.8% of patients. Combination therapy was associated with a significantly greater risk than monotherapy. Of all patients, 34.9% with hepatitis had a different hepatitis grading, when based on either alanine transaminase (ALT) or aspartate transaminase (AST) levels. Of all patients, 72.1% with hepatitis received steroid treatment, and two patients received additional second-line immunosuppressants. Of all patients, 35.5% experienced hepatitis relapse during steroid tapering. Of all patients, 18.6% and 25% of patients with grade ≥2 and ≥ III3, respectively, developed hepatitis within 7 days after finishing an antibiotic treatment for infection. Patients (62.5%) who received a cumulative dose of >4000 mg steroid experienced cancer progression, compared with 22.7% of patients treated with <4000 mg. CONCLUSION Several observations of clinical importance were made. Infection and antibiotic treatment during CPIs could be a possible risk factor for developing ir-hepatitis. Severity of ir-hepatitis is potentially underestimated in a significant number of patients, if only one liver enzyme is measured. The role of second-line immunosuppressants needs to be further investigated because of the high risk of hepatitis relapse during steroid tapering and the potential negative impact of cumulative steroid dose on response to CPIs.
Collapse
Affiliation(s)
- Nicole A Romanski
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| | | | - Eva Ellebaek
- Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
42
|
Kotraiah V, Phares TW, Browne CD, Pannucci J, Mansour M, Noe AR, Tucker KD, Christen JM, Reed C, MacKay A, Weir GM, Rajagopalan R, Stanford MM, Chung CS, Ayala A, Huang J, Tsuji M, Gutierrez GM. Novel Peptide-Based PD1 Immunomodulators Demonstrate Efficacy in Infectious Disease Vaccines and Therapeutics. Front Immunol 2020; 11:264. [PMID: 32210956 PMCID: PMC7068811 DOI: 10.3389/fimmu.2020.00264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/31/2020] [Indexed: 12/31/2022] Open
Abstract
Many pathogens use the same immune evasion mechanisms as cancer cells. Patients with chronic infections have elevated levels of checkpoint receptors (e.g., programed cell death 1, PD1) on T cells. Monoclonal antibody (mAb)-based inhibitors to checkpoint receptors have also been shown to enhance T-cell responses in models of chronic infection. Therefore, inhibitors have the potential to act as a vaccine “adjuvant” by facilitating the expansion of vaccine antigen-specific T-cell repertoires. Here, we report the discovery and characterization of a peptide-based class of PD1 checkpoint inhibitors, which have a potent adaptive immunity adjuvant capability for vaccines against infectious diseases. Briefly, after identifying peptides that bind to the recombinant human PD1, we screened for in vitro efficacy in reporter assays and human peripheral blood mononuclear cells (PBMC) readouts. We first found the baseline in vivo performance of the peptides in a standard mouse oncology model that demonstrated equivalent efficacy compared to mAbs against the PD1 checkpoint. Subsequently, two strategies were used to demonstrate the utility of our peptides in infectious disease indications: (1) as a therapeutic in a bacteria-induced lethal sepsis model in which our peptides were found to increase survival with enhanced bacterial clearance and increased macrophage function; and (2) as an adjuvant in combination with a prophylactic malaria vaccine in which our peptides increased T-cell immunogenicity and the protective efficacy of the vaccine. Therefore, our peptides are promising as both a therapeutic agent and a vaccine adjuvant for infectious disease with a potentially safer and more cost-effective target product profile compared to mAbs. These findings are essential for deploying a new immunomodulatory regimen in infectious disease primary and clinical care settings.
Collapse
Affiliation(s)
- Vinayaka Kotraiah
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| | - Timothy W Phares
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| | | | - James Pannucci
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| | - Marc Mansour
- MM Scientific Consultants, Inc., Halifax, NS, Canada
| | - Amy R Noe
- Leidos Life Sciences, Leidos Inc., Frederick, MD, United States
| | | | | | - Charles Reed
- Inovio Pharmaceuticals, Plymouth Meeting, PA, United States
| | | | | | | | | | | | - Alfred Ayala
- Lifespan-Rhode Island Hospital, Providence, RI, United States
| | - Jing Huang
- The Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Moriya Tsuji
- The Aaron Diamond AIDS Research Center, New York, NY, United States
| | - Gabriel M Gutierrez
- Explorations in Global Health (ExGloH), Leidos Inc., Frederick, MD, United States
| |
Collapse
|
43
|
Ala-Leppilampi K, Baker NA, McKillop C, Butler MO, Siu LL, Spreafico A, Abdul Razak AR, Joshua AM, Hogg D, Bedard PL, Leighl N, Oza AM, Parsons JA, Hansen AR. Cancer patients' experiences with immune checkpoint modulators: A qualitative study. Cancer Med 2020; 9:3015-3022. [PMID: 32119767 PMCID: PMC7196048 DOI: 10.1002/cam4.2940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Minimal qualitative data exist on the experiences of cancer patients treated with immune checkpoint inhibitors or costimulatory antibodies. Understanding the day to day experiences of patients being treated with immune checkpoint modulators, and how these relate to their health‐related quality of life, can inform future research and lead to better clinical decision‐making and care. We report here the first in depth qualitative study to consider patients' diverse and complex experiences with immune checkpoint modulators, with a focus on side effects and how these impact daily life. Methods This single‐center qualitative study was based on focus groups and semistructured interviews. Patients who were being treated or who had been treated with immune checkpoint modulators within the last year for a range of cancer diagnoses were recruited. Interpretive description informed our inductive, iterative approach to analysis. Results Eight themes were identified, characterizing the complexity of these patients' lived experiences: major categories of side effects experienced and how they impacted patient well‐being; the heterogeneous nature of side effects experienced; living with uncertainty; reframing the meaning and severity of SEs; focus on survival, hope, and being positive; acceptance and adaptation; feeling supported; and faith in medical innovation. Throughout their accounts, participants highlighted the profound impact that immune checkpoint modulators had on their daily lives. Conclusion This is the first in‐depth qualitative study into patient accounts of their experiences of treatment with immune checkpoint modulators, related side effects, and how it impacted their daily lives. This research is an integral initial step in developing an instrument that will assess treatment‐related side effects in patients treated with this form of therapy.
Collapse
Affiliation(s)
- Kari Ala-Leppilampi
- Applied Health Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | - Natalie A Baker
- Applied Health Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada
| | | | - Marcus O Butler
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Lillian L Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Anna Spreafico
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Albiruni R Abdul Razak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Anthony M Joshua
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada.,Department of Medical Oncology, Kinghorn Cancer Centre, St Vincents Hospital and Garvan Institute of Medical Research, Sydney, Australia
| | - David Hogg
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Philippe L Bedard
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Natasha Leighl
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Amit M Oza
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Janet A Parsons
- Applied Health Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Canada.,Department of Physical Therapy and the Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Aaron R Hansen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.,Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
44
|
Muralikrishnan S, Ronan LK, Coker S, Rauschkolb PK, Shirai K. Treatment Considerations for Patients with Unresectable Metastatic Melanoma Who Develop Pembrolizumab-Induced Guillain-Barré Toxicity: A Case Report. Case Rep Oncol 2020; 13:43-48. [PMID: 32110218 PMCID: PMC7036588 DOI: 10.1159/000504930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy has improved outcomes in many malignancies, most notably in melanoma, lung cancer, and bladder cancer. Understanding the side effects associated with these medications is an important part of managing our patients. Although fatigue, rash, and diarrhea are commonly reported side effects, it is important to be cognizant of rarer ones, such as neuropathy. Amongst the different neurological toxicities that have been reported in the literature, Guillain-Barré-like neuropathies are quite rare. However, the occurrence of such neuropathies in a patient can be life threatening. The problem this poses in treating cancers such as melanoma is that it eliminates an effective class of medication available to the patient, which can ultimately affect their prognosis. We present a case of a 65-year-old female with unresectable metastatic melanoma who developed Guillain-Barré-like neuropathy after two doses of pembrolizumab. Her clinical course was complicated by three separate hospitalizations over 3 months due to recurring bouts of neuropathy, which resulted in a significant decline in performance status and delay in subsequent treatment of her melanoma. Her prolonged recovery eventually resulted in progression of her melanoma nearly 1 year later, while off therapy. Instead of discontinuing immunotherapy completely, she agreed to a re-challenge with ipilimumab. After one dose, her melanoma regressed and continues to show a sustained response nearly 1 year after treatment without any signs of relapse in her neuropathy. Guillain-Barré toxicity resulting from immune checkpoint inhibition poses a difficult challenge to an oncologist who is determining the next line of treatment for patients with unresectable metastatic melanoma that have progressed while off therapy and who have no targetable mutations. Our case raises the question of whether a re-challenge with a different class of immunotherapy agent is a reasonable option.
Collapse
Affiliation(s)
- Sivraj Muralikrishnan
- Department of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Lara K. Ronan
- Department of Neurology and Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | | | | | - Keisuke Shirai
- Department of Hematology/Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
45
|
Ye C, Jamal S, Hudson M, Fifi-Mah A, Roberts J. Immune Checkpoint Inhibitor Associated Rheumatic Adverse Events: a Review of Their Presentations and Treatments. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2019. [DOI: 10.1007/s40674-019-00131-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Caraglia M, Correale P, Giannicola R, Staropoli N, Botta C, Pastina P, Nesci A, Caporlingua N, Francini E, Ridolfi L, Mini E, Roviello G, Ciliberto D, Agostino RM, Strangio A, Azzarello D, Nardone V, Falzea A, Cappabianca S, Bocchetti M, D'Arrigo G, Tripepi G, Tassone P, Addeo R, Giordano A, Pirtoli L, Francini G, Tagliaferri P. GOLFIG Chemo-Immunotherapy in Metastatic Colorectal Cancer Patients. A Critical Review on a Long-Lasting Follow-Up. Front Oncol 2019; 9:1102. [PMID: 31781481 PMCID: PMC6857002 DOI: 10.3389/fonc.2019.01102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/07/2019] [Indexed: 01/19/2023] Open
Abstract
Background: GOLFIG is a chemo-immunotherapy regimen established in preclinical models that combines gemcitabine + FOLFOX (fluoropyrimidine backbone coupled to oxaliplatin) poly-chemotherapy with low-dose s. c. recombinant interleukin-2 (rIL-2) and granulocyte-macrophage colony stimulating factor (GM-CSF). Promising antitumor effects in metastatic colorectal cancer (mCRC) patients were obtained in previous phase II and III trials. Here we report the results of 15 years of follow-up. Methods: This is a multi-institutional retrospective analysis including 179 mCRC patients receiving GOLFIG regimen between June 2002 and June 2018. Sixty-two of them received the treatment as frontline (enrolled in the GOLFIG-2 phase III trial) and 117 as second/third line (49 enrolled in the GOLFIG-1 phase II trial and 68 as compassionate use). One hundred twelve patients showed a primary left side and 67 a primary right side; K/N-ras mutational status was available in 74 cases, and an activating mutation was detected in 33. Kaplan-Meier and Cox regression analyses were carried out to relate PFS and OS with different parameters. Results: Overall, we recorded a mean PFS and OS of 15.28 (95% CI: 10.36-20.20) and 24.6 (95% CI: 19.07-30.14) months, respectively, with 14 patients surviving free of progression for 10 years. This regimen, in our updated survey of the GOLFIG-2 trial, confirmed superiority over FOLFOX in terms of PFS (hazard ratio (HR) = 0.58, p = 0.006) with a trend to a longer OS (HR = 0.69, P = 0.06) in the first line. Our analysis also confirmed significant antitumor activity in pre-treated patients, reporting a mean PFS and OS of 12.55 (95% CI: 7.19-17.9) and 20.28 (95% CI: 14.4-26.13) months, respectively. Immune-related adverse events (irAEs) were recorded in 24% of the cases and were related to a longer survival (HR = 0.36; P = 0.0001). Finally, patients' outcome was not correlated to sex, sidedness, and MT-K/N-ras. Conclusions: The GOLFIG regimen is a reliable underestimated therapeutic option in pre-treated mCRC patients and offers a strong rationale to design further trials.
Collapse
Affiliation(s)
- Michele Caraglia
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Pierpaolo Correale
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Rocco Giannicola
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Nicoletta Staropoli
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Cirino Botta
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | | | - Antonello Nesci
- Unit of Pharmacy, Section of Anti-blastic Drugs, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Nadia Caporlingua
- Unit of Pharmacy, Section of Anti-blastic Drugs, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | | | - Laura Ridolfi
- Immunotherapy, Cell Therapy and Biobank, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Enrico Mini
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, School of Medicine/Translational Oncology Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Giandomenico Roviello
- Section of Clinical Pharmacology and Oncology, Department of Health Sciences, School of Medicine/Translational Oncology Unit, Careggi University Hospital, University of Florence, Florence, Italy
| | - Domenico Ciliberto
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Rita Maria Agostino
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Alessandra Strangio
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Domenico Azzarello
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Valerio Nardone
- Radiation Oncology Unit, Siena University Hospital, Siena, Italy
| | - Antonella Falzea
- Medical Oncology Unit, "Bianchi-Melacrino-Morelli" Grand Metropolitan Hospital, Reggio Calabria, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy.,Biogem Scarl, Institute of Genetic Research, Laboratory of Precision and Molecular Oncology, Ariano Irpino, Italy
| | - Graziella D'Arrigo
- Statistical Unit, IFC-CNR (CNR), Grand Metropolitan Hospital-IFC, Reggio Calabria, Italy
| | - Giovanni Tripepi
- Statistical Unit, IFC-CNR (CNR), Grand Metropolitan Hospital-IFC, Reggio Calabria, Italy
| | - Pierfrancesco Tassone
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Raffaele Addeo
- Oncology Unit, Day Hospital, San Giovanni di Dio Hospital, ASL Napoles 2 Nord, Frattamaggiore, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States.,Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine and Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
| | - Guido Francini
- Medical Oncology Unit, Siena University Hospital, Siena, Italy
| | - Pierosandro Tagliaferri
- Medical Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
47
|
Möhn N, Beutel G, Gutzmer R, Ivanyi P, Satzger I, Skripuletz T. Neurological Immune Related Adverse Events Associated with Nivolumab, Ipilimumab, and Pembrolizumab Therapy-Review of the Literature and Future Outlook. J Clin Med 2019; 8:jcm8111777. [PMID: 31653079 PMCID: PMC6912719 DOI: 10.3390/jcm8111777] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the management of various cancers with previously poor prognosis. Despite its great efficacy, the therapy is associated with a wide spectrum of immune-related adverse events (irAE) including neurological symptoms which can affect all parts of the central and peripheral nervous system. Even though these events are rare, they are of high relevance as the rate of residual symptoms or even fatal outcomes is remarkable. To provide a detailed overview of neurological adverse events associated with immune checkpoint-inhibitor therapy we conducted a literature search. While focusing on ipilimumab, nivolumab, and pembrolizumab therapy, all available case reports as well as larger case series and clinical trials have been considered. Eighty-two case reports about checkpoint-inhibitor therapy induced symptoms of the peripheral nervous system have been published, while only 43 case reports addressed central nervous system abnormalities. The frequency of immune checkpoint-inhibitor therapy inducing neurological adverse events is about 1% in larger studies. Especially neuromuscular adverse events exhibit distinct clinical and diagnostic characteristics. Additionally, several affected patients presented with overlap-syndromes, which means that symptoms and diagnostic findings indicating myositis, myasthenia gravis, and neuropathy were present in one individual patient at the same time. Thus, neurological and particularly neuromuscular adverse events of immune checkpoint-inhibitor therapy may constitute a new disease entity.
Collapse
Affiliation(s)
- Nora Möhn
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany;
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
| | - Gernot Beutel
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Ralf Gutzmer
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover 30625, German
| | - Philipp Ivanyi
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover 30625, Germany
| | - Imke Satzger
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Skin Cancer Center Hannover, Department of Dermatology and Allergy, Hannover Medical School, Hannover 30625, German
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, Hannover 30625, Germany;
- Center for Immuno-Oncology (IOZ) Hannover Medical School, Hannover 30625, Germany; (G.B.); (R.G.); (P.I.)
- Correspondence: ; Tel.: +49-511-532-3816; Fax: +49-511-532-3115
| |
Collapse
|
48
|
Wang H, Wu X, Zhang X, Yang X, Long Y, Feng Y, Wang F. Prevalence of NRAS Mutation, PD-L1 Expression and Amplification, and Overall Survival Analysis in 36 Primary Vaginal Melanomas. Oncologist 2019; 25:e291-e301. [PMID: 32043781 PMCID: PMC7011659 DOI: 10.1634/theoncologist.2019-0148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/21/2019] [Indexed: 12/22/2022] Open
Abstract
Background Primary vaginal melanomas are uncommon and aggressive tumors with poor prognosis, and the development of new targeted therapies is essential. This study aimed to identify the molecular markers occurring in these patients and potentially improve treatment strategies. Materials and Methods The clinicopathological characteristics of 36 patients with primary vaginal melanomas were reviewed. Oncogenic mutations in BRAF, KIT, NRAS, GNAQ and GNA11 and the promoter region of telomerase reverse transcriptase (TERT) were investigated using the Sanger sequencing. The expression and copy number of programmed death‐ligand 1 (PD‐L1) were also assessed. Results Mutations in NRAS, KIT, and TERT promoter were identified in 13.9% (5/36), 2.9% (1/34), and 5.6% (2/36) of the primary vaginal melanomas, respectively. PD‐L1 expression and amplification were observed in 27.8% (10/36) and 5.6% (2/36) of cases, respectively. PD‐L1 positive expression and/or amplification was associated with older patients (p = .008). Patients who had NRAS mutations had a poorer overall survival compared with those with a wild‐type NRAS (33.5 vs. 14.0 months; hazard ratio [HR], 3.09; 95% CI, 1.08–8.83). Strikingly, two patients with/without PD‐L1 expression receiving immune checkpoint inhibitors had a satisfying outcome. Multivariate analysis demonstrated that >10 mitoses per mm2 (HR, 2.96; 95% CI, 1.03–8.51) was an independent prognostic factor. Conclusions NRAS mutations and PD‐L1 expression were most prevalent in our cohort of primary vaginal melanomas and can be potentially considered as therapeutic targets. Implications for Practice This study used the Sanger sequencing, immunohistochemistry, and fluorescence in situ hybridization methods to detect common genetic mutations and PD‐L1 expression and copy number in 36 primary vaginal melanomas. NRAS mutations and PD‐L1 expression were the most prevalent, but KIT and TERT mutations occurred at a lower occurrence in this rare malignancy. Two patients receiving immune checkpoint inhibitors had a satisfying outcome, signifying that the PD‐L1 expression and amplification can be a possible predictive marker of clinical response. This study highlights the possible prospects of biomarkers that can be used for patient selection in clinical trials involving treatments with novel targeted therapies based on these molecular aberrations. Little is known about the molecular characteristics of primary vaginal melanoma. This article reports on the molecular markers of this rare and aggressive disease, focusing on improvements in treatment strategies.
Collapse
Affiliation(s)
- Hai‐Yun Wang
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Molecular Diagnostics, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xiao‐Yan Wu
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Molecular Diagnostics, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xiao Zhang
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Molecular Diagnostics, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Xin‐Hua Yang
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Molecular Diagnostics, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Ya‐Kang Long
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Molecular Diagnostics, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Yan‐Fen Feng
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Pathology, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| | - Fang Wang
- Sun Yat‐sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineGuangzhouPeople's Republic of China
- Department of Molecular Diagnostics, Sun Yat‐Sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
49
|
Kaur A, Doberstein T, Amberker RR, Garje R, Field EH, Singh N. Immune-related adverse events in cancer patients treated with immune checkpoint inhibitors: A single-center experience. Medicine (Baltimore) 2019; 98:e17348. [PMID: 31593084 PMCID: PMC6799752 DOI: 10.1097/md.0000000000017348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) like cytotoxic T-lymphocyte-associated protein 4 (anti-CTLA4) and programmed death cell protein 1 (anti-PD1) have revolutionized cancer treatment. As ICI use becomes widespread, more immune-related adverse events (irAE's) are being reported. Our aim was to investigate the frequency and nature of new irAE's as well as report the frequency of flare-ups of pre-existing autoimmune conditions occurring after ICI therapy.We performed a retrospective chart review of all patients treated for cancer with anti-PD1 or anti-CTLA4 or combination therapy at our tertiary care center from January 2014 to April 2016. Demographic data, cancer type and stage, irAE's (new immune disorders and disease flares of pre-existing autoimmune disorders on ICI therapy), and drug treatment information were extracted.We identified 220 patients treated with ICI therapy during the study period out of which 27% (60/220) developed irAE's. 11% in anti-CTLA4 group and 16% among anti-PD1 treated patients developed irAE's. IrAE's resulted in discontinuation of cancer therapy in 28% of those who developed irAE's. 21.4% had a flare of their autoimmune disease but only 1 required discontinuation of immunotherapy.IrAE's are an important emerging clinical disease entity for specialists to be aware of. Our study shows that ICI's can be safely used in patients with pre-existing autoimmune conditions with close monitoring. However, there is still a large unmet need to have a better understanding of how to systematically evaluate and manage patients with irAE's as well as for identifying the predictors of irAE's.
Collapse
Affiliation(s)
- Aneet Kaur
- Division of Immunology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | | | | | | | - Elizabeth Hirak Field
- Division of Immunology, University of Iowa and Clinics and Iowa City VA Medical Center
| | - Namrata Singh
- Division of Immunology, University of Iowa Hospitals and Clinics and Iowa City VA Medical Center, Iowa City, IA
| |
Collapse
|
50
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|