1
|
Mougel A, Méjean F, Tran T, Adimi Y, Galy-Fauroux I, Kaboré C, Mercier E, Urquia P, Terme M, Tartour E, Tanchot C. Synergistic effect of combining sunitinib with a peptide-based vaccine in cancer treatment after microenvironment remodeling. Oncoimmunology 2022; 11:2110218. [PMID: 35968405 PMCID: PMC9367646 DOI: 10.1080/2162402x.2022.2110218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although it has proven difficult to demonstrate the clinical efficacy of therapeutic vaccination as a monotherapy in advanced cancers, its combination with an immunomodulatory treatment to reduce intra-tumor immunosuppression and improve vaccine efficacy is a very promising strategy. In this context, we are studying the combination of a vaccine composed of peptides of the tumor antigen survivin (SVX vaccine) with the anti-angiogenic agent sunitinib in a colorectal carcinoma model. To this end, we have been focusing on administration scheduling and have highlighted a therapeutic synergy between SVX vaccine and sunitinib when the vaccine was administered at the end of anti-angiogenic treatment. In this setting, a prolonged control of tumor growth associated with an important percentage of complete tumor regression was observed. Studying the remodeling induced by each therapy on the immunological and angiogenic tumor microenvironment over time we observed, during sunitinib treatment, a transient increase in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and a decrease in NK cells in the tumor microenvironment. In contrast, after sunitinib treatment was stopped, a decrease in PMN-MDSC populations has been observed in the tumor, associated with an increase in NK cells, pericyte coverage of tumor vessels and CD8+ T cell population and functionality. In conclusion, sunitinib treatment results in the promotion of an immune-favorable tumor microenvironment that can guide the optimal sequence of vaccine and anti-angiogenic combination to reinforce their synergy.
Collapse
Affiliation(s)
- Alice Mougel
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Fanny Méjean
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Thi Tran
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Yasmine Adimi
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | | | | | - Erwan Mercier
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Pauline Urquia
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Magali Terme
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
| | - Eric Tartour
- Université Paris Cité, Inserm, PARCC, F-75015 Paris, France
- Department of Immunology, AP-HP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| | | |
Collapse
|
2
|
Jain M, Mishra A, Singh MK, Shyam H, Kumar S, Shankar P, Singh S. Immunotherapeutic and their immunological aspects: Current treatment strategies and agents. Natl J Maxillofac Surg 2022; 13:322-329. [PMID: 36683928 PMCID: PMC9851344 DOI: 10.4103/njms.njms_62_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/24/2023] Open
Abstract
Cancer is often caused by the immune system's inability to deal with malignant cells and allows them to progress and proliferate. Emerging cancerous cells constantly evade the immune system, and as a result, these cancerous cells acquire more mutations and exhibit the deadliest characteristics among malignant tumors. The importance of understanding tumor immunology, particularly the functions of tumor antigens and the immunosuppressive tumor microenvironment, is highlighted by the effectiveness of cancer immunotherapy therapies. Many innovative immunotherapy drugs that effectively battle cancer have been produced since the 1980s. At present, in cancer treatment, immunotherapy appears as a paradigm that targets immune checkpoints of tumor cells such as CTLA-4, PD-1, and monoclonal antibodies (MABs), although the treatment of cancer is classified into non-specific and specific types. Specific types define the antibody targeting cell receptors as a new cancer treatment modality. For a number of malignancies, checkpoint inhibitors, MABs, and their derivatives have become standard-of-care therapy. Other immunotherapy techniques, such as most cancer vaccines and cell-based therapies, are still in the experimental stage. Many new immunotherapy techniques and agents are being explored and evaluated in clinical trials, which is a good thing. Thus, this review discusses the role of checkpoint inhibitors and MABs in the treatment of tumor cells. Moreover, these findings help us to understand the mechanism of action of this class of therapeutics and provide support for the management of cancer treatment.
Collapse
Affiliation(s)
- Mayank Jain
- Department of Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Archana Mishra
- Department of Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mukul K. Singh
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Hari Shyam
- Department of Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shailendra Kumar
- Department of Thoracic Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Pratap Shankar
- Center for Advance Research, Lucknow, Uttar Pradesh, India
| | - Saumya Singh
- Department of Surgery, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Mondlane ER, Abreu-Mendes P, Martins D, Cruz R, Mendes F. The role of immunotherapy in advanced renal cell carcinoma: Review. Int Braz J Urol 2021; 47:1228-1242. [PMID: 33650838 PMCID: PMC8486460 DOI: 10.1590/s1677-5538.ibju.2020.0681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 01/05/2023] Open
Affiliation(s)
- Ercília Rita Mondlane
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DFARM, ESTeSC, SM Bispo, Coimbra, Portugal.
| | - Pedro Abreu-Mendes
- Centro Hospital Universitário de São JoãoServiço de UrologiaPortoPortugalServiço de Urologia, Centro Hospital Universitário de São João, Porto, Portugal.
- Universidade do PortoFaculdade de MedicinaPortoPortugalFaculdade de Medicina Universidade do Porto, Porto, Portugal.
| | - Diana Martins
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DCBL, SM Bispo, Coimbra, Portugal.
- Universidade de CoimbraInstituto de Investigação Clínica e Biomédica de Coimbra CoimbraPortugalUniversidade de Coimbra, Instituto de Investigação Clínica e Biomédica de Coimbra Coimbra, Portugal.
- Universidade de CoimbraCentro de Biomedicina e Biotecnologia Inovadoras (CIBB)CoimbraPortugalUniversidade de Coimbra, Centro de Biomedicina e Biotecnologia Inovadoras (CIBB), Coimbra, Portugal.
- Centro Académico Clínico de CoimbraCoimbraPortugalCentro Académico Clínico de Coimbra (CACC), Coimbra, Portugal.
- Universidade do PortoInstituto de Investigação e Inovação em SaúdePortoPortugalInstituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Rui Cruz
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DFARM, ESTeSC, SM Bispo, Coimbra, Portugal.
| | - Fernando Mendes
- ESTeSCPolitécnico de CoimbraCoimbraPortugalPolitécnico de Coimbra, ESTeSC, DCBL, SM Bispo, Coimbra, Portugal.
- Universidade de CoimbraInstituto de Investigação Clínica e Biomédica de Coimbra CoimbraPortugalUniversidade de Coimbra, Instituto de Investigação Clínica e Biomédica de Coimbra Coimbra, Portugal.
- Universidade de CoimbraCentro de Biomedicina e Biotecnologia Inovadoras (CIBB)CoimbraPortugalUniversidade de Coimbra, Centro de Biomedicina e Biotecnologia Inovadoras (CIBB), Coimbra, Portugal.
- Centro Académico Clínico de CoimbraCoimbraPortugalCentro Académico Clínico de Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
4
|
Do-Thi VA, Lee H, Jeong HJ, Lee JO, Kim YS. Protective and Therapeutic Effects of an IL-15:IL-15Rα-Secreting Cell-Based Cancer Vaccine Using a Baculovirus System. Cancers (Basel) 2021; 13:cancers13164039. [PMID: 34439192 PMCID: PMC8394727 DOI: 10.3390/cancers13164039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
This study reports the use of the BacMam system to deliver and express self-assembling IL-15 and IL-15Rα genes to murine B16F10 melanoma and CT26 colon cancer cells. BacMam-based IL-15 and IL-15Rα were well-expressed and assembled to form the biologically functional IL-15:IL-15Rα complex. Immunization with this IL-15:IL-15Rα cancer vaccine delayed tumor growth in mice by inducing effector memory CD4+ and CD8+ cells and effector NK cells which are tumor-infiltrating. It caused strong antitumor immune responses of CD8+ effector cells in a tumor-antigen specific manner both in vitro and in vivo and significantly attenuated Treg cells which a control virus-infected cancer vaccine could induce. Post-treatment with this cancer vaccine after a live cancer cell injection also prominently delayed the growth of the tumor. Collectively, we demonstrate a vaccine platform consisting of BacMam virus-infected B16F10 or CT26 cancer cells that secrete IL-15:IL-15Rα. This study is the first demonstration of a functionally competent soluble IL-15:IL-15Rα complex-related cancer vaccine using a baculovirus system and advocates that the BacMam system can be used as a secure and rapid method of producing a protective and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Van Anh Do-Thi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134, Korea;
| | - Hye Jin Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
| | - Jie-Oh Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea; (V.A.D.-T.); (H.J.J.)
- Correspondence: (J.-O.L.); (Y.S.K.)
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-O.L.); (Y.S.K.)
| |
Collapse
|
5
|
Phung CD, Pham TT, Nguyen HT, Nguyen TT, Ou W, Jeong JH, Choi HG, Ku SK, Yong CS, Kim JO. Anti-CTLA-4 antibody-functionalized dendritic cell-derived exosomes targeting tumor-draining lymph nodes for effective induction of antitumor T-cell responses. Acta Biomater 2020; 115:371-382. [PMID: 32798721 DOI: 10.1016/j.actbio.2020.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
The therapeutic efficacy of current cancer vaccines is far from optimal, mainly because of insufficient induction of antigen-specific T cells and because tumor cells can hijack immunosuppressive mechanisms to evade the immune responses. Generating specific, robust, and long-term immune responses against cancer cells and the attenuating of immunosuppressive factors are critical for effective cancer vaccination. Recently, the engineering of exosomes specifically bind to T cells, and then stimulating tumor-specific T-cell immune responses has emerged as a potential alternative strategy for cancer vaccination. In this study, we generated a bifunctional exosome combining the strategy of vaccination and checkpoint blockade. Exosomes prepared from Ovalbumin (OVA)-pulsed, activated dendritic cells were modified with anti-CTLA-4 antibody (EXO-OVA-mAb) to block this inhibitory molecule and to enhance the specificity of the exosomes toward T cells. Our study provides a unique strategy for functionalizing exosome membrane with anti-CTLA-4 antibody via lipid-anchoring method to synergize efficacy of cancer vaccination and immune checkpoint blockade against the tumor. STATEMENT OF SIGNIFICANCE: We designed T-cell-targeting exosomes (EXO-OVA-mAb) decorated with costimulatory molecules, MHCs, antigenic OVA peptide, and anti-CTLA-4 antibody, combining the strategies of vaccines and checkpoint blockade. The exosomes showed enhanced binding to T cells in tumor-draining lymph nodes, effectively induced T-cell activation, and improved the tumor homing of effector T cells, ultimately significantly restraining tumor growth. Thus, EXO-OVA-mAb greatly facilitates T-cell targeting, induces a strong tumor-specific T-cell response, and increased the ratio of effector T cells/regulatory T cells within tumors, resulting in appreciable tumor growth inhibition.
Collapse
Affiliation(s)
- Cao Dai Phung
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Thanh Tung Pham
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tien Tiep Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55, Hanyangdaehak-ro, Sangnok-gu, Ansan 426-791 Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, Girish S, Wu B. Personalized Cancer Vaccines: Clinical Landscape, Challenges, and Opportunities. Mol Ther 2020; 29:555-570. [PMID: 33038322 DOI: 10.1016/j.ymthe.2020.09.038] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/15/2020] [Accepted: 09/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tremendous innovation is underway among a rapidly expanding repertoire of promising personalized immune-based treatments. Therapeutic cancer vaccines (TCVs) are attractive systemic immunotherapies that activate and expand antigen-specific CD8+ and CD4+ T cells to enhance anti-tumor immunity. Our review highlights key issues impacting TCVs in clinical practice and reports on progress in development. We review the mechanism of action, immune-monitoring, dosing strategies, combinations, obstacles, and regulation of cancer vaccines. Most trials of personalized TCVs are ongoing and represent diverse platforms with predominantly early investigations of mRNA, DNA, or peptide-based targeting strategies against neoantigens in solid tumors, with many in combination immunotherapies. Multiple delivery systems, routes of administration, and dosing strategies are used. Intravenous or intramuscular administration is common, including delivery by lipid nanoparticles. Absorption and biodistribution impact antigen uptake, expression, and presentation, affecting the strength, speed, and duration of immune response. The emerging trials illustrate the complexity of developing this class of innovative immunotherapies. Methodical testing of the multiple potential factors influencing immune responses, as well as refined quantitative methodologies to facilitate optimal dosing strategies, could help resolve uncertainty of therapeutic approaches. To increase the likelihood of success in bringing these medicines to patients, several unique development challenges must be overcome.
Collapse
Affiliation(s)
- Colby S Shemesh
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joy C Hsu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Iraj Hosseini
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ben-Quan Shen
- Department of Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Anand Rotte
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Twomey
- Department of Product Development Safety, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Sandhya Girish
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Wu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
7
|
Popat V, Lu R, Ahmed M, Park JY, Xie Y, Gerber DE. Lack of Association Between Radiographic Tumor Burden and Efficacy of Immune Checkpoint Inhibitors in Advanced Lung Cancer. Oncologist 2020; 25:515-522. [PMID: 32233048 DOI: 10.1634/theoncologist.2019-0814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Historically, tumor burden has been considered an impediment to efficacy of immunotherapeutic agents, including vaccines, stem cell transplant, cytokine therapy, and intravesical bacillus Calmette-Guérin. This effect has been attributed to hypoxic zones in the tumor core contributing to poor T-cell infiltration, formation of immunosuppressive stromal cells, and development of therapy-resistant cell populations. However, the association between tumor burden and efficacy of immune checkpoint inhibitors is unknown. We sought to determine the association between radiographic tumor burden parameters and efficacy of immune checkpoint inhibitors in advanced lung cancer. MATERIALS AND METHODS We performed a retrospective analysis of patients with advanced lung cancer treated with immune checkpoint inhibitors. Demographic, disease, and treatment data were collected. Serial tumor dimensions were recorded according to RECIST version 1.1. Associations between radiographic tumor burden (baseline sum of longest diameters, longest single diameter) and clinical outcomes (radiographic response, progression-free survival, and overall survival) were determined using log-rank tests, Cox proportional-hazard regression, and logistic regression. RESULTS Among 105 patients, the median baseline sum of longest diameters (BSLD) was 6.4 cm; median longest single diameter was 3.6 cm. BSLD was not associated with best radiographic, progression-free survival, or overall survival. In univariate and multivariate analyses, no significant associations were observed for the other radiographic parameters and outcomes when considered as categorical or continuous variables. CONCLUSION Although tumor burden has been considered a mediator of efficacy of earlier immunotherapies, in advanced lung cancer it does not appear to affect outcomes from immune checkpoint inhibitors. IMPLICATIONS FOR PRACTICE Historically, tumor burden has been considered an impediment to the efficacy of various immunotherapies, including vaccines, cytokines, allogeneic stem cell transplant, and intravesical bacillus Calmette-Guérin. However, in the present study, no association was found between tumor burden and efficacy (response rate, progression-free survival, overall survival) of immune checkpoint inhibitors in advanced lung cancer. These findings suggest that immune checkpoint inhibitors may provide benefit across a range of disease burden, including bulky tumors considered resistant to other categories of immunotherapy.
Collapse
Affiliation(s)
- Vinita Popat
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rong Lu
- Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Murtaza Ahmed
- School of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jason Y Park
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yang Xie
- Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David E Gerber
- Department of Population & Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Huang F, Zhao J, Wei Y, Wen Z, Zhang Y, Wang X, Shen Y, Wang LX, Pan N. Anti-Tumor Efficacy of an Adjuvant Built-In Nanovaccine Based on Ubiquitinated Proteins from Tumor Cells. Int J Nanomedicine 2020; 15:1021-1035. [PMID: 32103954 PMCID: PMC7025662 DOI: 10.2147/ijn.s237578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aim We have previously identified ubiquitinated proteins (UPs) from tumor cell lysates as a promising vaccine for cancer immunotherapy in different mouse tumor models. In this study, we aimed at developing a highly efficient therapeutic adjuvant built-in nanovaccine (α-Al2O3-UPs) by a simple method, in which UPs from tumor cells could be efficiently and conveniently enriched by α-Al2O3 nanoparticles covalently coupled with Vx3 proteins (α-Al2O3-CONH-Vx3). Methods The α-Al2O3 nanoparticles were modified with 4-hydroxybenzoic acid followed by coupling with ubiquitin-binding protein Vx3. It was then used to enrich UPs from 4T1 cell lysate. The stability and the efficiency for the UPs enrichment of α-Al2O3-CONH-Vx3 were examined. The ability of α-Al2O3-UPs to activate DCs was examined in vitro subsequently. The splenocytes from the vaccinated mice were re-stimulated with inactivated tumor cells, and the IFN-γ secretion was detected by ELISA and flow cytometry. Moreover, the therapeutic efficacy of α-Al2O3-UPs, alone and in combination with chemotherapy, was examined in 4T1 tumor-bearing mice. Results Our results showed that α-Al2O3-UPs were successfully synthesized and abundant UPs from tumor cell lysate were enriched by the new method. In vitro study showed that compared to the physical mixture of α-Al2O3 nanoparticles and UPs (α-Al2O3+UPs), α-Al2O3-UPs stimulation resulted in higher upregulations of CD80, CD86, MHC class I, and MHC class II on DCs, indicating the higher ability of DC activation. Moreover, α-Al2O3-UPs elicited a more effective immune response in mice, demonstrated by higher IFN-γ secretion than α-Al2O3+UPs. Furthermore, α-Al2O3-UPs also exhibited a more potent effect on tumor growth inhibition and survival prolongation in 4T1 tumor-bearing mice. Notably, when in combination with low dose chemotherapy, the anti-tumor effect was further enhanced, rather than using α-Al2O3-UPs alone. Conclusion This study presents an adjuvant built-in nanovaccine generated by a new simple method that can be potentially applied to cancer immunotherapy and lays the experimental foundation for future clinical application.
Collapse
Affiliation(s)
- Fang Huang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Jinjin Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Yiting Wei
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Zhifa Wen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Yue Zhang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Xuru Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Yanfei Shen
- Department of Bioengineering, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Li-Xin Wang
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Ning Pan
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| |
Collapse
|
9
|
Immunological consequences of chemotherapy: Single drugs, combination therapies and nanoparticle-based treatments. J Control Release 2019; 305:130-154. [DOI: 10.1016/j.jconrel.2019.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
10
|
Mougel A, Terme M, Tanchot C. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. Front Immunol 2019; 10:467. [PMID: 30923527 PMCID: PMC6426771 DOI: 10.3389/fimmu.2019.00467] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
Considering the high importance of immune surveillance and immune escape in the evolution of cancer, the development of immunotherapeutic strategies has become a major field of research in recent decades. The considerable therapeutic breakthrough observed when targeting inhibitory immune checkpoint molecules has highlighted the need to find approaches enabling the induction and proper activation of an immune response against cancer. In this context, therapeutic vaccination, which can induce a specific immune response against tumor antigens, is an important approach to consider. However, this strategy has its advantages and limits. Considering its low clinical efficacy, approaches combining therapeutic cancer vaccine strategies with other immunotherapies or targeted therapies have been emphasized. This review will list different cancer vaccines, with an emphasis on their targets. We highlight the results and limits of vaccine strategies and then describe strategies that combine therapeutic vaccines and antiangiogenic therapies or immune checkpoint blockade. Antiangiogenic therapies and immune checkpoint blockade are of proven clinical efficacy for some indications, but are limited by toxicity and the development of resistance. Their combination with therapeutic vaccines could be a way to improve therapeutic outcome by specifically stimulating the immune system and considering a global approach to tumor microenvironment remodeling.
Collapse
Affiliation(s)
- Alice Mougel
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France.,UFR Science du Vivant, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Magali Terme
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France.,Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Corinne Tanchot
- PARCC (Paris-Cardiovascular Research Center), INSERM U970, Paris, France
| |
Collapse
|
11
|
Chen Z, Hu K, Feng L, Su R, Lai N, Yang Z, Kang S. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci 2018; 109:1753-1763. [PMID: 29675979 PMCID: PMC5989746 DOI: 10.1111/cas.13618] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 01/02/2023] Open
Abstract
Various types of vaccines have been proposed as approaches for prevention or delay of the onset of cancer by boosting the endogenous immune system. We previously developed a senescent‐cell‐based vaccine, induced by radiation and veliparib, as a preventive and therapeutic tool against triple‐negative breast cancer. However, the programmed death receptor‐1/programmed death ligand‐1 (PD‐1/PD‐L1) pathway was found to play an important role in vaccine failure. Hence, we further developed soluble programmed death receptor‐1 (sPD1)‐expressing senescent cells to overcome PD‐L1/PD‐1‐mediated immune suppression while vaccinating to promote dendritic cell (DC) maturity, thereby amplifying T‐cell activation. In the present study, sPD1‐expressing senescent cells showed a particularly active status characterized by growth arrest and modified immunostimulatory cytokine secretion in vitro. As expected, sPD1‐expressing senescent tumor cell vaccine (STCV/sPD‐1) treatment attracted more mature DC and fewer exhausted‐PD1+ T cells in vivo. During the course of the vaccine studies, we observed greater safety and efficacy for STCV/sPD‐1 than for control treatments. STCV/sPD‐1 pre‐injections provided complete protection from 4T1 tumor challenge in mice. Additionally, the in vivo therapeutic study of mice with s.c. 4T1 tumor showed that STCV/sPD‐1 vaccination delayed tumorigenesis and suppressed tumor progression at early stages. These results showed that STCV/sPD‐1 effectively induced a strong antitumor immune response against cancer and suggested that it might be a potential strategy for TNBC prevention.
Collapse
Affiliation(s)
- Zehong Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kang Hu
- Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lieting Feng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruxiong Su
- Department of Pharmacy, Puning People's Hospital, Southern Medical University, Puning, China
| | - Nan Lai
- Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zike Yang
- Department of Oncology, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shijun Kang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|