1
|
Sharma N, Mazumder R, Rai P, Debnath A. Role of PD-1 in Skin Cancer: Molecular Mechanism, Clinical Applications, and Resistance. Chem Biol Drug Des 2024; 104:e14613. [PMID: 39231792 DOI: 10.1111/cbdd.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Skin cancer is a widespread worldwide health concern, manifesting in many subtypes such as squamous cell carcinoma, basal cell carcinoma, and melanoma. Although all these types occur frequently, they generally lack the possibility of being cured, emphasizing the importance of early discovery and treatment. This comprehensive study explores the role of programmed cell death protein 1 (PD-1) in skin cancer, focusing on its molecular mechanisms in immune regulation and its critical role in tumor immune evasion, while also clarifying the complexities of immune checkpoints in cancer pathogenesis. It critically evaluates the clinical applications of PD-1 inhibitors, spotlighting their therapeutic potential in treating skin cancer, while also addressing the significant challenge of resistance. This work further discusses the evolution of resistance mechanisms against PD-1 inhibitors and suggests potential approaches to mitigate these issues, thereby enhancing the effectiveness of these therapies. The study further highlights the current state of PD-1 targeted therapies and sets the stage for future research aimed at optimizing these treatments for better clinical outcomes in skin cancer.
Collapse
Affiliation(s)
- Neha Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| | - Pallavi Rai
- Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Abhijit Debnath
- Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
3
|
Sharma N, Mazumder R, Rai P. Revolutionizing Skin Cancer Treatment: The Rise of PD-1/PDL-1 and CTLA-4 as Key Therapeutic Targets. Curr Drug Targets 2024; 25:1012-1026. [PMID: 39257156 DOI: 10.2174/0113894501320281240822052657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/12/2024]
Abstract
Skin cancer is a significant health concern, affecting millions of individuals globally on an annual basis. According to data from the World Health Organization, it stands as the most prevalent form of cancer within the white population. Current treatments for skin cancer typically involve a combination of chemotherapy, radiation therapy, and surgery. However, these methods often come with drawbacks, such as side effects and potential scarring. Therefore, there is a growing need for alternative treatments that can offer effective results with fewer adverse effects, driving ongoing research in skin cancer therapy. The advancement of immune checkpoint inhibitors has been facilitated by a more profound comprehension of the interplay between tumors and the immune system, along with the regulatory mechanisms governing T-cells. As cancer treatment continues to evolve, immunotherapy is emerging as a powerful strategy, leading to a growing interest in the role of immunological checkpoints in skin cancer. Various types of immune checkpoints and their expression, including PD-1, PDL-1, CTLA-4, lymphocyte activation gene 3, and B7-H3, along with their blockers and monoclonal antibodies, have been established for various cancers. PD-1, PDL-1, and CTLA-4 are crucial immune system regulators, acting as brakes to prevent T-- cell overactivation and potential autoimmunity. However, tumors can exploit these checkpoints to evade immune detection. Inhibiting these immune checkpoints can enhance the body's ability to recognize and attack cancer cells. This review focuses on the characteristics of PD-1, PDL-1, and CTLA-4 immune checkpoints, their mechanism of action, and their role in skin cancer. Additionally, it summarizes the ongoing clinical trials sponsored or conducted by various pharmaceutical companies and provides insights into the latest patent data.
Collapse
Affiliation(s)
- Neha Sharma
- Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute) 19 Knowledge Park-II, Institutional Area, Greater Noida, 201306, Uttar Pradesh, India
| | - Pallavi Rai
- Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, India
| |
Collapse
|
4
|
Hasan N, Nadaf A, Imran M, Jiba U, Sheikh A, Almalki WH, Almujri SS, Mohammed YH, Kesharwani P, Ahmad FJ. Skin cancer: understanding the journey of transformation from conventional to advanced treatment approaches. Mol Cancer 2023; 22:168. [PMID: 37803407 PMCID: PMC10559482 DOI: 10.1186/s12943-023-01854-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/30/2023] [Indexed: 10/08/2023] Open
Abstract
Skin cancer is a global threat to the healthcare system and is estimated to incline tremendously in the next 20 years, if not diagnosed at an early stage. Even though it is curable at an early stage, novel drug identification, clinical success, and drug resistance is another major challenge. To bridge the gap and bring effective treatment, it is important to understand the etiology of skin carcinoma, the mechanism of cell proliferation, factors affecting cell growth, and the mechanism of drug resistance. The current article focusses on understanding the structural diversity of skin cancers, treatments available till date including phytocompounds, chemotherapy, radiotherapy, photothermal therapy, surgery, combination therapy, molecular targets associated with cancer growth and metastasis, and special emphasis on nanotechnology-based approaches for downregulating the deleterious disease. A detailed analysis with respect to types of nanoparticles and their scope in overcoming multidrug resistance as well as associated clinical trials has been discussed.
Collapse
Affiliation(s)
- Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, 4102, Australia
| | - Umme Jiba
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm Al-Qura University, 24381, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Kuthambakkam, India.
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
5
|
Khayyati Kohnehshahri M, Sarkesh A, Mohamed Khosroshahi L, HajiEsmailPoor Z, Aghebati-Maleki A, Yousefi M, Aghebati-Maleki L. Current status of skin cancers with a focus on immunology and immunotherapy. Cancer Cell Int 2023; 23:174. [PMID: 37605149 PMCID: PMC10440946 DOI: 10.1186/s12935-023-03012-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Skin cancer is one of the most widespread cancers, with a significant global health effect. UV-induced DNA damage in skin cells triggers them to grow and proliferate out of control, resulting in cancer development. Two common types of skin cancer include melanoma skin cancer (MSC) and non-melanoma skin cancer (NMSC). Melanoma is the most lethal form of skin cancer, and NMSC includes basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and other forms. The incidence of skin cancer is increasing in part owing to a demographic shift toward an aging population, which is more prone to NMSC, imposing a considerable financial strain on public health services. The introduction of immunostimulatory approaches for cancer cell eradication has led to significant improvements in skin cancer treatment. Over the last three decades, monoclonal antibodies have been used as powerful human therapeutics besides scientific tools, and along with the development of monoclonal antibody production and design procedures from chimeric to humanized and then fully human monoclonal antibodies more than 6 monoclonal antibodies have been approved by the food and drug administration (FDA) and have been successful in skin cancer treatment. In this review, we will discuss the epidemiology, immunology, and therapeutic approaches of different types of skin cancer.
Collapse
Affiliation(s)
- Mahsa Khayyati Kohnehshahri
- Department of Microbiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Aila Sarkesh
- Student’s Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
6
|
Suzuki R, Hamada K, Ohkuma R, Homma M, Tsurui T, Iriguchi N, Ishiguro T, Hirasawa Y, Ariizumi H, Kubota Y, Horiike A, Yoshimura K, Wada S, Yamochi T, Tsunoda T. Case Report: Combined pembrolizumab, 5-fluorouracil, and cisplatin therapy were remarkably effective in p16-positive squamous cell carcinoma of unknown primary. Front Oncol 2023; 13:1231986. [PMID: 37496666 PMCID: PMC10365966 DOI: 10.3389/fonc.2023.1231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023] Open
Abstract
Background Cancer of unknown primary (CUP) is a malignant tumor without a known primary lesion with a frequency of 3-5%. It can be divided into favorable and unfavorable prognosis subsets. While recommended treatments are available for the former group, there is no established treatment for the latter. Here, we report the effective treatment of a 32-year-old woman with p16-positive squamous cell CUP with pembrolizumab plus 5-fluorouracil and cisplatin therapy. Case presentation A 32-year-old woman presented with metastatic lesions in the liver, lung, bone, cervical region, abdominal region, and pelvic lymph nodes. She was diagnosed with p16-positive squamous cell carcinoma of unknown primary origin. The patient received pembrolizumab plus 5-fluorouracil and cisplatin therapy, which markedly reduced the metastasis and improved her Eastern Cooperative Oncology Group performance status after two courses. Conclusion This case report highlights the potential of pembrolizumab plus 5-fluorouracil and cisplatin therapy for treating CUP with an unfavorable prognosis. p16 positivity is worth examining for squamous cell carcinoma of unknown primary origin, and if present, this therapy should be considered a promising treatment option.
Collapse
Affiliation(s)
- Risako Suzuki
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kazuyuki Hamada
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Chest Surgery, Fukushima Medical University, Fukushima, Japan
| | - Ryotaro Ohkuma
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Mayumi Homma
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Toshiaki Tsurui
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Nana Iriguchi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tomoyuki Ishiguro
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuya Hirasawa
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hirotsugu Ariizumi
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yutaro Kubota
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Atsushi Horiike
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kiyoshi Yoshimura
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Immuno Oncology, Clinical Research Institute for Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Satoshi Wada
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Department of Clinical Diagnostic Oncology, Clinical Research Institute of Clinical Pharmacology and Therapeutics, Showa University, Tokyo, Japan
| | - Toshiko Yamochi
- Department of Pathology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Tsunoda
- Division of Medical Oncology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Imon RR, Samad A, Alam R, Alsaiari AA, Talukder MEK, Almehmadi M, Ahammad F, Mohammad F. Computational formulation of a multiepitope vaccine unveils an exceptional prophylactic candidate against Merkel cell polyomavirus. Front Immunol 2023; 14:1160260. [PMID: 37441076 PMCID: PMC10333698 DOI: 10.3389/fimmu.2023.1160260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare neuroendocrine skin malignancy caused by human Merkel cell polyomavirus (MCV), leading to the most aggressive skin cancer in humans. MCV has been identified in approximately 43%-100% of MCC cases, contributing to the highly aggressive nature of primary cutaneous carcinoma and leading to a notable mortality rate. Currently, no existing vaccines or drug candidates have shown efficacy in addressing the ailment caused by this specific pathogen. Therefore, this study aimed to design a novel multiepitope vaccine candidate against the virus using integrated immunoinformatics and vaccinomics approaches. Initially, the highest antigenic, immunogenic, and non-allergenic epitopes of cytotoxic T lymphocytes, helper T lymphocytes, and linear B lymphocytes corresponding to the virus whole protein sequences were identified and retrieved for vaccine construction. Subsequently, the selected epitopes were linked with appropriate linkers and added an adjuvant in front of the construct to enhance the immunogenicity of the vaccine candidates. Additionally, molecular docking and dynamics simulations identified strong and stable binding interactions between vaccine candidates and human Toll-like receptor 4. Furthermore, computer-aided immune simulation found the real-life-like immune response of vaccine candidates upon administration to the human body. Finally, codon optimization was conducted on the vaccine candidates to facilitate the in silico cloning of the vaccine into the pET28+(a) cloning vector. In conclusion, the vaccine candidate developed in this study is anticipated to augment the immune response in humans and effectively combat the virus. Nevertheless, it is imperative to conduct in vitro and in vivo assays to evaluate the efficacy of these vaccine candidates thoroughly. These evaluations will provide critical insights into the vaccine's effectiveness and potential for further development.
Collapse
Affiliation(s)
- Raihan Rahman Imon
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Abdus Samad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Rahat Alam
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Ahad Amer Alsaiari
- Clinical Laboratories Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Md. Enamul Kabir Talukder
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mazen Almehmadi
- Clinical Laboratories Science Department, College of Applied Medical Science, Taif University, Taif, Saudi Arabia
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, Bangladesh
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
8
|
Farhana A. Enhancing Skin Cancer Immunotheranostics and Precision Medicine through Functionalized Nanomodulators and Nanosensors: Recent Development and Prospects. Int J Mol Sci 2023; 24:3493. [PMID: 36834917 PMCID: PMC9959821 DOI: 10.3390/ijms24043493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Skin cancers, especially melanomas, present a formidable diagnostic and therapeutic challenge to the scientific community. Currently, the incidence of melanomas shows a high increase worldwide. Traditional therapeutics are limited to stalling or reversing malignant proliferation, increased metastasis, or rapid recurrence. Nonetheless, the advent of immunotherapy has led to a paradigm shift in treating skin cancers. Many state-of-art immunotherapeutic techniques, namely, active vaccination, chimeric antigen receptors, adoptive T-cell transfer, and immune checkpoint blockers, have achieved a considerable increase in survival rates. Despite its promising outcomes, current immunotherapy is still limited in its efficacy. Newer modalities are now being explored, and significant progress is made by integrating cancer immunotherapy with modular nanotechnology platforms to enhance its therapeutic efficacy and diagnostics. Research on targeting skin cancers with nanomaterial-based techniques has been much more recent than other cancers. Current investigations using nanomaterial-mediated targeting of nonmelanoma and melanoma cancers are directed at augmenting drug delivery and immunomodulation of skin cancers to induce a robust anticancer response and minimize toxic effects. Many novel nanomaterial formulations are being discovered, and clinical trials are underway to explore their efficacy in targeting skin cancers through functionalization or drug encapsulation. The focus of this review rivets on theranostic nanomaterials that can modulate immune mechanisms toward protective, therapeutic, or diagnostic approaches for skin cancers. The recent breakthroughs in nanomaterial-based immunotherapeutic modulation of skin cancer types and diagnostic potentials in personalized immunotherapies are discussed.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Aljouf 72388, Saudi Arabia
| |
Collapse
|
9
|
Skin Cancer Metabolic Profile Assessed by Different Analytical Platforms. Int J Mol Sci 2023; 24:ijms24021604. [PMID: 36675128 PMCID: PMC9866771 DOI: 10.3390/ijms24021604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Skin cancer, including malignant melanoma (MM) and keratinocyte carcinoma (KC), historically named non-melanoma skin cancers (NMSC), represents the most common type of cancer among the white skin population. Despite decades of clinical research, the incidence rate of melanoma is increasing globally. Therefore, a better understanding of disease pathogenesis and resistance mechanisms is considered vital to accomplish early diagnosis and satisfactory control. The "Omics" field has recently gained attention, as it can help in identifying and exploring metabolites and metabolic pathways that assist cancer cells in proliferation, which can be further utilized to improve the diagnosis and treatment of skin cancer. Although skin tissues contain diverse metabolic enzymes, it remains challenging to fully characterize these metabolites. Metabolomics is a powerful omics technique that allows us to measure and compare a vast array of metabolites in a biological sample. This technology enables us to study the dermal metabolic effects and get a clear explanation of the pathogenesis of skin diseases. The purpose of this literature review is to illustrate how metabolomics technology can be used to evaluate the metabolic profile of human skin cancer, using a variety of analytical platforms including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). Data collection has not been based on any analytical method.
Collapse
|
10
|
Zeng L, Gowda BHJ, Ahmed MG, Abourehab MAS, Chen ZS, Zhang C, Li J, Kesharwani P. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Mol Cancer 2023; 22:10. [PMID: 36635761 PMCID: PMC9835394 DOI: 10.1186/s12943-022-01708-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
Skin cancer has emerged as the fifth most commonly reported cancer in the world, causing a burden on global health and the economy. The enormously rising environmental changes, industrialization, and genetic modification have further exacerbated skin cancer statistics. Current treatment modalities such as surgery, radiotherapy, conventional chemotherapy, targeted therapy, and immunotherapy are facing several issues related to cost, toxicity, and bioavailability thereby leading to declined anti-skin cancer therapeutic efficacy and poor patient compliance. In the context of overcoming this limitation, several nanotechnological advancements have been witnessed so far. Among various nanomaterials, nanoparticles have endowed exorbitant advantages by acting as both therapeutic agents and drug carriers for the remarkable treatment of skin cancer. The small size and large surface area to volume ratio of nanoparticles escalate the skin tumor uptake through their leaky vasculature resulting in enhanced therapeutic efficacy. In this context, the present review provides up to date information about different types and pathology of skin cancer, followed by their current treatment modalities and associated drawbacks. Furthermore, it meticulously discusses the role of numerous inorganic, polymer, and lipid-based nanoparticles in skin cancer therapy with subsequent descriptions of their patents and clinical trials.
Collapse
Affiliation(s)
- Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed Gulzar Ahmed
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Jamaica, NY, 11439, USA
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Jia Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Department of Pharmacology, Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
11
|
Movahedi F, Liu J, Sun B, Cao P, Sun L, Howard C, Gu W, Xu ZP. PD-L1-Targeted Co-Delivery of Two Chemotherapeutics for Efficient Suppression of Skin Cancer Growth. Pharmaceutics 2022; 14:pharmaceutics14071488. [PMID: 35890381 PMCID: PMC9318418 DOI: 10.3390/pharmaceutics14071488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
To overcome the severe side effects of cancer chemotherapy, it is vital to develop targeting chemotherapeutic delivery systems with the potent inhibition of tumour growth, angiogenesis, invasion and migration at low drug dosages. For this purpose, we co-loaded a conventional antiworm drug, albendazole (ABZ), and a TOPK inhibitor, OTS964, into lipid-coated calcium phosphate (LCP) nanoparticles for skin cancer treatment. OTS- and ABZ-loaded LCP (OTS-ABZ-LCP) showed a synergistic cytotoxicity against skin cancer cells through their specific cancerous pathways, without obvious toxicity to healthy cell lines. Moreover, dual-targeting the programmed death ligand-1 (PD-L1) and folate receptor overexpressed on the surface of skin cancer cells completely suppressed the skin tumour growth at low doses of ABZ and OTS. In summary, ABZ and OTS co-loaded dual-targeting LCP NPs represent a promising platform with high potentials against complicated cancers where PD-L1/FA dual targeting appears as an effective approach for efficient and selective cancer therapy.
Collapse
|
12
|
Fadel CA, Danak SU, Jhaveri J, Caudell MD. The potentiation of radio sensitization by concomitant treatment with radiation therapy and a PDL-1 inhibitor in cutaneous squamous cell carcinoma. Adv Radiat Oncol 2022; 7:101021. [PMID: 36131995 PMCID: PMC9483777 DOI: 10.1016/j.adro.2022.101021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Celine A. Fadel
- Internal Medicine Residency, Northeast Georgia Medical Center, Gainesville, Georgia
- Corresponding author: Celine A. Fadel, DO
| | - Shivang U. Danak
- Internal Medicine Residency, Northeast Georgia Medical Center, Gainesville, Georgia
| | - Jaymin Jhaveri
- Northeast Georgia Physicians Group Radiation Oncology, Gainesville, Georgia
| | | |
Collapse
|
13
|
Non-Melanoma Skin Cancer: A Genetic Update and Future Perspectives. Cancers (Basel) 2022; 14:cancers14102371. [PMID: 35625975 PMCID: PMC9139429 DOI: 10.3390/cancers14102371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Non-melanoma skin cancer (NMSC) is the main type of cancer in the Caucasian population, and the number of cases continues to rise. Research mostly focuses on clinical characteristics analysis, but genetic features are crucial to malignancies’ establishment and advance. We aim to explore the genetic basics of skin cancer, surrounding microenvironment interactions, and regulation mechanisms to provide a broader perspective for new therapies’ development. Abstract Skin cancer is one of the main types of cancer worldwide, and non-melanoma skin cancer (NMSC) is the most frequent within this group. Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common types. Multifactorial features are well-known for cancer development, and new hallmarks are gaining relevance. Genetics and epigenetic regulation play an essential role in cancer susceptibility and progression, as well as the variety of cells and molecules that interact in the tumor microenvironment. In this review, we provide an update on the genetic features of NMSC, candidate genes, and new therapies, considering diverse perspectives of skin carcinogenesis. The global health situation and the pandemic have been challenging for health care systems, especially in the diagnosis and treatment of patients with cancer. We provide innovative approaches to overcome the difficulties in the current clinical dynamics.
Collapse
|
14
|
Park BC, Drolet BC, Perdikis G, Johnson DB. The role of plastic surgery in the immune checkpoint inhibitor era. J Plast Reconstr Aesthet Surg 2021; 75:893-939. [PMID: 34840113 DOI: 10.1016/j.bjps.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Benjamin C Park
- Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Brian C Drolet
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America; Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Galen Perdikis
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
15
|
Jing L, Lin J, Yang Y, Tao L, Li Y, Liu Z, Zhao Q, Diao A. Quercetin inhibiting the PD-1/PD-L1 interaction for immune-enhancing cancer chemopreventive agent. Phytother Res 2021; 35:6441-6451. [PMID: 34560814 DOI: 10.1002/ptr.7297] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 12/30/2022]
Abstract
Targeting the PD-1/PD-L1 immune checkpoints has achieved significant positive results in the treatment of multiple cancers. Quercetin is one of the most abundant dietary flavonoids found in various vegetables and fruits, and has a wide range of biological activities including immunomodulation. Here we report that quercetin dihydrate was screened and shown to inhibit the PD-1/PD-L1 interaction. Treatment with quercetin dihydrate promoted the killing activity of T cells on MDA-MB-231 and NCI-H460 cancer cells. Experiments using the xenograft mouse model showed that the growth rate of tumor volumes and masses in the quercetin dihydrate-treated mice were decreased. Immunohistochemistry of the tumors showed that CD8, GZMB, and IFN-γ were increased in the quercetin dihydrate-treated mice. These results suggest that quercetin dihydrate attenuates the inhibitory effect of PD-L1 on T cells by inhibiting the PD-1/PD-L1 interaction, which has an exciting potential to be used as a cancer chemopreventive agent.
Collapse
Affiliation(s)
- Lei Jing
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,School of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Jieru Lin
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Yang
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Li Tao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyin Li
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhenxing Liu
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Zhao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Aipo Diao
- Key Lab of Industrial Fermentation Microbiology of the Ministry of Education, School of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
16
|
Wright Q, Gonzalez Cruz JL, Wells JW, Leggatt GR. PD-1 and beyond to Activate T Cells in Cutaneous Squamous Cell Cancers: The Case for 4-1BB and VISTA Antibodies in Combination Therapy. Cancers (Basel) 2021; 13:3310. [PMID: 34282763 PMCID: PMC8269268 DOI: 10.3390/cancers13133310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/02/2023] Open
Abstract
Non-melanoma skin cancers (NMSC) have a higher incidence than all other cancers combined with cutaneous squamous cell carcinoma (cSCC), capable of metastasis, representing approximately 20% of NMSCs. Given the accessibility of the skin, surgery is frequently employed to treat localized disease, although certain localities, the delineation of clear margins, frequency and recurrence of tumors can make these cancers inoperable in a subset of patients. Other treatment modalities, including cryotherapy, are commonly used for individual lesions, with varying success. Immunotherapy, particularly with checkpoint antibodies, is increasingly a promising therapeutic approach in many cancers, offering the potential advantage of immune memory for protection against lesion recurrence. This review addresses a role for PD-1, 4-1BB and VISTA checkpoint antibodies as monotherapies, or in combination as a therapeutic treatment for both early and late-stage cSCC.
Collapse
Affiliation(s)
| | | | | | - Graham R. Leggatt
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; (Q.W.); (J.L.G.C.); (J.W.W.)
| |
Collapse
|
17
|
Tseng YJ, Lee CH, Chen WY, Yang JL, Tzeng HT. Inhibition of PAI-1 Blocks PD-L1 Endocytosis and Improves the Response of Melanoma Cells to Immune Checkpoint Blockade. J Invest Dermatol 2021; 141:2690-2698.e6. [PMID: 34000287 DOI: 10.1016/j.jid.2021.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Immune checkpoint molecules, especially PD-1 and its ligand PD-L1, act as a major mechanism of cancer immune evasion. Although anti-PD-1/PD-L1 monotherapy increases therapeutic efficacy in melanoma treatment, only a subset of patients exhibits long-term tumor remission, and the underlying mechanism of resistance to PD-1/PD-L1 inhibitors remains unclear. In this study, we demonstrated that cell surface retention of PD-L1 is inversely correlated with PAI-1 expression in vitro, in vivo, and in clinical specimens. Moreover, extracellular PAI-1 induced the internalization of surface-expressed PD-L1 by triggering clathrin-mediated endocytosis. The endocytosed PD-L1 was transported to lysosomes for degradation by endolysosomal systems, resulting in the reduction of surface PD-L1. Notably, inhibition of PAI-1 by pharmacological inhibitor with tiplaxtinin led to elevated PD-L1 expression on the plasma membrane, both in vitro and in vivo. Strikingly, targeting PAI-1 by tiplaxtinin treatment synergizes with anti-PD-L1 immune checkpoint blockade therapy in a syngeneic murine model of melanoma. Our findings demonstrate a role for PAI-1 activity in immune checkpoint modulation by promoting surface PD-L1 for lysosomal degradation and provides an insight into the combination of PAI-1 inhibition and anti-PD-L1 immunotherapy as a promising therapeutic regimen for melanoma treatment.
Collapse
Affiliation(s)
- Yu-Ju Tseng
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Wei-Yu Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan
| | - Hong-Tai Tzeng
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City, Taiwan.
| |
Collapse
|