1
|
Li L, Zinger J, Sassen SDT, Juffermans NP, Koch BCP, Endeman H. The relation between inflammatory biomarkers and drug pharmacokinetics in the critically ill patients: a scoping review. Crit Care 2024; 28:376. [PMID: 39563441 PMCID: PMC11577668 DOI: 10.1186/s13054-024-05150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/26/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The level of inflammation alters drug pharmacokinetics (PK) in critically ill patients. This might compromise treatment efficacy. Understanding the specific effects of inflammation, measured by biomarkers, on drug absorption, distribution, metabolism, and excretion is might help in optimizing dosing strategies. OBJECTIVES This review investigates the relationship between inflammatory biomarkers and PK parameters absorption, distribution, metabolism and excretion (ADME) in critically ill patients, providing insight in the complexity of dosing drugs in critically ill patients. METHOD Following PRISMA guidelines, we conducted a comprehensive search of Medline, Embase, Web of Science, and Cochrane databases (January 1946-November 2023). Studies examining inflammatory biomarkers, PK parameters, or drug exposure in critically ill patients were included. Records were screened by title, abstract, and full text, with any discrepancies resolved through discussion or consultation with a third reviewer. RESULTS Of the 4479 records screened, 31 met our inclusion criteria: 2 on absorption, 7 on distribution, 17 on metabolism, and 6 on excretion. In general, results are only available for a limited number of drugs, and most studies are done only looking at one of the components of ADME. Higher levels of inflammatory biomarkers may increase or decrease drug absorption depending on whether the drug undergoes hepatic first-pass elimination. For drug distribution, inflammation is negatively correlated with drug protein binding capacity, positively correlated with cerebrospinal fluid penetration, and negatively correlated with peritoneal penetration. Metabolizing capacity of most drugs was inversely correlated with inflammatory biomarkers. Regarding excretion, inflammation can lead to reduced drug clearance, except in the neonatal population. CONCLUSION Inflammatory biomarkers can offer valuable information regarding altered PK in critically ill patients. Our findings emphasize the need to consider inflammation-driven PK variability when individualizing drug therapy in this setting, at the same time research is limited to certain drugs and needs further research, also including pharmacodynamics.
Collapse
Affiliation(s)
- Letao Li
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Xinqiao Hospital, Army Medical University, 183 Xinqiao Street, Shapingba District, Chongqing, 400037, China
| | - Julia Zinger
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Sebastiaan D T Sassen
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC-University Medical Center, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
- Department of Intensive Care, OLVG, Oosterpark 9, 1091 AC, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Sisinni L, Monserrate GXA, Hurtado JMP, Panesso M, Molina B, Fuentes C, Fuster JL, Verdu-Amoros J, Regueiro A, Palomo P, Beléndez C, Pascual A, Badell I, Mozo Y, Bueno D, Pérez-Martínez A, Fernández JM, Vicent MG, de Heredia CD. Haploidentical versus Cord Blood Transplantation in Pediatric AML. A Retrospective Outcome Analysis on Behalf of the Pediatric Subcommittee of GETH (Grupo Español de Trasplante Hematopoyético). Transplant Cell Ther 2024; 30:1015.e1-1015.e13. [PMID: 39067788 DOI: 10.1016/j.jtct.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Haploidentical stem cell transplantation (Haplo-SCT) and cord blood transplantation (CBT) are both effective alternative treatments in patients suffering from acute myeloid leukemia (AML) and lacking a matched HLA donor. In the last years, many centers have abandoned CBT procedures mostly due to concern about poorer immune recovery compared with Haplo-SCT. We conducted a retrospective multicenter study comparing the outcomes using both alternative approaches in AML. A total of 122 transplants (86 Haplo-SCTs and 36 CBTs) from 12 Spanish centers were collected from 2007 to 2021. Median age at hematopoietic stem cell transplantation (HSCT) was 7 years (0.4-20). Thirty-nine patients (31.9%) showed positive minimal residual disease (MRD) at HSCT and a previous HSCT was performed in 37 patients (30.3%). The median infused cellularity was 14.4 × 106/kg CD34+ cells (6.0-22.07) for Haplo-SCT and 4.74 × 105/kg CD34+ cells (0.8-9.4) for CBT. Median time to neutrophil engraftment was 14 days (7-44) for Haplo-SCT and 17 days (8-29) for CBT (P = .03). The median time to platelet engraftment was 14 days (6-70) for Haplo-SCT and 43 days (10-151) for CBT (P < .001). Graft rejection was observed in 13 Haplo-SCTs (15%) and in 6 CBTs (16%). The cumulative incidence of acute graft versus host disease (GvHD) grades II-IV was 54% and 51% for Haplo-SCT and CBT, respectively (P = .50). The cumulative incidence of severe acute GvHD (grades III-IV) was 22% for Haplo-SCT and 25% for CBT (P = .90). There was a tendency to a higher risk of chronic GvHD in the Haplo-SCT group being the cumulative incidence of 30% for Haplo-SCT and 12% for CBT (P = .09). The cumulative incidence of relapse was 28% and 20% for Haplo-SCT and CBT, respectively (P = .60). We did not observe statistically significant differences in outcome measures between Haplo-SCT and CBT procedures: 5-year overall survival (OS) was 64% versus 57% (P = .50), 5-year disease-free survival (DFS) 58% versus 57% (P = .80), GvHD-free and relapse-free survival (GFRFS) 41% versus 54% (P = .30), and cumulative incidence of transplant-related mortality (TRM) 14% versus 15% (P = .80), respectively. In the multivariate analysis, MRD positivity and a disease status >CR1 at the time of HSCT were significantly associated with poorer outcomes (P < .05). In conclusion, our study supports that both haploidentical and cord blood transplantation show comparable outcomes in pediatric AML patients. We obtained comparable survival rates, although CBT showed a trend to lower rates of chronic GvHD and higher GFRFS, demonstrating that it should still be considered a valuable option, particularly for pediatric patients.
Collapse
Affiliation(s)
- Luisa Sisinni
- Hematología y Oncología Pediátrica, Hospital Universitario La Paz, Madrid.
| | | | | | - Melissa Panesso
- Servicio de Oncología y Hematología Pediátrica, Unidad HSCT. Hospital Universitari Vall d'Hebron, Barcelona
| | - Blanca Molina
- Hematología-Oncología Pediátrica, Hospital Niño Jesús, Madrid
| | | | - José Luís Fuster
- Sección de Oncohematología Pediátrica, Hospital Clínico Universitario Virgen de la Arrixaca, Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia
| | - Jaime Verdu-Amoros
- Hematología Pediátrica, Hospital Clínico Universitario; INCLIVA-Biomedical Research Institute, Valencia
| | | | - Pilar Palomo
- Hematología Pediátrica, Hospital Universitario Central de Asturia, Oviedo
| | | | | | - Isabel Badell
- Hematología-Oncología Pediátrica, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - Yasmina Mozo
- Hematología y Oncología Pediátrica, Hospital Universitario La Paz, Madrid
| | - David Bueno
- Hematología y Oncología Pediátrica, Hospital Universitario La Paz, Madrid
| | | | | | | | - Cristina Díaz de Heredia
- Servicio de Oncología y Hematología Pediátrica, Unidad HSCT. Hospital Universitari Vall d'Hebron, Barcelona
| |
Collapse
|
3
|
Möhlmann JE, Ezzafzafi S, Lindemans CA, Jansen MHA, Nierkens S, Huitema ADR, van Luin M. Pharmacokinetics and Pharmacodynamics of Systemic Corticosteroids in Autoimmune and Inflammatory Diseases: A Review of Current Evidence. Clin Pharmacokinet 2024; 63:1251-1270. [PMID: 39264575 PMCID: PMC11450095 DOI: 10.1007/s40262-024-01419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Systemic corticosteroids have a long history of use in the treatment of autoimmune and inflammatory diseases. Both efficacy and safety show large interindividual variability (IIV), suggesting that corticosteroids may have the potential for individualised dosing strategies to optimise therapy. This systematic review aims to provide an overview of current evidence on the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of systemic corticosteroids in patients with autoimmune and inflammatory diseases. METHODS A systematic literature search was conducted in PubMed and Embase for PK/PD studies of systemic corticosteroids in autoimmune and inflammatory diseases in humans published until December 2023. Studies were scored from 1 to 5 according to criteria for the levels of evidence, as inspired by the Oxford Centre for Evidence-Based Medicine. RESULTS Twelve studies (1981-2016) were included. The majority of these studies had a small sample size. The corticosteroids involved were prednisone, prednisolone, methylprednisolone and budesonide. Substantial IIV of corticosteroid PK was described in all studies. Evidence for a relationship between the PK of corticosteroids and efficacy was inconclusive and limited. However, there was some evidence for a relationship between the PK of prednisolone and the severity of Cushingoid features. CONCLUSION There is insufficient evidence to draw firm conclusions on the potential associations between PK and clinical outcome of systemic corticosteroid treatment in autoimmune and inflammatory diseases. This is remarkable given the many decades that steroid drugs have been used in clinical care. Prospective research is recommended with robust and well-defined cohorts to fully quantify the PK/PD associations of corticosteroids.
Collapse
Affiliation(s)
- Julia E Möhlmann
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands.
| | - Solaiman Ezzafzafi
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Caroline A Lindemans
- Department of Stem Cell Transplantation, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Paediatrics, Wilhelmina Children's Hospital, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Marc H A Jansen
- Department of Paediatric Rheumatology and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Department of Stem Cell Transplantation, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Translational Immunology, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
- Department of Pharmacology, Princess Máxima Centre for Paediatric Oncology, Utrecht, The Netherlands
- Department of Pharmacy and Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthijs van Luin
- Department of Clinical Pharmacy, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Barbarito G, Hiroshima L, Oppizzi L, Saini G, Kristovich K, Klein O, Hosszu K, Boehlke K, Gupta A, Mcavoy D, Shyr D, Boelens JJ, Bertaina A. Model-Based Antithymocyte Globulin in αβhaplo-Hematopoietic Stem Cell Transplantation Facilitates Engraftment, Expedites T Cell Recovery, and Mitigates the Risk of Acute Graft-versus-Host Disease. Transplant Cell Ther 2024; 30:810.e1-810.e16. [PMID: 38768907 DOI: 10.1016/j.jtct.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
In αβ T-cell/CD19 B-cell depleted hematopoietic stem cell transplantation (αβhaplo-HSCT) recipients, antithymocyte globulin (ATG; Thymoglobulin) is used for preventing graft rejection and graft-versus-host disease (GVHD). The optimal dosing remains to be established, however. Here we present the first comparative analysis of 3 different ATG dosing strategies and their impact on immune reconstitution and GVHD. Our study aimed to evaluate the effects of 3 distinct dosing strategies of ATG on engraftment success, αβ+ and γδ+ T cell immune reconstitution, and the incidence and severity of acute GVHD in recipients of αβhaplo-HSCT. This comparative analysis included 3 cohorts of pediatric patients with malignant (n = 36) or nonmalignant (n = 8) disease. Cohorts 1 and 2 were given fixed ATG doses, whereas cohort 3 received doses via a new nomogram, based on absolute lymphocyte count (ALC) and body weight (BW). Cohort 3 showed a 0% incidence of day 100 grade II-IV acute GVHD, compared to 48% in cohort 1 and 27% in cohort 2. Furthermore, cohort 3 (the ALC/BW-based cohort) had a significant increase in CD4+ and CD8+ naïve T cells by day 90 (P = .04 and .03, respectively). Additionally, we found that the reconstitution and maturation of γδ+ T cells post-HSCT was not impacted across all 3 cohorts. Cumulative ATG exposure in all cohorts was lower than previously reported in T cell-replete settings, with a lower pre-HSCT exposure (<40 AU*day/mL) correlating with engraftment failure (P = .007). Conversely, a post-HSCT ATG exposure of 10 to 15 AU*day/mL was optimal for improving day 100 CD4+ (P = .058) and CD8+ (P = .03) immune reconstitution without increasing the risk of relapse or nonrelapse mortality. This study represents the first comparative analysis of ATG exposure in αβhaplo-HSCT recipients. Our findings indicate that (1) a 1- to 2-fold ATG to ATLG bioequivalence is more effective than previously established standards, and (2) ATG exposure post-HSCT does not adversely affect γδ+ T cell immune reconstitution. Furthermore, a model-based ATG dosing strategy effectively reduces graft rejection and day 100 acute GVHD while also promoting early CD4+/CD8+ immune reconstitution. These insights suggest that further optimization, including more distal administration of higher ATG doses within an ALC/BW-based strategy, will yield even greater improvements in outcomes.
Collapse
Affiliation(s)
- Giulia Barbarito
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Lyndsie Hiroshima
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Linda Oppizzi
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Gopin Saini
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Karen Kristovich
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Orly Klein
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Kinga Hosszu
- MSK Kids, Transplantation and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York; Immune Discovery and Monitoring Service, Department of Pediatrics and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kylan Boehlke
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Aditi Gupta
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Devin Mcavoy
- MSK Kids, Transplantation and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York; Immune Discovery and Monitoring Service, Department of Pediatrics and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Shyr
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Jaap Jan Boelens
- MSK Kids, Transplantation and Cellular Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York; Immune Discovery and Monitoring Service, Department of Pediatrics and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alice Bertaina
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
5
|
Admiraal R, Versluijs AB, Huitema ADR, Ebskamp L, Lacna A, de Kanter CTK, Bierings MB, Boelens JJ, Lindemans CA, Nierkens S. High-dose individualized antithymocyte globulin with therapeutic drug monitoring in high-risk cord blood transplant. Cytotherapy 2024; 26:599-605. [PMID: 38466262 DOI: 10.1016/j.jcyt.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/25/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Graft-versus-host disease (GvHD) and rejection are main limitations of cord blood transplantation (CBT), more so in patients with severe inflammation or previous rejections. While rigorous T-cell depletion with antithymocyte globulin (ATG) is needed to prevent GvHD and rejection, overexposure to ATG leads to slow T-cell recovery after transplantation, especially in CBT. OBJECTIVE To evaluate high-dose, upfront ATG with individualized dosing and therapeutic drug monitoring (TDM) in pediatric CBT for patients at high risk for GvHD and rejection. STUDY DESIGN Heavily inflamed patients and patients with a recent history of rejection were eligible for individualized high-dose ATG with real-time TDM. The ATG dosing scheme was adjusted to target a post-CBT exposure of <10 AU*day/mL, while achieving a pre-CBT exposure of 60-120 AU*day/mL; exposure levels previously defined for optimal efficacy and safety in terms of reduced GvHD and rejection, respectively. Main outcomes of interest included efficacy (target exposure attainment) and safety (incidence of GvHD and rejection). Other outcomes of interest included T-cell recovery and survival. RESULTS Twenty-one patients were included ranging from 2 months to 18 years old, receiving an actual median cumulative dose of ATG of 13.3 mg/kg (range 6-30 mg/kg) starting at a median 15 days (range 12-17) prior to CBT. Dosing was adjusted in 14 patients (increased in 3 and decreased in 11 patients). Eighteen (86%) and 19 (91%) patients reached the target pre-CBT and post-CBT exposure, respectively. Cumulative incidence for acute GvHD was 34% (95% CI 23-45) and 5% (95% CI 0-10%) for grade 2-4 and grade 3-4, respectively; cumulative incidence of rejection was 9% (95% CI 2-16%). Overall survival was 75% (95% CI 65-85%). CONCLUSION Individualized high-dose ATG with TDM is feasible and safe for patients with hyperinflammation in a CBT setting. We observe high target ATG exposure attainment, good immune reconstitution (despite very high doses of ATG) and acceptable rates of GvHD and rejection.
Collapse
Affiliation(s)
- Rick Admiraal
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - A Birgitta Versluijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alwin D R Huitema
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lysette Ebskamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Amelia Lacna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - C T Klaartje de Kanter
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pharmacy, Curacao Medical Center, Willemstad, Curacao
| | - Marc B Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Pediatrics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
6
|
Lakkaraja M, Mauguen A, Boulad F, Cancio MI, Curran KJ, Harris AC, Kernan NA, Klein E, Kung AL, Oved J, Prockop S, Scaradavou A, Spitzer B, O'Reilly RJ, Boelens JJ. Impact of rabbit anti-thymocyte globulin (ATG) exposure on outcomes after ex vivo T-cell-depleted hematopoietic cell transplantation in pediatric and young adult patients. Cytotherapy 2024; 26:351-359. [PMID: 38349310 PMCID: PMC10997457 DOI: 10.1016/j.jcyt.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 11/03/2023] [Accepted: 01/24/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AIMS Traditional weight-based dosing of rabbit anti-thymocyte globulin (rATG) used in allogeneic hematopoietic cell transplantation (HCT) to prevent graft-versus-host disease (GVHD) and graft rejection leads to variable exposures. High exposures induce delayed CD4+immune reconstitution (CD4+IR) and greater mortality. We sought to determine the impact of rATG exposure in children and young adults receiving various types of EX-VIVO T-cell-depleted (EX-VIVO-TCD) HCT. METHODS Patients receiving their first EX-VIVO-TCD HCT (CliniMACS CD34+, Isolex or soybean lectin agglutination), with removal of residual T cells by E-rosette depletion (E-) between 2008 and 2018 at Memorial Sloan Kettering Cancer Center were retrospectively analyzed. rATG exposure post-HCT was estimated (AU*d/L) using a validated population pharmacokinetic model. Previously defined rATG-exposures, <30, 30-55, ≥55 AU*d/L, were related with outcomes of interest. Cox proportional hazard and cause-specific models were used for analyses. RESULTS In total, 180 patients (median age 11 years; range 0.1-44 years) were included, malignant 124 (69%) and nonmalignant 56 (31%). Median post-HCT rATG exposure was 32 (0-104) AU*d/L. Exposure <30 AU*d/L was associated with a 3-fold greater probability of CD4+IR (P < 0.001); 2- to 4-fold lower risk of death (P = 0.002); and 3- to 4-fold lower risk of non-relapse mortality (NRM) (P = 0.02). Cumulative incidence of NRM was 8-fold lower in patients who attained CD4+IR compared with those who did not (P < 0.0001). There was no relation between rATG exposure and aGVHD (P = 0.33) or relapse (P = 0.23). Effect of rATG exposure on outcomes was similar in three EX-VIVO-TCD methods. CONCLUSIONS Individualizing rATG dosing to target a low rATG exposure post-HCT while maintaining total cumulative exposure may better predict CD4+IR, reduce NRM and increase overall survival, independent of the EX-VIVO-TCD method.
Collapse
Affiliation(s)
- Madhavi Lakkaraja
- Fred Hutchinson Cancer Center, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Audrey Mauguen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Farid Boulad
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Maria I Cancio
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Kevin J Curran
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Andrew C Harris
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Nancy A Kernan
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Elizabeth Klein
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andrew L Kung
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Joseph Oved
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Susan Prockop
- Dana Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andromachi Scaradavou
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Barbara Spitzer
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Richard J O'Reilly
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA
| | - Jaap Jan Boelens
- Department of Pediatrics, BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Department of Pediatrics, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
7
|
Barriga F, Wietstruck A, Schulze-Schiappacasse C, Catalán P, Sotomayor C, Zúñiga P, Aguirre N, Vizcaya C, Le Corre N, Villarroel L. Individualized dose of anti-thymocyte globulin based on weight and pre-transplantation lymphocyte counts in pediatric patients: a single center experience. Bone Marrow Transplant 2024; 59:473-478. [PMID: 38253868 DOI: 10.1038/s41409-024-02206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Anti-thymocyte globulin (ATG) has become a standard in preventing GVHD in related and unrelated donor transplantation, but there is no consensus on the best administration schedule. The PARACHUTE trial reported excellent CD4 immune reconstitution (CD4 IR) using a dosing schedule based on the patient's weight and pre-conditioning absolute lymphocyte count (ALC). In 2015 we introduced the PARACHUTE dosing schedule for pediatric patients at our center. One hundred one patients were transplanted for malignant and non-malignant diseases. In this non-concurrent cohort CD4 IR+, defined by a single CD4 count >50/µL on day 90, was seen in 81% of patients. The incidence of grade II-IV and III to IV aGvHD was 26.6% and 15.3% and 5% for cGvHD with no severe cases. We found no difference in aGvHD between donor type and stem cell sources. Five-year EFS and OS were 77.5% and 83.5%. Grade III-IV GFRS was 75.2%. CD4 IR+ patients had better EFS (93.1% vs. 77.7%, p = 0.04) and lower non-relapse mortality (2.7% vs. 22.2%, p = 0.002). The PARACHUTE ATG dosing schedule individualized by weight and ALC results in good early immune reconstitution, low incidence of cGvHD, and favorable survival for patients with different disease groups, donor types, and stem cell sources.
Collapse
Affiliation(s)
- Francisco Barriga
- Section of Hematology, Oncology and Stem Cell Transplantation. Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Angelica Wietstruck
- Section of Hematology, Oncology and Stem Cell Transplantation. Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Schulze-Schiappacasse
- Department of Pediatric Infectious Diseases, Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paula Catalán
- Section of Hematology, Oncology and Stem Cell Transplantation. Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Sotomayor
- Section of Hematology, Oncology and Stem Cell Transplantation. Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela Zúñiga
- Section of Hematology, Oncology and Stem Cell Transplantation. Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi Aguirre
- Section of Hematology, Oncology and Stem Cell Transplantation. Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cecilia Vizcaya
- Department of Pediatric Infectious Diseases, Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Department of Pediatric Infectious Diseases, Division of Pediatrics, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Villarroel
- Department of Public Health, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Rossi M, Szepetowski S, Yakouben K, Paillard C, Sirvent A, Castelle M, Pegon C, Piguet C, Grain A, Angoso M, Robin M, Dhedin N, Pondarré C, Dumesnil de Maricourt C, Berceanu A, Simon P, Marcais A, Poirée M, Gandemer V, Plantaz D, Nguyen S, Michel G, Loundou A, Dalle JH, Thuret I. Recent results of hematopoietic stem cell transplantation for thalassemia with busulfan-based conditioning regimen in France: improved thalassemia free survival despite frequent mixed chimerism. A retrospective study from the Francophone Society of Stem Cell Transplantation and Cellular Therapy (SFGM-TC). Bone Marrow Transplant 2023; 58:1254-1256. [PMID: 37542188 DOI: 10.1038/s41409-023-02079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Affiliation(s)
- Marica Rossi
- Department of Pediatric Hematology, Robert Debré Hospital, GHU APHP Nord, Université Paris Cité, Paris, France.
| | - Sarah Szepetowski
- Department of Pediatric Hematology and Oncology, Rare Disease Center for Thalassemia, La Timone Hospital, Marseille, France
| | - Karima Yakouben
- Department of Pediatric Hematology, Robert Debré Hospital, GHU APHP Nord, Université Paris Cité, Paris, France
| | - Catherine Paillard
- Department of Pediatric Hematology and Oncology, Hautepierre Hospital, Strasbourg, France
| | - Anne Sirvent
- Department of Pediatric Hematology and Oncology, Arnaud de Villeneuve Hospital, Montpellier, France
| | - Martin Castelle
- Department of Pediatric Immunology and Hematology, Necker-Enfants Malades Hospital, Paris, France
| | - Charline Pegon
- Department of Pediatric Hematology and Oncology, Estaing Hospital, Clermont-Ferrand, France
| | - Christophe Piguet
- Department of Pediatric Hematology and Oncology, Mother and Child University Hospital, Limoges, France
| | - Audrey Grain
- Department of Pediatric Hematology and Oncology, University Hospital of Nantes, Nantes, France
| | - Marie Angoso
- Department of Pediatric Hematology and Oncology, Pellegrin Hospital, Bordeaux, France
| | - Marie Robin
- Department of Stem Cell Transplantation, Saint-Louis Hospital, GHU APHP Nord, Université Paris Cité, Paris, France
| | - Nathalie Dhedin
- Unit of Hematology for Adolescents, Saint-Louis Hospital, Paris, France
| | - Corinne Pondarré
- Rare Disease Center for Sickle Cell Disease, Centre Hospitalier Intercommunal de Créteil, Créteil, INSERM U955, Paris Est Créteil University, Créteil, France
| | | | - Ana Berceanu
- Department of Adult Hematology, Jean Minjoz Hospital, Besançon, France
| | - Pauline Simon
- Department of Pediatric Hematology and Oncology, Jean Minjoz Hospital, Besançon, France
| | - Ambroise Marcais
- Department of Adult Hematology, Necker-Enfants Malades Hospital, Paris, France
| | - Maryline Poirée
- Department of Pediatric Hematology and Oncology, University Hospital of Nice, Nice, France
| | - Virginie Gandemer
- Department of Pediatric Hematology and Oncology, University Hospital of Rennes, Rennes, France
| | - Dominique Plantaz
- Department of Pediatric Hematology and Oncology, University Hospital of Grenoble, Grenoble, France
| | - Stéphanie Nguyen
- Department of Hematology, La Pitié-Salpêtrière Hospital, Paris, France
- Francophone Society of Stem Cell Transplantation and Cellular Therapy (SFGM-TC), Paris, France
| | - Gérard Michel
- Department of Pediatric Hematology and Oncology, Rare Disease Center for Thalassemia, La Timone Hospital, Marseille, France
| | - Anderson Loundou
- Unit for Clinical and Epidemiological Research, DRRC/AP-HM Faculté de Médecine de Marseille, Marseille, France
| | - Jean-Hugues Dalle
- Department of Pediatric Hematology, Robert Debré Hospital, GHU APHP Nord, Université Paris Cité, Paris, France
| | - Isabelle Thuret
- Department of Pediatric Hematology and Oncology, Rare Disease Center for Thalassemia, La Timone Hospital, Marseille, France
| |
Collapse
|
9
|
Chiu YH, Drijver A, Admiraal R, van Rhenen A, Nierkens S, van Laar JM, Spierings J. Anti-thymocyte globulin exposure in patients with diffuse cutaneous systemic sclerosis undergoing autologous haematopoietic stem cell transplantation. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2023; 8:241-246. [PMID: 37744043 PMCID: PMC10515999 DOI: 10.1177/23971983231188232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 09/26/2023]
Abstract
Introduction Autologous haematopoietic stem cell transplantation improves event-free survival and lung function and reduces skin thickening in patients with progressive diffuse cutaneous systemic sclerosis. Anti-thymocyte globulin is a key lymphoablative constituent of conditioning protocols and is administered in a weight-based dosage. However, whether anti-thymocyte globulin exposure contributes to response to autologous haematopoietic stem cell transplantation and lymphocyte reconstitution in diffuse cutaneous systemic sclerosis patients is unknown. We aimed to explore the relationship between anti-thymocyte globulin exposure, lymphocyte reconstitution and treatment response in diffuse cutaneous systemic sclerosis patients undergoing autologous haematopoietic stem cell transplantation. Methods A retrospective cohort of 15 diffuse cutaneous systemic sclerosis patients undergoing autologous haematopoietic stem cell transplantation was performed. Clinical characteristics and routine laboratory results were retrieved from electronic medical records. Anti-thymocyte globulin concentrations were measured in cryopreserved plasma samples at four time points (day 1 and week 1, 2 and 4) after stem cell reinfusion. Anti-thymocyte globulin exposure was estimated using a validated population pharmacokinetic model. Results During a median follow-up of 45 months (interquartile range 19-66), 11 (73%) patients had a treatment response, and 4 (27%) were non-responders. Although all patients received the same weight-based anti-thymocyte globulin dosage, 7.5 mg/kg divided over 3 days, anti-thymocyte globulin exposure varied. Anti-thymocyte globulin exposure was higher in responders than in non-responders (163 AU*day/mL (interquartile range 153-183) and 137 AU*day/mL (interquartile range 101-149), respectively, p = .026). Anti-thymocyte globulin exposure was not correlated with lymphocyte reconstitution or infection rate. Conclusion Weight-based dosing of anti-thymocyte globulin results in variable anti-thymocyte globulin exposure and treatment response across individuals.
Collapse
Affiliation(s)
- Yu-Hsiang Chiu
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Division of Rheumatology/Immunology/Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Anouk Drijver
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rick Admiraal
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
| | - Anna van Rhenen
- Department of Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Paediatric Oncology, Utrecht, The Netherlands
- Centre for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacob M van Laar
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia Spierings
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Liu X, Huang C, Cao X, Yang X, Li S, Jiang S, Lin W, Liu L, Ding X, Tang X, Miao L. A fully validated flow cytometry method to quantitatively analyze active rATG in human serum and its application in pharmacokinetic study for therapeutic drug monitoring. J Pharm Biomed Anal 2023; 234:115483. [PMID: 37454500 DOI: 10.1016/j.jpba.2023.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023]
Abstract
Rabbit anti-thymocyte globulin (rATG) has been widely used to prevent graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The therapeutic window of rATG is narrow, and it may increase the risk of relapse, viral reactivation, delayed immune reconstitution and GvHD when overexposed or underexposed. Therefore, a reliable method for detecting the rATG concentration in human serum by flow cytometry was established and fully validated for therapeutic drug monitoring. In this method, Jurkat T cells were used to capture active rATG in human serum, and PE-labeled donkey anti-rabbit IgG was used as a secondary antibody. The method showed good specificity, selectivity and excellent linearity at concentration of 0.00300-20.0 AU/mL. The intra- and interday precision values were all within 20% at four concentration levels for the analyte. The stock solutions of rATG showed no significant degradation after storage at ambient temperature for 8 h and at - 80 °C for 481 days. No significant degradation of rATG in serum was observed at ambient temperature for 6 h, during six freezethaw cycles and at - 80 °C for at least 373 days. This method was fully validated and successfully applied to monitor active rATG concentration in serum of patients with haploid-identical hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Xiaoxue Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenrong Huang
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuanqi Cao
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Xiao Yang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, China
| | - Sijia Li
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Wang Lin
- Suzhou Vocational Health College, Suzhou, China
| | - Linsheng Liu
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoliang Ding
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu, China.
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Du JS, Wang HT, Dou LP, Wang N, Li F, Jin XS, Liu DH. [Efficacy analysis of anti-thymocyte globulin regimens with different timing strategies for matched sibling donor hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:660-666. [PMID: 37803840 PMCID: PMC10520230 DOI: 10.3760/cma.j.issn.0253-2727.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 10/08/2023]
Abstract
Objective: To compare the effects of two administration time strategies for rabbit antihuman thymocyte immunoglobulin (rATG) of 5mg/kg total dose in matched sibling donor hematopoietic stem cell transplantation (MSD-HSCT) . Methods: This study retrospectively analyzed the clinical data of 32 patients who received MSD-HSCT with 5 mg/kg rATG conditioning regimen at the Department of Hematology of the First Medical Center of the People's Liberation Army General Hospital from October 2020 to April 2022. The patients were classified into two groups: the 4d-rATG group (16 cases), who received antithymocyte globulin (ATG) from day -5 to day -2, and the 2d-rATG group (16 cases), who received ATG from day -5 to day -4. Between the two groups, the transplantation outcomes, serum concentrations of active antithymocyte globulin (ATG) in patients from -4 days to 28 days after graft infusion (+28 days), and the reconstitution of lymphocyte subsets on days +30, +60, and +90 were compared. Results: The cumulative incidences of acute graft-versus-host disease at 100 days after graft infusion were 25.0% (95% CI 7.8% -47.2% ) and 18.8% (95% CI 4.6% -40.2% ) (P=0.605) in the 4d-rATG group and 2d-rATG group, respectively. The 1-year cumulative incidences of chronic graft-versus-host disease were 25.9% (95% CI 8.0% -48.6% ) and 21.8% (95% CI 5.2% -45.7% ) (P=0.896). The 1-year cumulative incidence of relapse was 37.5% (95% CI 18.9% -65.1% ) and 14.6% (95% CI 3.6% -46.0% ) (P=0.135), and the 1-year probabilities of overall survival were 75.0% (95% CI 46.3% -89.8% ) and 100% (P=0.062). The total area under the curve (AUC) of serum active ATG was 36.11 UE/ml·d and 35.89 UE/ml·d in the 4d-rATG and 2d-rATG groups, respectively (P=0.984). The AUC was higher in the 4d-rATG group than that in the 2d-rATG group (20.76 UE/ml·d vs 15.95 UE/ml·d, P=0.047). Three months after graft infusion, the average absolute count of CD8(+) T lymphocytes in the 4d-rATG group was lower than that in the 2d-rATG group (623 cells/μl vs 852 cells/μl, P=0.037) . Conclusion: The efficiencies of GVHD prophylaxis in MSD-PBSCT receiving 4d-ATG regimen and the 2d-rATG regimen were found to be similar. The reconstruction of CD8(+)T lymphocytes in the 2d-rATG group was better than that in the 4d-rATG group, which is related to the lower AUC of active ATG after transplantation.
Collapse
Affiliation(s)
- J S Du
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| | - H T Wang
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| | - L P Dou
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| | - N Wang
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| | - F Li
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| | - X S Jin
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| | - D H Liu
- Chinese PLA General Hospital, Department of Hematology in the Fifth Medical Center of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Takahashi T, Teramoto M, Matsumoto K, Jaber MM, Tamaki H, Ikegame K, Yoshihara S, Kaida K. Population Pharmacokinetics of Total Rabbit Anti-thymocyte Globulin in Non-obese Adult Patients Undergoing Hematopoietic Cell Transplantation for Hematologic Malignancy. Clin Pharmacokinet 2023; 62:1081-1091. [PMID: 37284975 DOI: 10.1007/s40262-023-01252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Rabbit anti-thymocyte globulin (rATG), a therapeutic polyclonal antibody against human T cells, is commonly used in conditioning therapy prior to allogeneic hematopoietic cell transplantation (HCT). Previous studies successfully developed an individualized rATG dosing regimen based on "active" rATG population PK (popPK) analysis, while "total" rATG can be a more logistically favorable alternative for early HCT outcomes. We conducted a novel popPK analysis of total rATG. METHODS Total rATG concentration was measured in adult human-leukocyte antigen (HLA) mismatched HCT patients who received a low-dose rATG regimen (total 2.5-3 mg/kg) within 3 days prior to HCT. PopPK modeling and simulation was performed using nonlinear mixed effect modeling approach. RESULTS A total of 504 rATG concentrations were available from 105 non-obese patients with hematologic malignancy (median age 47 years) treated in Japan. The majority had acute leukemia or malignant lymphoma (94%). Total rATG PK was described by a two-compartment linear model. Influential covariate relations include ideal body weight [positively on both clearance (CL) and central volume of distribution], baseline serum albumin (negatively on CL), CD4+ T cell dose (positively on CL), and baseline serum IgG (positively on CL). Simulated covariate effects predicted that early total rATG exposures were affected by ideal body weight. CONCLUSIONS This novel popPK model described the PK of total rATG in the adult HCT patients who received a low-dose rATG conditioning regimen. This model can be used for model-informed precision dosing in the settings with minimal baseline rATG targets (T cells), and early clinical outcomes are of interest.
Collapse
Affiliation(s)
- Takuto Takahashi
- Pediatric Stem Cell Transplantation, Boston Children's Hospital/Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA.
| | - Masahiro Teramoto
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, Japan
| | - Mutaz M Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Hiroya Tamaki
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Ikegame
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Katsuji Kaida
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| |
Collapse
|
13
|
Grasso AG, Simeone R, Maestro A, Zanon D, Maximova N. Pre-Transplant Total Lymphocyte Count Determines Anti-Thymocyte Globulin Exposure, Modifying Graft-versus-Host Disease Incidence and Post-Transplant Thymic Restoration: A Single-Center Retrospective Study. J Clin Med 2023; 12:730. [PMID: 36675660 PMCID: PMC9860924 DOI: 10.3390/jcm12020730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The use of anti-thymocyte globulin (ATG) as part of conditioning to prevent graft-versus-host disease (GVHD) may severely impair immune reconstitution (IR). We analyzed relationships between ATG exposure, the recipient lymphocyte count, IR, and transplant outcome. We retrospectively reviewed patients aged ≤ 18 years who underwent allogeneic HSCT between April 2005 and April 2020. The outcomes of interest included the incidence of GVHD, overall survival (OS), and IR. IR was analyzed through thymic magnetic resonance imaging (MRI) and by quantifying T CD4+ and recent thymic emigrants (RTEs). The ATG-exposed group was split into a low ATG/lymphocyte ratio subgroup (ratio < 0.01) and a high ATG/lymphocyte ratio subgroup (ratio > 0.01). The low ratio subgroup had a higher incidence of GVHD (29 [59%] vs. 7 [16.6%]) but a better IR in both laboratory and MRI imaging assessments (p < 0.0001). The median thymic volume in the low ratio subgroup was significantly higher (14.7 cm3 vs. 4.5 cm3, p < 0.001). This was associated with a better OS and lower transplant-related mortality (TRM) (80.4% vs. 58.0%, p = 0.031) and (13.1% vs. 33.0%, p = 0.035). An individualized approach to ATG dosing allows for the obtainment of rapid thymic reconstitution and the best transplant-related outcomes.
Collapse
Affiliation(s)
- Antonio Giacomo Grasso
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Roberto Simeone
- Department of Transfusion Medicine, ASUGI, Piazza dell’Ospitale 1, 34125 Trieste, Italy
| | - Alessandra Maestro
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Davide Zanon
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Natalia Maximova
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| |
Collapse
|
14
|
Storci G, Barbato F, Ricci F, Tazzari PL, De Matteis S, Tomassini E, Dicataldo M, Laprovitera N, Arpinati M, Ursi M, Maffini E, Campanini E, Dan E, Manfroi S, Santi S, Ferracin M, Bonafe M, Bonifazi F. Pre-transplant CD69+ extracellular vesicles are negatively correlated with active ATLG serum levels and associate with the onset of GVHD in allogeneic HSCT patients. Front Immunol 2023; 13:1058739. [PMID: 36713433 PMCID: PMC9880409 DOI: 10.3389/fimmu.2022.1058739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/06/2022] [Indexed: 01/15/2023] Open
Abstract
Graft versus host disease (GVHD) is a major complication of allogeneic hematopoietic stem cell transplantation (HSCT). Rabbit anti-T lymphocyte globulin (ATLG) in addition to calcineurin inhibitors and antimetabolites is a suitable strategy to prevent GVHD in several transplant settings. Randomized studies already demonstrated its efficacy in terms of GVHD prevention, although the effect on relapse remains the major concern for a wider use. Tailoring of ATLG dose on host characteristics is expected to minimize its side effects (immunological reconstitution, relapse, and infections). Here, day -6 to day +15 pharmacokinetics of active ATLG serum level was first assayed in an explorative cohort of 23 patients by testing the ability of the polyclonal serum to bind antigens on human leukocytes. Significantly lower levels of serum active ATLG were found in the patients who developed GVHD (ATLG_AUCCD45: 241.52 ± 152.16 vs. 766.63 +/- 283.52 (μg*day)/ml, p = 1.46e-5). Consistent results were obtained when the ATLG binding capacity was assessed on CD3+ and CD3+/CD4+ T lymphocytes (ATLG_AUCCD3: 335.83 ± 208.15 vs. 903.54 ± 378.78 (μg*day)/ml, p = 1.92e-4; ATLG_AUCCD4: 317.75 ± 170.70 vs. 910.54 ± 353.35 (μg*day)/ml, p = 3.78e-5. Concomitantly, at pre-infusion time points, increased concentrations of CD69+ extracellular vesicles (EVs) were found in patients who developed GVHD (mean fold 9.01 ± 1.33; p = 2.12e-5). Consistent results were obtained in a validation cohort of 12 additional ATLG-treated HSCT patients. Serum CD69+ EVs were mainly represented in the nano (i.e. 100 nm in diameter) EV compartment and expressed the leukocyte marker CD45, the EV markers CD9 and CD63, and CD103, a marker of tissue-resident memory T cells. The latter are expected to set up a host pro-inflammatory cell compartment that can survive in the recipient for years after conditioning regimen and contribute to GVHD pathogenesis. In summary, high levels of CD69+ EVs are significantly correlated with an increased risk of GVHD, and they may be proposed as a tool to tailor ATLG dose for personalized GVHD prevention.
Collapse
Affiliation(s)
- Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Barbato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Francesca Ricci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | | | - Enrica Tomassini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Margherita Ursi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elena Campanini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Elisa Dan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Silvia Manfroi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Spartaco Santi
- Consiglio Nazionale delle Ricerche (CNR) Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy,IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Ferracin
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Massimiliano Bonafe
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES) University of Bologna, Bologna, Italy
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,*Correspondence: Francesca Bonifazi,
| |
Collapse
|
15
|
Watkins B, Williams KM. Controversies and expectations for the prevention of GVHD: A biological and clinical perspective. Front Immunol 2022; 13:1057694. [PMID: 36505500 PMCID: PMC9726707 DOI: 10.3389/fimmu.2022.1057694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Severe acute and chronic graft versus host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation. Historically, cord blood and matched sibling transplantation has been associated with the lowest rates of GVHD. Newer methods have modified the lymphocyte components to minimize alloimmunity, including: anti-thymocyte globulin, post-transplant cyclophosphamide, alpha/beta T cell depletion, and abatacept. These agents have shown promise in reducing severe GVHD, however, can be associated with increased risks of relapse, graft failure, infections, and delayed immune reconstitution. Nonetheless, these GVHD prophylaxis strategies have permitted expansion of donor sources, especially critical for those of non-Caucasian decent who previously lacked transplant options. This review will focus on the biologic mechanisms driving GVHD, the method by which each agent impacts these activated pathways, and the clinical consequences of these modern prophylaxis approaches. In addition, emerging novel targeted strategies will be described. These GVHD prophylaxis approaches have revolutionized our ability to increase access to transplant and have provided important insights into the biology of GVHD and immune reconstitution.
Collapse
Affiliation(s)
- Benjamin Watkins
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
16
|
Jing LP, Zhang L, Zhou K, Peng GX, Li Y, Fan HH, Ye L, Li Y, Li JP, Song L, Yang WR, Zhang FK. [Pharmacokinetic study of anti-human T-cell porcine immunoglobulin combined with cyclosporine A immunosuppressive therapy in patients with severe aplastic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:300-304. [PMID: 35680628 PMCID: PMC9189490 DOI: 10.3760/cma.j.issn.0253-2727.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/05/2022]
Abstract
Objective: To study the metabolic characteristics of anti-human T-cell porcine immunoglobulin (p-ATG) in patients with severe aplastic anemia (SAA) . Methods: For patients with SAA treated with p-ATG combined cyclosporine A (CsA) immunosuppressants between February 2017 and December 2017, the p-ATG dose was 20 mg·kg(-1)·d(-1) over 12 h of intravenous administration for 5 consecutive days. The blood concentration of p-ATG was detected by the three-antibody sandwich ELISA method, the pharmacokinetic analysis software was fitted, and the second-chamber model method was used to calculate the pharmacokinetic parameters and plot the pharmacokinetic curve. Adverse events were recorded and the hematologic reactions were determined at 6 months after treatment. Results: Sixteen patients with SAA treated with p-ATG were enrolled, including 8 females and 8 males, with a median age of 22 years (range, 12 to 49 years) and a median weight of 62.5 kg (range, 37.5 to 82.0 kg) . The pharmacokinetics of p-ATG could be evaluated in 14 cases. p-ATG is distributed in vivo as a two-chamber model, with an average drug concentration peak (T(max)) of (5.786±2.486) days, a peak concentration (C(max)) of (616±452) mg/L, and a half-life of (10.479±8.242) days. The area under the drug time curve (AUC) was (5.807±3.236) mg/L·d. Six months after treatment, 8 of 14 patients received a hematologic response; the AUC (0-t) of the effective group and ineffective groups was (7.50±3.26) mg/L·d vs (4.50±2.18) mg/L·d, and the C(max) was (627±476) mg/L vs (584±382) mg/L, respectively. Conclusion: The plasma concentration of p-ATG reached a peak after 5 days of continuous infusion, and then decreased slowly, with a half-life of 10.479 days, and the residual drug concentration was detected in the body 60 days after administration. A relationship between drug metabolism and efficacy and adverse reactions could not be determined.
Collapse
Affiliation(s)
- L P Jing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - K Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - G X Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - H H Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - L Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - J P Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - L Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - W R Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| | - F K Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking union Medical College, Tianjin 300020, China
| |
Collapse
|
17
|
Meesters-Ensing J, Admiraal R, Ebskamp L, Lacna A, Boelens JJ, Lindemans CA, Nierkens S. Therapeutic Drug Monitoring of Anti-Thymocyte Globulin in Allogeneic Stem Cell Transplantation: Proof of Concept. Front Pharmacol 2022; 13:828094. [PMID: 35370695 PMCID: PMC8974913 DOI: 10.3389/fphar.2022.828094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
Anti-thymocyte globulin (ATG), a polyclonal antibody, is used in allogeneic hematopoietic cell transplantation (HCT) to prevent graft-vs.-host-disease (GvHD) and graft failure (GF). Overexposure to ATG leads to poor early T-cell recovery, which is associated with viral infections and poor survival. Patients with severe inflammation are at high risk for GF and GvHD, and may have active infections warranting swift T-cell recovery. As ATG exposure may be critical in these patients, individualized dosing combined with therapeutic drug monitoring (TDM) may improve outcomes. We describe the individualized dosing approach, an optimal sampling scheme, the assay to measure the active fraction of ATG, and the workflow to perform TDM. Using a previously published population pharmacokinetic (PK) model, we determine the dose to reach optimal exposures associated with low GvHD and rejection, and at the same time promote T-cell recovery. Based on an optimal sampling scheme, peak and trough samples are taken during the first 3 days of once-daily dosing. The fraction of ATG able to bind to T-cells (active ATG) is analyzed using a bio-assay in which Jurkat cells are co-cultured with patient's plasma and the binding is quantified using flow cytometry. TDM is performed based on these ATG concentrations on the third day of dosing; subsequent doses can be adjusted based on the expected area under the curve. We show that individualized ATG dosing with TDM is feasible. This approach is unique in the setting of antibody treatment and may result in better immune reconstitution post-HCT and subsequently better survival chances.
Collapse
Affiliation(s)
| | - R. Admiraal
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| | - L. Ebskamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - A. Lacna
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - J. J. Boelens
- Stem Cell Transplantation and Cellular Therapies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - C. A. Lindemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| | - S. Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
18
|
van der Stoep MYEC, Oostenbrink LVE, Bredius RGM, Moes DJAR, Guchelaar HJ, Zwaveling J, Lankester AC. Therapeutic Drug Monitoring of Conditioning Agents in Pediatric Allogeneic Stem Cell Transplantation; Where do We Stand? Front Pharmacol 2022; 13:826004. [PMID: 35330826 PMCID: PMC8940165 DOI: 10.3389/fphar.2022.826004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is an established curative treatment that has significantly improved clinical outcome of pediatric patients with malignant and non-malignant disorders. This is partly because of the use of safer and more effective combinations of chemo- and serotherapy prior to HSCT. Still, complications due to the toxicity of these conditioning regimens remains a major cause of transplant-related mortality (TRM). One of the most difficult challenges to further improve HSCT outcome is reducing toxicity while maintaining efficacy. The use of personalized dosing of the various components of the conditioning regimen by means of therapeutic drug monitoring (TDM) has been the topic of interest in the last decade. TDM could play an important role, especially in children who tend to show greater pharmacokinetic variability. However, TDM should only be performed when it has clear added value to improve clinical outcome or reduce toxicity. In this review, we provide an overview of the available evidence for the relationship between pharmacokinetic parameters and clinical outcome or toxicities of the most commonly used conditioning agents in pediatric HSCT.
Collapse
Affiliation(s)
- M. Y. Eileen C. van der Stoep
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: M. Y. Eileen C. van der Stoep,
| | - Lisa V. E. Oostenbrink
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Robbert G. M. Bredius
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Dirk Jan A. R. Moes
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Juliette Zwaveling
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - Arjan C. Lankester
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
19
|
Cytokine Release Syndrome during Antithymocyte Globulin/Anti-T Lymphocyte Globulin Serotherapy for Graft-versus-Host Disease Prophylaxis before Allogeneic Hematopoietic Stem Cell Transplantation: Incidence and Early Clinical Impact According to American Society of Transplantation and Cellular Therapy Grading Criteria. Transplant Cell Ther 2022; 28:260.e1-260.e9. [PMID: 35217212 DOI: 10.1016/j.jtct.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022]
Abstract
Antithymocyte globulin (ATG)/anti-T lymphocyte globulin (ATLG) aids graft-versus-host disease (GVHD) prophylaxis in HLA-matched related and unrelated donor hematopoietic stem cell transplantation (HSCT). Its use is frequently accompanied by systemic infusion reactions attributable to cytokine release syndrome (CRS). However, detailed data on ATG/ATLG-induced CRS and its correlation with clinical outcome parameters are lacking. This study aimed to analyze the incidence, characteristics, risk factors, and early clinical impact of CRS during ATG/ATLG administration before allogeneic HSCT according to the American Society of Transplantation and Cellular Therapy (ASTCT) CRS grading criteria. This retrospective single-center analysis included consecutive recipients of allogeneic HSCT treated with ATG/ATLG as GVHD prophylaxis at the Medical University of Vienna between January 1, 2014, and August 15, 2021. Multivariate regression models were used to explore risk factors for CRS and its association with clinical outcomes (acute GVHD grade II-IV, clinically significant cytomegalovirus infection, nonrelapse mortality, and overall survival) at 6 months after HSCT. A total of 284 patients (median age, 54 years; interquartile range [IQR], 45 to 61 years; 120 females, 164 males) were included in the study. ATLG was used in 222 patients (78%); ATG, in 62 (22%). One hundred sixty-six patients (58%) developed CRS grade ≥1 during ATG/ATLG administration. CRS was mostly mild, with 92% of the cases CRS grade 1-2. Thirteen patients (5%) developed CRS grade 3, and 1 patient had CRS grade 4. No CRS-related death (grade 5) occurred. Patients with CRS showed a pronounced systemic inflammatory response as measured by inflammatory markers C-reactive protein, IL-6, and procalcitonin. In multivariate analysis, lymphoma as the underlying disease, high ATLG dose of 60 mg/kg, and body weight were significantly associated with CRS. Patients with CRS grade ≥1 had a higher 6-month incidence of acute GVHD II-IV compared with patients without CRS (24% versus 14%; P = .04). This effect remained statistically significant only for CRS grade 3-4 (subdistribution hazard ratio, 3.70; 95% confidence interval, 1.58 to 8.68; P < .01) after adjusting for relevant confounders. Other clinical outcome parameters were not affected by the occurrence of CRS. In our cohort, CRS defined by ASTCT grading was a frequent but mostly mild complication following ATG/ATLG administration for GVHD prophylaxis. Our data suggest a possible interaction of (higher-grade) CRS with an increased risk for developing acute GVHD. Further studies to corroborate this finding are warranted, as it could inform the investigation of additional prophylactic interventions, such as IL-6 blockade, in this setting.
Collapse
|
20
|
Individualised doses of anti-thymocyte globulin and immune recovery after allogeneic HSCT. THE LANCET HAEMATOLOGY 2022; 9:e84-e86. [DOI: 10.1016/s2352-3026(21)00383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022]
|
21
|
Admiraal R, Nierkens S, Bierings MB, Bredius RGM, van Vliet I, Jiang Y, Lopez-Yurda M, Versluijs AB, Zwaan CM, Lindemans CA, Boelens JJ. Individualised dosing of anti-thymocyte globulin in paediatric unrelated allogeneic haematopoietic stem-cell transplantation (PARACHUTE): a single-arm, phase 2 clinical trial. Lancet Haematol 2022; 9:e111-e120. [DOI: 10.1016/s2352-3026(21)00375-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
|
22
|
Individualized Dosage Optimization for Myeloablative Conditioning before Unrelated Cord Blood Transplantation in a Diamond–Blackfan Anemia Patient with Germline RPL11 Mutation: A Case Study. Processes (Basel) 2022. [DOI: 10.3390/pr10020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Unrelated cord blood transplantation (CBT) for Diamond–Blackfan anemia (DBA), a systemic ribosomopathy affecting the disposition of conditioning agents, has resulted in outcomes inferior to those by transplantations from matched donors. We report the experience of the pharmacokinetics-guided myeloablative unrelated CBT in a DBA patient with a germline RPL11 mutation. The conditioning consisted of individualized dosing of fludarabine (based on weight and renal function with a target area under the curve (AUC) of 17.5 mg·h/L) and busulfan (based on therapeutic drug monitoring with a target AUC of 90 mg·h/L), as well as dosing and timing of thymoglobulin (based on body weight and pre-dose lymphocyte count to target pre-CBT AUC of 30.7 AU·day/mL and post-CBT AUC of 4.3 AU·day/mL, respectively). The pharmacokinetic measures resulted in a 27.5% reduction in busulfan and a 35% increase in fludarabine, as well as an over three-fold increase in thymoglobulin dosage with the start time changed to day-9 instead of day-2 compared to regular regimens. The transplantation resulted in rapid, complete, and sustained hematopoietic engraftment. The patient is now healthy over 3 years after CBT. A pharmacokinetics-guided individualized dosing strategy for conditioning might be a feasible option to improve the outcomes of DBA patients receiving unrelated myeloablative CBT.
Collapse
|
23
|
Zhou X, Cai Y, Yang J, Tong Y, Qiu H, Huang C, Zhou K, Xu X, Niu J, Xia X, Zhang Y, Shen C, Wei Y, Song X, Wan L. Lower Absolute Lymphocyte Count Before Conditioning Predicts High Relapse Risk in Patients After Haploidentical Peripheral Blood Stem Cell Transplantation With Low Dose Anti-Thymocyte Globulin/Post-Transplant Cyclophosphamide for GvHD Prophylaxis. Cell Transplant 2022; 31:9636897221079739. [PMID: 35225024 PMCID: PMC8894976 DOI: 10.1177/09636897221079739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Standard anti-thymocyte globulin (ATG) weight-based dosing often resulted in highly variable ATG exposure, which had profound effects on relapse and survival, especially in recipients with relatively low absolute lymphocyte count (ALC) before conditioning. Data regarding rabbit ATG pharmacokinetics and pharmacodynamics in the setting of HLA-haploidentical peripheral blood stem cell transplantation (haplo-PBSCT) is lacking. We conducted a retrospective study on 90 consecutive patients who underwent haplo-PBSCT with low dose rabbit ATG (5 mg/kg) plus low dose post-transplant cyclophosphamide (50 mg/kg) based regimen for graft-versus-host disease (GvHD) prophylaxis. We compared serum concentration of ATG and post-transplant results between patients with ALC<500/μl and ALC≥500/μl before conditioning. Patients with ALC<500/μl had higher ATG concentrations, delayed immune reconstitution, lower incidence of grade II-IV acute GvHD (0 vs. 19.42%, P = 0.043), higher risk of Epstein-Barr virus infection within 100 days post-transplant (47.78% vs. 22.22%, P = 0.020) and 1-year relapse rate (33.33% vs.11.59%, P = 0.041), and lower 1-year overall survival (OS) (52.38% vs.79.71%, P = 0.004), 1-year relapse free survival (RFS) (47.62% vs. 75.36% for RFS, P = 0.014), and 1-year GvHD free relapse-free survival (GRFS) (42.89% vs. 65.22%, P = 0.043). ALC<500/μl before conditioning was a significant poor risk factor for relapse, OS, RFS, and GRFS.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yu Cai
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xiaowei Xu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Jiahua Niu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xinxin Xia
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Ying Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Chang Shen
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yu Wei
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Liping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| |
Collapse
|
24
|
Takahashi T, Prockop SE. T-cell depleted haploidentical hematopoietic cell transplantation for pediatric malignancy. Front Pediatr 2022; 10:987220. [PMID: 36313879 PMCID: PMC9614427 DOI: 10.3389/fped.2022.987220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Access to allogenic hematopoietic cell transplantation (HCT), a potentially curative treatment for chemotherapy-resistant hematologic malignancies, can be limited if no human leukocyte antigen (HLA) identical related or unrelated donor is available. Alternative donors include Cord Blood as well as HLA-mismatched unrelated or related donors. If the goal is to minimize the number of HLA disparities, partially matched unrelated donors are more likely to share 8 or 9 of 10 HLA alleles with the recipient. However, over the last decade, there has been success with haploidentical HCT performed using the stem cells from HLA half-matched related donors. As the majority of patients have at least one eligible and motivated haploidentical donor, recruitment of haploidentical related donors is frequently more rapid than of unrelated donors. This advantage in the accessibility has historically been offset by the increased risks of graft rejection, graft-versus-host disease and delayed immune reconstitution. Various ex vivo T-cell depletion (TCD) methods have been investigated to overcome the immunological barrier and facilitate immune reconstitution after a haploidentical HCT. This review summarizes historical and contemporary clinical trials of haploidentical TCD-HCT, mainly in pediatric malignancy, and describes the evolution of these approaches with a focus on serial improvements in the kinetics of immune reconstitution. Methods of TCD discussed include in vivo as well as ex vivo positive and negative selection. In addition, haploidentical TCD as a platform for post-HCT cellular therapies is discussed. The present review highlights that, as a result of the remarkable progress over half a century, haploidentical TCD-HCT can now be considered as a preferred alternative donor option for children with hematological malignancy in need of allogeneic HCT.
Collapse
Affiliation(s)
- Takuto Takahashi
- Pediatric Stem Cell Transplantation, Boston Children's Hospital/Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| | - Susan E Prockop
- Pediatric Stem Cell Transplantation, Boston Children's Hospital/Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
25
|
Antithymocyte globulin exposure in CD34+ T-cell depleted allogeneic hematopoietic cell transplantation. Blood Adv 2021; 6:1054-1063. [PMID: 34788361 PMCID: PMC8945304 DOI: 10.1182/bloodadvances.2021005584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
In CD34+ TCD allogeneic-HCT, optimum post-HCT rATG exposure decreases NRM driven by faster CD4+ IR and improves survival. Personalized rATG exposure using a PK-directed strategy may improve survival after allogeneic CD34+ TCD HCT.
Traditional weight-based dosing results in variable rabbit antithymocyte globulin (rATG) clearance that can delay CD4+ T-cell immune reconstitution (CD4+ IR) leading to higher mortality. In a retrospective pharmacokinetic/pharmacodynamic (PK/PD) analysis of patients undergoing their first CD34+ T-cell–depleted (TCD) allogeneic hematopoietic cell transplantation (HCT) after myeloablative conditioning with rATG, we estimated post-HCT rATG exposure as area under the curve (arbitrary unit per day/milliliter [AU × day/mL]) using a validated population PK model. We related rATG exposure to nonrelapse mortality (NRM), CD4+ IR (CD4+ ≥50 cells per µL at 2 consecutive measures within 100 days after HCT), overall survival, relapse, and acute graft-versus-host disease (aGVHD) to define an optimal rATG exposure. We used Cox proportional hazard models and multistate competing risk models for analysis. In all, 554 patients were included (age range, 0.1-73 years). Median post-HCT rATG exposure was 47 AU × day/mL (range, 0-101 AU × day/mL). Low post-HCT area under the curve (<30 AU × day/mL) was associated with lower risk of NRM (P < .01) and higher probability of achieving CD4+ IR (P < .001). Patients who attained CD4+ IR had a sevenfold lower 5-year NRM (P < .0001). The probability of achieving CD4+ IR was 2.5-fold higher in the <30 AU × day/mL group compared with 30-55 AU × day/mL and threefold higher in the <30 AU × day/mL group compared with the ≥55 AU × day/mL group. In multivariable analyses, post-HCT rATG exposure ≥55 AU × day/mL was associated with an increased risk of NRM (hazard ratio, 3.42; 95% confidence interval, 1.26-9.30). In the malignancy subgroup (n = 515), a tenfold increased NRM was observed in the ≥55 AU × day/mL group, and a sevenfold increased NRM was observed in the 30-55 AU × day/mL group compared with the <30 AU × day/mL group. Post-HCT rATG exposure ≥55 AU × day/mL was associated with higher risk of a GVHD (hazard ratio, 2.28; 95% confidence interval, 1.01-5.16). High post-HCT rATG exposure is associated with higher NRM secondary to poor CD4+ IR after TCD HCT. Using personalized PK-directed rATG dosing to achieve optimal exposure may improve survival after HCT.
Collapse
|
26
|
Salamonowicz-Bodzioch M, Rosa M, Frączkiewicz J, Gorczyńska E, Gul K, Janeczko-Czarnecka M, Jarmoliński T, Kałwak K, Mielcarek-Siedziuk M, Olejnik I, Owoc-Lempach J, Panasiuk A, Gajek K, Rybka B, Ryczan-Krawczyk R, Ussowicz M. Fludarabine-Cyclophosphamide-Based Conditioning with Antithymocyte Globulin Serotherapy Is Associated with Durable Engraftment and Manageable Infections in Children with Severe Aplastic Anemia. J Clin Med 2021; 10:jcm10194416. [PMID: 34640434 PMCID: PMC8509585 DOI: 10.3390/jcm10194416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Severe aplastic anemia (SAA) is a bone marrow failure syndrome that can be treated with hematopoietic cell transplantation (HCT) or immunosuppressive (IS) therapy. A retrospective cohort of 56 children with SAA undergoing transplantation with fludarabine-cyclophosphamide-ATG-based conditioning (FluCyATG) was analyzed. The endpoints were overall survival (OS), event-free survival (EFS), cumulative incidence (CI) of graft versus host disease (GVHD) and CI of viral replication. Engraftment was achieved in 53/56 patients, and four patients died (two due to fungal infection, and two of neuroinfection). The median time to neutrophil engraftment was 14 days and to platelet engraftment was 16 days, and median donor chimerism was above 98%. The overall incidence of acute GVHD was 41.5%, and that of grade III-IV acute GVHD was 14.3%. Chronic GVHD was diagnosed in 14.2% of children. The probability of 2-year GVHD-free survival was 76.1%. In the univariate analysis, a higher dose of cyclophosphamide and previous IS therapy were significant risk factors for worse overall survival. Episodes of viral replication occurred in 33/56 (58.9%) patients, but did not influence OS. The main advantages of FluCyATG include early engraftment with a very high level of donor chimerism, high overall survival and a low risk of viral replication after HCT.
Collapse
Affiliation(s)
- Małgorzata Salamonowicz-Bodzioch
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
- Correspondence: ; Tel.: +48-71-7332700; Fax: +48-71-7332709
| | - Monika Rosa
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Jowita Frączkiewicz
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Ewa Gorczyńska
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Katarzyna Gul
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Małgorzata Janeczko-Czarnecka
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Tomasz Jarmoliński
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Krzysztof Kałwak
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Monika Mielcarek-Siedziuk
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Igor Olejnik
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Joanna Owoc-Lempach
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Anna Panasiuk
- Department of Oncology, Hematolgy and Transplantology, University Hospital USK in Wroclaw, 50-556 Wroclaw, Poland;
| | - Kornelia Gajek
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Blanka Rybka
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Renata Ryczan-Krawczyk
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| | - Marek Ussowicz
- Department of Pediatric Oncology, Haematology and Bone Marrow Transplantation, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (M.R.); (J.F.); (E.G.); (K.G.); (M.J.-C.); (T.J.); (K.K.); (M.M.-S.); (I.O.); (J.O.-L.); (K.G.); (B.R.); (R.R.-K.); (M.U.)
| |
Collapse
|
27
|
Successful mismatched hematopoietic stem cell transplantation for pediatric hemoglobinopathy by using ATG and post-transplant cyclophosphamide. Bone Marrow Transplant 2021; 56:2203-2211. [PMID: 33941871 DOI: 10.1038/s41409-021-01302-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
The use of HLA-mismatched (un)related donors is historically associated with a higher incidence of transplant-related complications and mortality. However, the use of such donors may overcome the limited availability of HLA-matched donors for patients with β-thalassemia major (TM) and sickle cell disease (SCD). We investigated hematopoietic stem cell transplantation (HSCT) outcomes of pediatric TM and SCD patients treated with a mismatched donor using a treosulfan-based conditioning in combination with ATG and post-transplant cyclophosphamide (PT-CY) and compared these results to the clinical outcome of patients treated by matched donor HSCT without PT-CY. Thirty-eight children (n = 24 HLA-identical or 10/10-matched donors; n = 14 HLA-mismatched donors), who received a non-depleted bone marrow graft were included. Event-free survival (EFS) and GvHD were not higher in the mismatched PT-Cy group as compared to the matched group. Moreover, despite delayed neutrophil engraftment (day +22 vs. +26, p = 0.002) and immune recovery in the mismatched PT-Cy group, this did not result in more infectious complications. Therefore, we conclude that in the absence of an HLA-identical or a matched unrelated donor, HSCT with a mismatched unrelated or haploidentical donor in combination with ATG plus PT-CY can be considered a safe and effective treatment option for pediatric hemoglobinopathy patients.
Collapse
|
28
|
Nijstad AL, Nierkens S, Lindemans CA, Boelens JJ, Bierings M, Versluys AB, van der Elst KC, Huitema AD. Population pharmacokinetics of clofarabine for allogeneic hematopoietic cell transplantation in paediatric patients. Br J Clin Pharmacol 2021; 87:3218-3226. [PMID: 33444472 PMCID: PMC8359279 DOI: 10.1111/bcp.14738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
AIMS Clofarabine has recently been evaluated as part of the conditioning regimen for allogeneic hematopoietic stem cell transplantation (HCT) in children. Pharmacokinetic (PK) exposure of different agents commonly used in conditioning regimens is strongly related to HCT outcome. Consequently, the PK of clofarabine may be important for outcome. This report describes the population PK of clofarabine in paediatric patients and one adult. METHODS From 80 paediatric (0.5-18 years) and 1 adult patient (37 years), 805 plasma concentrations were included in pharmacokinetic analyses using nonlinear mixed effects modelling. RESULTS A two-compartment model adequately described the PK of clofarabine. Body weight and estimated glomerular filtration rate (eGFR) were included as covariates. Clearance was differentiated into nonrenal and renal clearance (approximately 55% of total clearance), resulting in population estimates of 24.0 L/h (95% confidence interval [CI] 13.7-34.4) and 29.8 L/h (95% CI 23.9-36.1) for a patient of 70 kg with normal renal function, respectively. Unexplained interindividual variability in clearance was 17.8% (95% CI 14.6-22.4). A high variability in exposure was observed (range area under the curveT0-inf 1.8-6.0 mg/L*h) after body surface area (BSA) based dosing. Interestingly, children with low body weight had a lower exposure than children with a higher body weight, which indicates that the currently practised BSA-based dosing is not adequate for clofarabine. CONCLUSION A clofarabine dosing algorithm based on this PK model, using body weight and eGFR, results in a more predictable exposure than BSA-based dosing. However, the exact target exposure needs to be further investigated.
Collapse
Affiliation(s)
- A. Laura Nijstad
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| | - Caroline A. Lindemans
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Department of Pediatrics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Jaap Jan Boelens
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Stem Cell Transplantation and Cellular Therapies, MSK KidsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Marc Bierings
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Department of Pediatrics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - A. Birgitta Versluys
- Pediatric Blood and Bone Marrow TransplantationPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
- Department of Pediatrics, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Kim C.M. van der Elst
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
| | - Alwin D.R. Huitema
- Department of Clinical Pharmacy, Division of Laboratory Medicine and Pharmacy, University Medical Center UtrechtUtrecht UniversityUtrechtthe Netherlands
- Department of Pharmacy & PharmacologyNetherlands Cancer InstituteAmsterdamthe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtthe Netherlands
| |
Collapse
|
29
|
Azzopardi N, Longuet H, Ternant D, Thibault G, Gouilleux-Gruart V, Lebranchu Y, Büchler M, Gatault P, Paintaud G. Relationship Between Antithymocyte Globulin Concentrations and Lymphocyte Sub-Populations in Kidney Transplant Patients. Clin Pharmacokinet 2021; 61:111-122. [PMID: 34292526 DOI: 10.1007/s40262-021-01053-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Rabbit antithymocyte globulins (rATGs) are polyclonal antibodies used to prevent acute cellular rejection in kidney transplantation. Their dosing remains largely empirical and the question of an individualized dose is still unresolved. METHODS Data from a prospective study in 17 kidney transplant patients were used to develop a model describing the dose-concentration-response relationship of rATG with T-lymphocyte subpopulation counts over time. The model was validated using an independent cohort of kidney transplant patients treated by rATG in the same center. RESULTS Pharmacokinetics of rATG was described using a two-compartment model integrating a third compartment and a target-mediated elimination for active rATG. The kinetics of CD3+, CD4+, CD8+, and CD3-CD56+ cell counts over time were described by a pharmacokinetic-pharmacodynamic model with transit compartments, integrating both CD3-CD56+-independent and CD3-CD56+-dependent rATG-mediated lymphocyte depletion, and a positive feedback. Elimination of rATG was influenced by age and body surface area, while its distribution was also influenced by body surface area. CD3+ proliferation rate decreased with age and CD3-CD56+-mediated elimination was influenced by the V158F-FCGR3A polymorphism. Binary efficacy and tolerance endpoints were defined as a CD3+ count < 20 mm-3 for at least 7 days and a CD4+ count > 200 mm-3 at 1 year, respectively. Simulations showed that increasing or decreasing the standard 6-mg/kg dose will impact both tolerance and efficacy, while a dose decrease may be beneficial in elderly patients. CONCLUSIONS Our results can be used to design prospective clinical trials testing dose individualization based on patients' characteristics. CLINICAL TRIAL REGISTRATION Eudract No. 2009-012673-35.
Collapse
Affiliation(s)
| | - Hélène Longuet
- Department of Nephrology and Clinical Immunology, CHRU de Tours, Tours, France
| | - David Ternant
- University of Tours, EA4245 T2I, Tours, France. .,Department of Medical Pharmacology, CHRU de Tours, 37044, Tours, France.
| | - Gilles Thibault
- University of Tours, EA7501 GICC, Tours, France.,Laboratory of Immunology, CHRU de Tours, Tours, France
| | - Valérie Gouilleux-Gruart
- University of Tours, EA7501 GICC, Tours, France.,Laboratory of Immunology, CHRU de Tours, Tours, France
| | | | - Matthias Büchler
- Department of Nephrology and Clinical Immunology, CHRU de Tours, Tours, France.,University of Tours, EA4245 T2I, Tours, France
| | - Philippe Gatault
- Department of Nephrology and Clinical Immunology, CHRU de Tours, Tours, France.,University of Tours, EA4245 T2I, Tours, France
| | - Gilles Paintaud
- University of Tours, EA4245 T2I, Tours, France.,Department of Medical Pharmacology, CHRU de Tours, 37044, Tours, France
| |
Collapse
|
30
|
CD4+ T-cell reconstitution predicts survival outcomes after acute graft-versus-host-disease: a dual-center validation. Blood 2021; 137:848-855. [PMID: 33150379 DOI: 10.1182/blood.2020007905] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/04/2020] [Indexed: 11/20/2022] Open
Abstract
Acute graft-versus-host-Disease (aGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation (HCT). We previously showed that early CD4+ T-cell immune reconstitution (IR; CD4+ IR) predicts survival after HCT. Here, we studied the relation between CD4+ IR and survival in patients developing aGVHD. Pediatric patients undergoing first allogeneic HCT at University Medical Center Utrecht (UMC)/Princess Máxima Center (PMC) or Memorial Sloan Kettering Cancer Center (MSK) were included. Primary outcomes were nonrelapse mortality (NRM) and overall survival (OS), stratified for aGVHD and CD4+ IR, defined as ≥50 CD4+ T cells per μL within 100 days after HCT or before aGVHD onset. Multivariate and time-to-event Cox proportional hazards models were applied, and 591 patients (UMC/PMC, n = 276; MSK, n = 315) were included. NRM in patients with grade 3 to 4 aGVHD with or without CD4+ IR within 100 days after HCT was 30% vs 80% (P = .02) at UMC/PMC and 5% vs 67% (P = .02) at MSK. This was associated with lower OS without CD4+ IR (UMC/PMC, 61% vs 20%; P = .04; MSK, 75% vs 33%; P = .12). Inadequate CD4+ IR before aGVHD onset was associated with significantly higher NRM (74% vs 12%; P < .001) and inferior OS (24% vs 78%; P < .001). In this retrospective analysis, we demonstrate that early CD4+ IR, a simple and robust marker predictive of outcomes after HCT, is associated with survival after moderate to severe aGVHD. This association must be confirmed prospectively but suggests strategies to improve T-cell recovery after HCT may influence survival in patients developing aGVHD.
Collapse
|
31
|
Barrett JS, Barrett RF, Vinks AA. Status Toward the Implementation of Precision Dosing in Children. J Clin Pharmacol 2021; 61 Suppl 1:S36-S51. [PMID: 34185896 DOI: 10.1002/jcph.1830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/04/2021] [Indexed: 01/19/2023]
Abstract
Precision dosing is progressing beyond the conceptual and proof-of-concept stages toward implementation. As the availability of dosing algorithms, tools, and platforms increases, so do the investment in technology services and actual implementation of clinical services offering these solutions to patients. Nowhere is this needed more than in pediatric populations, which are still reliant on adult drug development and bridging strategies to support dosing, often in the absence of actual dose-finding studies in the target pediatric population. Still, there is more work to be done to ensure that proper governance of these services is maintained, and that sustainability of these early implementations is guided by new science as it evolves and meaningful outcome data to confirm that such services deliver on both clinical and economic return on investment. In addition, the field should ensure that all approaches beyond a therapeutic drug monitoring-driven, pharmacokinetic-centric approach should be considered as the tools and services evolve, especially when pediatric-specific pharmacokinetic/pharmacodyamic and pharmacogenetic data are available and shown to be useful to guide dosing. This review evaluates current pediatric precision dosing efforts, highlighting their utility, longevity, and sustainability and assesses the current process for implementing such approaches examining current barriers that stand in the way of broader implementation and the stakeholders that must engage to ensure its ultimate success.
Collapse
Affiliation(s)
- Jeffrey S Barrett
- Quantitative Medicine, Critical Path Institute, Tucson, Arizona, USA
| | - Ryan F Barrett
- College of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
32
|
Narita A, Muramatsu H, Ichikawa D, Hamada M, Nishikawa E, Suzuki K, Kawashima N, Okuno Y, Nishio N, Hama A, Yamazaki H, Nakao S, Kojima S, Takahashi Y. Relationship between plasma rabbit anti-thymocyte globulin concentration and immunosuppressive therapy response in patients with severe aplastic anemia. Eur J Haematol 2021; 107:255-264. [PMID: 33949001 DOI: 10.1111/ejh.13644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Patients with acquired aplastic anemia (AA) without HLA-matched sibling donors or aged >40 years receive immunosuppressive therapy (IST) with anti-thymocyte globulin (ATG). We investigated the relationship between plasma rabbit ATG (r-ATG) concentration and IST response. METHODS From May 2012 to October 2017, 81 patients with severe AA who required initial IST were included. A 1:1 block randomization was employed for 2.5 and 3.5 mg/kg doses of r-ATG. RESULTS No significant difference in response rates was observed between the 2.5 and 3.5 mg/kg groups (63% vs. 58%, P = .894). Median r-ATG concentrations on days 14 and 28 after IST were 15.2 (0.0-97.7) and 1.8 (0.0-74.9 µg/mL), respectively. According to r-ATG concentration, response rates were significantly higher in the group with higher r-ATG concentration than in those with lower r-ATG concentration (day 14, 88% vs. 52%; P = .006 and day 28, 79% vs. 46%; P = .005). In multivariate analysis, higher r-ATG concentrations at day 28 were independent predictors of favorable response to IST at 6 months (odds ratio, 0.29; 95% confidence interval, 0.09-0.93; P = .037). CONCLUSIONS The present data indicate that higher r-ATG concentration at day 28 resulted in improved IST response.
Collapse
Affiliation(s)
- Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Ichikawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Eri Nishikawa
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyogo Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahito Hama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Nagoya First Hospital, Nagoya, Japan
| | - Hirohito Yamazaki
- Division of Transfusion Medicine, Kanazawa University Hospital, Kanazawa, Japan
| | - Shinji Nakao
- Department of Hematology and Respirology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
33
|
Malik PRV, Temrikar ZH, Chelle P, Edginton AN, Meibohm B. Pediatric Dose Selection for Therapeutic Proteins. J Clin Pharmacol 2021; 61 Suppl 1:S193-S206. [PMID: 34185910 DOI: 10.1002/jcph.1829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022]
Abstract
In selecting optimal dosing regimens in support of the clinical use of monoclonal antibodies and other therapeutic proteins in pediatric indications, the unique pharmacokinetic properties of this class of biologics, as well as the underlying physiologic and pathophysiologic processes and their modulation by childhood growth and development, needs to be appreciated. During drug development, first-in-pediatric dose selection is a capstone event in the pediatric investigation plan that relies heavily on extrapolation of pharmacokinetic and pharmacodynamic data from adult to pediatric populations. It is facilitated by combinations of pharmacometric approaches, including allometry, physiologically based pharmacokinetic modeling, and population pharmacokinetic analyses, although data on reliability and qualification of some of these tools in the context of therapeutic proteins are still limited but emerging. Presented data suggest nonlinear relationships between body weight and both clearance and volume of distribution for therapeutic proteins in pediatric populations, with allometric exponents of 0.75 and 0.8, respectively. For newborns and infants (<1 year), even higher nonlinearity seems to occur. Translation of the quantitative characterization of the pediatric pharmacokinetics of therapeutic proteins into dosing regimens for the drug label requires compromising between precision dosing and clinical practicability, with tiered dosing algorithms based on size or age strata being the currently most frequently applied methodology.
Collapse
Affiliation(s)
- Paul R V Malik
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Pierre Chelle
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrea N Edginton
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Keogh SJ, Dalle JH, Admiraal R, Pulsipher MA. Serotherapy as Graft-Versus-Host Disease Prophylaxis in Haematopoietic Stem Cell Transplantation for Acute Lymphoblastic Leukaemia. Front Pediatr 2021; 9:805189. [PMID: 35071142 PMCID: PMC8771860 DOI: 10.3389/fped.2021.805189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
Serotherapy comprising agents such as anti-thymocyte globulin, anti-T-lymphocyte globulin, and the anti-CD52 monoclonal antibody alemtuzumab is used widely to reduce the incidence of graft-versus-host disease (GvHD) after paediatric haematopoietic stem cell transplantation (HSCT). The outcome of transplants using matched unrelated donors now approaches that of matched sibling donors. This is likely due to better disease control in recipients, the use of donors more closely human-leukocyte antigen (HLA)-matched to recipients, and more effective graft-versus-host disease (GvHD) prophylaxis. The price paid for reduced GvHD is slower immune reconstitution of T cells and thus more infections. This has led to studies looking to optimise the amount of serotherapy used. The balance between prevention of GvHD on one side and prevention of infections and relapse on the other side is quite delicate. Serotherapy is given with chemotherapy-/radiotherapy-based conditioning prior to HSCT. Due to their long half-lives, agents used for serotherapy may be detectable in patients well after graft infusion. This exposes the graft-infused T cells to a lympholytic effect, impacting T-cell recovery. As such, excessive serotherapy dosing may lead to no GvHD but a higher incidence of infections and relapse of leukaemia, while under-dosing may result in a higher chance of serious GvHD as immunity recovers more quickly. Individualised dosing is being developed through studies including retrospective analyses of serotherapy exposure, population pharmacokinetic modelling, therapeutic drug monitoring in certain centres, and the development of dosing models reliant on factors including the patient's peripheral blood lymphocyte count. Early results of "optimal" dosing strategies for serotherapy and conditioning chemotherapy show promise of improved overall survival.
Collapse
Affiliation(s)
- Steven J Keogh
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Jean-Hugues Dalle
- Hôpital Robert Debré, GHU AP-HP. Nord Université de Paris, Paris, France
| | - Rick Admiraal
- Princess Maxima Center for Pediatric Oncology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Michael A Pulsipher
- Children's Hospital Los Angeles, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
35
|
Toyoshima J, Shibata M, Kaibara A, Kaneko Y, Izutsu H, Nishimura T. Population pharmacokinetic analysis of peficitinib in patients with rheumatoid arthritis. Br J Clin Pharmacol 2020; 87:2014-2022. [PMID: 33068028 PMCID: PMC8056739 DOI: 10.1111/bcp.14605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
Aims To analyse the population pharmacokinetics (PK) of peficitinib in patients with rheumatoid arthritis (RA) and assess the potential PK covariates to identify the requirement for dose adjustment in RA patients. Methods The analysis incorporated 2464 observations from 98 healthy volunteers and 4919 observations from 989 RA patients. A population PK model for peficitinib in RA patients was constructed by a nonlinear mixed effect model using NONMEM with prior information from a healthy volunteer model. Results A 2‐compartment model with sequential zero‐ and first‐order absorption and lag time was constructed for RA patients. Covariate exploration in the RA patient model revealed that estimated glomerular filtration rate (eGFR) and lymphocyte count had a significant effect on apparent total systemic clearance (CL), which was 91.7 L/h (2.3% relative standard error). Compared with the mean population CL, the model predicted mean changes in CL of 12.3 and −10.7% in patients with observed minimum and maximum lymphocyte count of 500 and 4600 106/L, respectively, and mean changes in CL of −17.8 and 16.7% in patients with minimum and maximum eGFR of 36.4 and 188 mL/min/1.73m2, respectively. The simulated population mean area under plasma concentration–time curve for 24 hours after dosing showed a 1.35‐fold increase in patients with severe renal impairment (eGFR 22.5 mL/min/1.73m2) compared with patients with reference eGFR (91.5 mL/min/1.73m2). Conclusion The population PK model identified eGFR and lymphocyte count as covariates for CL. The magnitude of changes was not considered clinically relevant, indicating no requirement for dose adjustment.
Collapse
|
36
|
Goal-Oriented Monitoring of Cyclosporine Is Effective for Graft-versus-Host Disease Prevention after Hematopoietic Stem Cell Transplantation in Sickle Cell Disease and Thalassemia Major. Biol Blood Marrow Transplant 2020; 26:2285-2291. [DOI: 10.1016/j.bbmt.2020.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 11/21/2022]
|
37
|
Modi D, Kim S, Surapaneni M, Ayash L, Ratanatharathorn V, Uberti JP, Deol A. Absolute lymphocyte count on the first day of thymoglobulin predicts relapse-free survival in matched unrelated peripheral blood stem cell transplantation. Leuk Lymphoma 2020; 61:3137-3145. [DOI: 10.1080/10428194.2020.1805114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Dipenkumar Modi
- Department of Oncology, Blood and Marrow Stem Cell Transplant Program, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Seongho Kim
- Biostatistics Core, Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Malini Surapaneni
- Department of Oncology, Blood and Marrow Stem Cell Transplant Program, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Lois Ayash
- Department of Oncology, Blood and Marrow Stem Cell Transplant Program, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Voravit Ratanatharathorn
- Department of Oncology, Blood and Marrow Stem Cell Transplant Program, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Joseph P. Uberti
- Department of Oncology, Co-Director, Blood & Marrow Stem Cell Transplant Program, Karmanos Cancer Institute/Wayne State University, Detroit, MI, USA
| | - Abhinav Deol
- Biostatistics Core, Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
38
|
Fludarabine exposure in the conditioning prior to allogeneic hematopoietic cell transplantation predicts outcomes. Blood Adv 2020; 3:2179-2187. [PMID: 31324638 DOI: 10.1182/bloodadvances.2018029421] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Fludarabine is the most frequently used agent in conditioning regimens for allogeneic hematopoietic cell transplantation (HCT). Body surface area-based dosing leads to highly variable fludarabine exposure. We studied the relation between fludarabine exposure and clinical outcomes. A retrospective, pharmacokinetic-pharmacodynamic analysis was conducted with data from patients undergoing HCT with fludarabine (160 mg/m2) as part of a myeloablative conditioning (busulfan targeted to an area under the plasma-concentration-time curve [AUC] of 90 mg*h/L) and rabbit antithymocyte globulin (6-10 mg/kg; from day -9/-12) between 2010 and 2016. Fludarabine exposure as AUC was calculated for each patient using a previously published population pharmacokinetic model and related to 2-year event-free survival (EFS) by means of (parametric) time-to-event models. Relapse, nonrelapse mortality (NRM), and graft failure were considered events. One hundred ninety-two patients were included (68 benign and 124 malignant disorders). The optimal fludarabine exposure was determined as an AUC of 20 mg*h/L. In the overexposed group, EFS was lower (hazard ratio [HR], 2.0; 95% confidence interval [CI], 1.1-3.5; P = .02), due to higher NRM (HR, 3.4; 95% CI, 1.6-6.9; P <001) associated with impaired immune reconstitution (HR, 0.43; 95% CI, 0.26-0.70; P <001). The risks of NRM and graft failure were increased in the underexposed group (HR, 3.3; 95% CI, 1.2-9.4; P = .02; HR, 4.8; 95% CI, 1.2-19; P = .02, respectively). No relationship with relapse was found. Fludarabine exposure is a strong predictor of survival after HCT, stressing the importance of optimum fludarabine dosing. Individualized dosing, based on weight and "renal function" or "therapeutic drug monitoring," to achieve optimal fludarabine exposure might improve survival.
Collapse
|
39
|
Antirelapse effect of pretransplant exposure to rabbit antithymocyte globulin. Blood Adv 2020; 3:1394-1405. [PMID: 31043372 DOI: 10.1182/bloodadvances.2018030247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/24/2019] [Indexed: 01/15/2023] Open
Abstract
It remains unknown why rabbit antithymocyte globulin (ATG; Thymoglobulin) has not affected relapse after hematopoietic cell transplantation (HCT) in randomized studies. We hypothesized that high pre-HCT ATG area under the curve (AUC) would be associated with a low incidence of relapse, whereas high post-HCT AUC would be associated with a high incidence of relapse. We measured serum levels of ATG capable of binding to mononuclear cells (MNCs), lymphocytes, T cells, CD4 T cells, or CD33 cells. We estimated pre- and post-HCT AUCs in 152 adult recipients of myeloablative conditioning and blood stem cells. High pre-HCT AUCs of MNC- and CD33 cell-binding ATG were associated with a low incidence of relapse and high relapse-free survival (RFS). There was a trend toward an association of high post-HCT AUC of lymphocyte-binding ATG with a high incidence of relapse and low RFS. High pre-HCT AUCs were also associated with faster engraftment and had no impact on graft-versus-host disease (GVHD) or fatal infections. High post-HCT AUCs were associated with a low risk of GVHD, seemed associated with an increased risk of fatal infections, and had no impact on engraftment. In conclusion, pre-HCT AUC seems to have a positive, whereas post-HCT AUC seems to have a negative, impact on relapse.
Collapse
|
40
|
Merli P, Vacca P, Galaverna F, Tumino N, Moretta L, Locatelli F. TCRαβ/CD19 depleted hematopoietic stem cell transplantation from haploidentical donors: dissecting the GvL/GvHD conundrum. Bone Marrow Transplant 2020; 55:1483-1484. [PMID: 32286504 DOI: 10.1038/s41409-020-0891-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.
| | - Paola Vacca
- Immunology Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica Galaverna
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy
| | - Nicola Tumino
- Immunology Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, Rome, Italy.,Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Ternant D, Azzopardi N, Raoul W, Bejan-Angoulvant T, Paintaud G. Influence of Antigen Mass on the Pharmacokinetics of Therapeutic Antibodies in Humans. Clin Pharmacokinet 2020; 58:169-187. [PMID: 29802542 DOI: 10.1007/s40262-018-0680-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic antibodies are increasingly used to treat various diseases, including neoplasms and chronic inflammatory diseases. Antibodies exhibit complex pharmacokinetic properties, notably owing to the influence of antigen mass, i.e. the amount of antigenic targets to which the monoclonal antibody binds specifically. This review focuses on the influence of antigen mass on the pharmacokinetics of therapeutic antibodies quantified by pharmacokinetic modelling in humans. Out of 159 pharmacokinetic studies, 85 reported an influence of antigen mass. This influence led to non-linear elimination decay in 50 publications, which was described using target-mediated drug disposition or derived models, as quasi-steady-state, irreversible binding and Michaelis-Menten models. In 35 publications, the pharmacokinetics was apparently linear and the influence of antigen mass was described as a covariate of pharmacokinetic parameters. If some reported covariates, such as the circulating antigen level or tumour size, are likely to be correlated to antigen mass, others, such as disease activity or disease type, may contain little information on the amount of antigenic targets. In some cases, antigen targets exist in different forms, notably in the circulation and expressed at the cell surface. The influence of antigen mass should be soundly described during the early clinical phases of drug development. To maximise therapeutic efficacy, sufficient antibody doses should be administered to ensure the saturation of antigen targets by therapeutic antibodies in all patients. If necessary, antigen mass should be taken into account in routine clinical practice.
Collapse
Affiliation(s)
- David Ternant
- Université de Tours, EA7501 GICC, Team PATCH, Tours, France. .,Department of Medical Pharmacology, CHRU de Tours, Tours University Hospital, 2 boulevard Tonnellé, 37044, Tours Cedex, France.
| | | | - William Raoul
- Université de Tours, EA7501 GICC, Team PATCH, Tours, France
| | - Theodora Bejan-Angoulvant
- Université de Tours, EA7501 GICC, Team PATCH, Tours, France.,Department of Medical Pharmacology, CHRU de Tours, Tours University Hospital, 2 boulevard Tonnellé, 37044, Tours Cedex, France
| | - Gilles Paintaud
- Université de Tours, EA7501 GICC, Team PATCH, Tours, France.,Department of Medical Pharmacology, CHRU de Tours, Tours University Hospital, 2 boulevard Tonnellé, 37044, Tours Cedex, France
| |
Collapse
|
42
|
Vogelsang V, Kruchen A, Wustrau K, Spohn M, Müller I. Influence of anti-thymocyte globulin plasma levels on outcome parameters in stem cell transplanted children. Int Immunopharmacol 2020; 83:106371. [PMID: 32197227 DOI: 10.1016/j.intimp.2020.106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Allogenic hematopoietic stem cell transplantation is a curative option for malignant and non-malignant pediatric diseases. Serotherapy is often employed to avoid graft-versus-host disease (GvHD) on one hand and graft rejection on the other hand. Therapeutic drug monitoring is increasingly used to allow for more precise dosing especially in pediatric patients due to their specific pharmacological characteristics. Application of T-cell directed antibodies is not routinely monitored, but may benefit from more precise dosing regimens. METHODS Two different preparations of rabbit anti-thymocyte globulin (rATG), Thymoglobuline® and ATG-F (Grafalon®), are frequently used to prevent GvHD in pediatric patients by in vivo T-cell depletion. Total rATG levels and active rATG levels were analyzed prospectively in pediatric patients undergoing HSCT. Clinical and laboratory outcome parameters were recorded. RESULTS rATG levels were measured in 32 patients, 22 received thymoglobuline and 10 received ATG-F. The median total peak plasma level was 419.0 µg/ml for ATG-F and 60.4 µg/ml for thymoglobuline. For ATG-F, exposure could be predicted from the calculated dose more precisely than for thymoglobuline. Active peak plasma levels neither of ATG-F, nor of thymoglobuline correlated significantly with the number of lymphocytes prior to serotherapy. There was no significant difference in incidence of aGvHD, cGvHD, rejection, mixed chimerism or viral infections in the two cohorts. However, in our cohort, patients with high thymoglobuline exposure showed a compromised reconstitution of T cells. CONCLUSIONS ATG-F and thymoglobuline show different pharmacological and immunological impact in children, whose clinical significance needs to be investigated in larger cohorts.
Collapse
Affiliation(s)
- Valentina Vogelsang
- University Medical Center Hamburg-Eppendorf, Division of Pediatric Stem Cell Transplantation and Immunology, Germany
| | - Anne Kruchen
- University Medical Center Hamburg-Eppendorf, Division of Pediatric Stem Cell Transplantation and Immunology, Germany
| | - Katharina Wustrau
- University Medical Center Hamburg-Eppendorf, Division of Pediatric Stem Cell Transplantation and Immunology, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Center Hamburg and Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Germany
| | - Ingo Müller
- University Medical Center Hamburg-Eppendorf, Division of Pediatric Stem Cell Transplantation and Immunology, Germany.
| |
Collapse
|
43
|
Oostenbrink LVE, Jol-van der Zijde CM, Jansen-Hoogendijk AM, Pool ES, van Halteren AGS, Moes DJAR, Bredius RGM, Mohseny AB, Smiers FJW, van Tol MJD, Schilham MW, Lankester AC. Proceeding of the European Group for Blood and Marrow Transplantation (EBMT) congress on sickle cell disease, 16-17 may 2019, Regensburg, Germany: What is the impact of antithymocyte globulin pharmacokinetics on haploidentical hematopoietic stem cell transplantation? Hematol Oncol Stem Cell Ther 2020; 13:61-65. [PMID: 32202242 DOI: 10.1016/j.hemonc.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/11/2019] [Indexed: 01/18/2023] Open
Abstract
Antithymocyte globulin (ATG) is a widely accepted part of the conditioning regimen applied in the setting of hematopoietic stem cell transplantation (HSCT) to prevent graft rejection and graft-versus-host disease. Although weight-based dosing of ATG has been introduced to optimize ATG dosing, substantial variance in clearance of active ATG, the actual lymphocyte binding component, remains a challenge. Therefore, further research regarding ATG pharmacokinetics and pharmacodynamics in different HSCT settings and in patients with different types of underlying diseases is required.
Collapse
Affiliation(s)
- Lisa V E Oostenbrink
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands.
| | | | | | - Emma S Pool
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Dirk Jan A R Moes
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alex B Mohseny
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Frans J W Smiers
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten J D van Tol
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
44
|
Szanto CL, Langenhorst J, de Koning C, Nierkens S, Bierings M, Huitema AD, Lindemans CA, Boelens JJ. Predictors for Autoimmune Cytopenias after Allogeneic Hematopoietic Cell Transplantation in Children. Biol Blood Marrow Transplant 2020; 26:114-122. [DOI: 10.1016/j.bbmt.2019.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
|
45
|
Admiraal R, Jol-van der Zijde CM, Furtado Silva JM, Knibbe CAJ, Lankester AC, Boelens JJ, Hale G, Etuk A, Wilson M, Adams S, Veys P, van Kesteren C, Bredius RGM. Population Pharmacokinetics of Alemtuzumab (Campath) in Pediatric Hematopoietic Cell Transplantation: Towards Individualized Dosing to Improve Outcome. Clin Pharmacokinet 2019; 58:1609-1620. [PMID: 31131436 PMCID: PMC6885503 DOI: 10.1007/s40262-019-00782-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Alemtuzumab (Campath®) is used to prevent graft-versus-host disease and graft failure following pediatric allogeneic hematopoietic cell transplantation. The main toxicity includes delayed immune reconstitution, subsequent viral reactivations, and leukemia relapse. Exposure to alemtuzumab is highly variable upon empirical milligram/kilogram dosing. METHODS A population pharmacokinetic (PK) model for alemtuzumab was developed based on a total of 1146 concentration samples from 206 patients, aged 0.2-19 years, receiving a cumulative intravenous dose of 0.2-1.5 mg/kg, and treated between 2003 and 2015 in two centers. RESULTS Alemtuzumab PK were best described using a two-compartment model with a parallel saturable and linear elimination pathway. The linear clearance pathway, central volume of distribution, and intercompartmental distribution increased with body weight. Blood lymphocyte counts, a potential substrate for alemtuzumab, did not impact clearance. CONCLUSION The current practice with uniform milligram/kilogram doses leads to highly variable exposures in children due to the non-linear relationship between body weight and alemtuzumab PK. This model may be used for individualized dosing of alemtuzumab.
Collapse
Affiliation(s)
- Rick Admiraal
- Division of Stem Cell Transplantation, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, The Netherlands
- Pediatric Blood and Marrow Transplantation Program, Prinses Maxima Center, Utrecht, The Netherlands
| | - Cornelia M Jol-van der Zijde
- Division of Stem Cell Transplantation, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Catherijne A J Knibbe
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Arjan C Lankester
- Division of Stem Cell Transplantation, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Jan Boelens
- Pediatric Blood and Marrow Transplantation Program, Prinses Maxima Center, Utrecht, The Netherlands
- Stem Cell Transplant and Cellular Therapies, Memorial Sloane Kettering Cancer Center, New York, NY, USA
| | | | - Aniekan Etuk
- Department of Haematology, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, UK
| | - Melanie Wilson
- Department of Haematology, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, UK
| | - Stuart Adams
- Department of Haematology, Camelia Botnar Laboratories, Great Ormond Street Hospital, London, UK
| | - Paul Veys
- Bone Marrow Transplantation Department, Great Ormond Street Hospital, London, UK
| | - Charlotte van Kesteren
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, University of Leiden, Leiden, The Netherlands
- Pediatric Blood and Marrow Transplantation Program, Prinses Maxima Center, Utrecht, The Netherlands
| | - Robbert G M Bredius
- Division of Stem Cell Transplantation, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
46
|
Narita A, Zhu X, Muramatsu H, Chen X, Guo Y, Yang W, Zhang J, Liu F, Jang JH, Kook H, Kim H, Usuki K, Yamazaki H, Takahashi Y, Nakao S, Wook Lee J, Kojima S. Prospective randomized trial comparing two doses of rabbit anti‐thymocyte globulin in patients with severe aplastic anaemia. Br J Haematol 2019; 187:227-237. [DOI: 10.1111/bjh.16055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/30/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Atsushi Narita
- Department of Paediatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xiaofan Zhu
- Department of Paediatrics Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin People’s Republic of China
| | - Hideki Muramatsu
- Department of Paediatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Xiaojuan Chen
- Department of Paediatrics Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin People’s Republic of China
| | - Ye Guo
- Department of Paediatrics Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin People’s Republic of China
| | - Wenyu Yang
- Department of Paediatrics Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin People’s Republic of China
| | - Jingliao Zhang
- Department of Paediatrics Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin People’s Republic of China
| | - Fang Liu
- Department of Paediatrics Institute of Haematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Tianjin People’s Republic of China
| | - Jun H. Jang
- Department of Haematology Oncology Samsung Medical Centre, Sungkyunkwan University School of Medicine Seoul Republic of Korea
| | - Hoon Kook
- Department of Paediatrics Chonnam National University Hwasun Hospital, Chonnam National University Medical School Hwasun Republic of Korea
| | - Hawk Kim
- Division of Haematology Gachon University Gil Medical Centre, Gachon University College of Medicine Incheon Republic of Korea
| | - Kensuke Usuki
- Department of Haematology NTT Medical Centre Tokyo Tokyo Japan
| | - Hirohito Yamazaki
- Division of Transfusion Medicine Kanazawa University Hospital Kanazawa Japan
| | - Yoshiyuki Takahashi
- Department of Paediatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | - Shinji Nakao
- Department of Haematology and Respirology Kanazawa University Graduate School of Medical Sciences Kanazawa Japan
| | - Jong Wook Lee
- Department of Haematology Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea Seoul Republic of Korea
| | - Seiji Kojima
- Department of Paediatrics Nagoya University Graduate School of Medicine Nagoya Japan
| | | |
Collapse
|
47
|
Elfeky R, Lazareva A, Qasim W, Veys P. Immune reconstitution following hematopoietic stem cell transplantation using different stem cell sources. Expert Rev Clin Immunol 2019; 15:735-751. [PMID: 31070946 DOI: 10.1080/1744666x.2019.1612746] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Adequate immune reconstitution post-HSCT is crucial for the success of transplantation, and can be affected by both patient- and transplant-related factors. Areas covered: A systematic literature search in PubMed, Scopus, and abstracts of international congresses is performed to investigate immune recovery posttransplant. In this review, we discuss the pattern of immune recovery in the post-transplant period focusing on the impact of stem cell source (bone marrow, peripheral blood stem cells, and cord blood) on immune recovery and HSCT outcome. We examine the impact of serotherapy on immune reconstitution and the need to tailor dosing of serotherapy agents when using different stem cell sources. We discuss new techniques being used particularly with cord blood and haploidentical grafts to improve immune recovery in each scenario. Expert opinion: Cord blood T cells provide a unique CD4+ biased immune reconstitution. Initial studies using targeted serotherapy with cord grafts showed improved immune recovery with limited alloreactivity. Two competing haploidentical approaches have developed in recent years including TCRαβ/CD19 depleted grafts and post-cyclophosphamide haplo-HSCT. Both approaches have comparable survival rates with limited alloreactivity. However, delayed immune reconstitution is still an ongoing problem and could be improved by modified donor lymphocyte infusions from the same haploidentical donor.
Collapse
Affiliation(s)
- Reem Elfeky
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Arina Lazareva
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Waseem Qasim
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| | - Paul Veys
- a Blood and bone marrow transplant unit , Great Ormond Street hospital , London , UK
| |
Collapse
|
48
|
Oostenbrink LVE, Jol-van der Zijde CM, Kielsen K, Jansen-Hoogendijk AM, Ifversen M, Müller KG, Lankester AC, van Halteren AGS, Bredius RGM, Schilham MW, van Tol MJD. Differential Elimination of Anti-Thymocyte Globulin of Fresenius and Genzyme Impacts T-Cell Reconstitution After Hematopoietic Stem Cell Transplantation. Front Immunol 2019; 10:315. [PMID: 30894854 PMCID: PMC6414431 DOI: 10.3389/fimmu.2019.00315] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/06/2019] [Indexed: 01/11/2023] Open
Abstract
Anti-thymocyte globulin (ATG) is a lymphocyte depleting agent applied in hematopoietic stem cell transplantation (HSCT) to prevent rejection and Graft-vs.-Host Disease (GvHD). In this study, we compared two rabbit ATG products, ATG-Genzyme (ATG-GENZ), and ATG-Fresenius (ATG-FRES), with respect to dosing, clearance of the active lymphocyte binding component, post-HSCT immune reconstitution and clinical outcome. Fifty-eigth pediatric acute leukemia patients (n = 42 ATG-GENZ, n = 16 ATG-FRES), who received a non-depleted bone marrow or peripheral blood stem cell graft from an unrelated donor were included. ATG-GENZ was given at a dosage of 6-10 mg/kg; ATG-FRES at 45-60 mg/kg. The active component of ATG from both products was cleared at different rates. Within the ATG-FRES dose range no differences were found in clearance of active ATG or T-cell re-appearance. However, the high dosage of ATG-GENZ (10 mg/kg), in contrast to the low dosage (6-8 mg/kg), correlated with prolonged persistence of active ATG and delayed T-cell reconstitution. Occurrence of serious acute GvHD (grade III-IV) was highest in the ATG-GENZ-low dosage group. These results imply that dosing of ATG-GENZ is more critical than dosing of ATG-FRES due to the difference in clearance of active ATG. This should be taken into account when designing clinical protocols.
Collapse
Affiliation(s)
| | | | - Katrine Kielsen
- Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Marianne Ifversen
- Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus G Müller
- Institute for Inflammation Research, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten J D van Tol
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
49
|
Scordo M, Bhatt V, Hilden P, Smith M, Thoren K, Cho C, Shah GL, Maloy MA, Papadopoulos EB, Jakubowski AA, Avecilla ST, O'Reilly RJ, Castro-Malaspina H, Tamari R, Shaffer BC, Boelens JJ, Perales MA, Giralt SA. Standard Antithymocyte Globulin Dosing Results in Poorer Outcomes in Overexposed Patients after Ex Vivo CD34 + Selected Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1526-1535. [PMID: 30831208 DOI: 10.1016/j.bbmt.2019.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Antithymocyte globulin (ATG) use mitigates the risk of graft rejection and graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation (allo-HCT), but ATG overexposure in the setting of lymphopenia negatively affects immune recovery. We hypothesized that standard empiric weight-based dosing of ATG, used to prevent graft rejection in ex vivo CD34-selected allo-HCT, may lead to serious adverse consequences on outcomes in certain patients. We evaluated 304 patients undergoing myeloablative-conditioned ex vivo CD34-selected allo-HCT with HLA-matched donors for the treatment of hematologic malignancies. Patients received rabbit ATG at a dose of 2.5 mg/kg/day i.v. on days -3 and/or -2. An ATG dosing cutoff of 450 mg was used for statistical analyses to assess the relationship between ATG and overall survival (OS). Among all patients, median total ATG dose was 360 mg (range, 130 to 510 mg); 279 (92%) received a total dose of ATG ≤450 mg, and 25 (8%) received a total dose >450 mg. On the first day of ATG administration (day -3), the median absolute lymphocyte count was .0 K/µL. For patients who received a total dose of ATG >450 mg or ≤450 mg, the incidences of acute and late-acute GVHD grade II-IV were statistically similar. At 3 years post-HCT, for patients who received a total dose of ATG >450 mg or ≤450 mg, nonrelapse mortality (NRM) rates were 35% and 18%, respectively (P = .029), disease-free survival (DFS) rates were 37% and 61%, respectively (P = .003), and OS rates were 40% and 67%, respectively (P = .001). Among all patient and HCT characteristics in multivariable analyses, receipt of a total dose of ATG >450 mg was associated with an increased risk of NRM (hazard ratio [HR], 2.9; P = .01), shorter DFS (HR, 2.0; P = .03), and inferior OS (HR, 2.1; P = .01). In summary, the use of weight-based ATG at a time of relative lymphopenia before ex vivo CD34-selected allo-HCT results in overdosing in heavier patients, leading to higher NRM and lower DFS and OS. Further pharmacokinetic investigation in this setting is critical to determining the optimal dosing strategy for ATG.
Collapse
Affiliation(s)
- Michael Scordo
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Valkal Bhatt
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrick Hilden
- Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melody Smith
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Katie Thoren
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina Cho
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Gunjan L Shah
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Molly A Maloy
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Esperanza B Papadopoulos
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ann A Jakubowski
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Scott T Avecilla
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard J O'Reilly
- Pediatric Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | - Hugo Castro-Malaspina
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Roni Tamari
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Brian C Shaffer
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jaap J Boelens
- Pediatric Bone Marrow Transplantation Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Pediatrics, Weill Cornell Medical College, New York, New York
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Sergio A Giralt
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
50
|
Filgrastim enhances T-cell clearance by antithymocyte globulin exposure after unrelated cord blood transplantation. Blood Adv 2019. [PMID: 29535105 DOI: 10.1182/bloodadvances.2017015487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Residual antithymocyte globulin (ATG; Thymoglobulin) exposure after allogeneic hematopoietic (stem) cell transplantation (HCT) delays CD4+ T-cell immune reconstitution (CD4+ IR), subsequently increasing morbidity and mortality. This effect seems particularly present after cord blood transplantation (CBT) compared to bone marrow transplantation (BMT). The reason for this is currently unknown. We investigated the effect of active-ATG exposure on CD4+ IR after BMT and CBT in 275 patients (CBT n = 155, BMT n = 120; median age, 7.8 years; range, 0.16-19.2 years) receiving their first allogeneic HCT between January 2008 and September 2016. Multivariate log-rank tests (with correction for covariates) revealed that CD4+ IR was faster after CBT than after BMT with <10 active-ATG × day/mL (P = .018) residual exposure. In contrast, >10 active-ATG × day/mL exposure severely impaired CD4+ IR after CBT (P < .001), but not after BMT (P = .74). To decipher these differences, we performed ATG-binding and ATG-cytotoxicity experiments using cord blood- and bone marrow graft-derived T-cell subsets, B cells, natural killer cells, and monocytes. No differences were observed. Nevertheless, a major covariate in our cohort was Filgrastim treatment (only given after CBT). We found that Filgrastim (granulocyte colony-stimulating factor [G-CSF]) exposure highly increased neutrophil-mediated ATG cytotoxicity (by 40-fold [0.5 vs 20%; P = .002]), which explained the enhanced T-cell clearance after CBT. These findings imply revision of the use (and/or timing) of G-CSF in patients with residual ATG exposure.
Collapse
|