1
|
Jiao Y, Yan J, Sutaria DS, Lu P, Vicchiarelli M, Reyna Z, Ruiz-Delgado J, Burk E, Moon E, Shah NR, Spellberg B, Bonomo RA, Drusano GL, Louie A, Luna BM, Bulitta JB. Population pharmacokinetics and humanized dosage regimens matching the peak, area, trough, and range of amikacin plasma concentrations in immune-competent murine bloodstream and lung infection models. Antimicrob Agents Chemother 2024; 68:e0139423. [PMID: 38289076 PMCID: PMC10916399 DOI: 10.1128/aac.01394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 03/07/2024] Open
Abstract
Amikacin is an FDA-approved aminoglycoside antibiotic that is commonly used. However, validated dosage regimens that achieve clinically relevant exposure profiles in mice are lacking. We aimed to design and validate humanized dosage regimens for amikacin in immune-competent murine bloodstream and lung infection models of Acinetobacter baumannii. Plasma and lung epithelial lining fluid (ELF) concentrations after single subcutaneous doses of 1.37, 13.7, and 137 mg/kg of body weight were simultaneously modeled via population pharmacokinetics. Then, humanized amikacin dosage regimens in mice were designed and prospectively validated to match the peak, area, trough, and range of plasma concentration profiles in critically ill patients (clinical dose: 25-30 mg/kg of body weight). The pharmacokinetics of amikacin were linear, with a clearance of 9.93 mL/h in both infection models after a single dose. However, the volume of distribution differed between models, resulting in an elimination half-life of 48 min for the bloodstream and 36 min for the lung model. The drug exposure in ELF was 72.7% compared to that in plasma. After multiple q6h dosing, clearance decreased by ~80% from the first (7.35 mL/h) to the last two dosing intervals (~1.50 mL/h) in the bloodstream model. Likewise, clearance decreased by 41% from 7.44 to 4.39 mL/h in the lung model. The humanized dosage regimens were 117 mg/kg of body weight/day in mice [administered in four fractions 6 h apart (q6h): 61.9%, 18.6%, 11.3%, and 8.21% of total dose] for the bloodstream and 96.7 mg/kg of body weight/day (given q6h as 65.1%, 16.9%, 10.5%, and 7.41%) for the lung model. These validated humanized dosage regimens and population pharmacokinetic models support translational studies with clinically relevant amikacin exposure profiles.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael Vicchiarelli
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Zeferino Reyna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Juan Ruiz-Delgado
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Elizabeth Burk
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Eugene Moon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Nirav R. Shah
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Brad Spellberg
- Los Angeles County-USC (LAC+USC) Medical Center, Los Angeles, California, USA
| | - Robert A. Bonomo
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, Ohio, USA
- Case VA Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Duong A, Simard C, Williamson D, Marsot A. Tobramycin a Priori Dosing Regimens Based on PopPK Model Simulations in Critically Ill Patients: Are They Transferable? Ther Drug Monit 2023; 45:616-622. [PMID: 36917735 DOI: 10.1097/ftd.0000000000001091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
BACKGROUND In recent years, multiple population pharmacokinetic models have been developed for drugs such as tobramycin that need therapeutic drug monitoring. Some of these models have been used to develop a priori dosing regimens for their respective populations. However, these dosing regimens may not apply to other populations. Therefore, this study aimed to evaluate tobramycin population pharmacokinetic models in critically ill patients and establish an adequate dosing regimen. METHODS Evaluated models were identified from a literature review of aminoglycoside population pharmacokinetic models in critically ill patients. After retrospective data collection in 2 Quebec hospitals, external evaluation and model re-estimation were performed with NONMEM (v7.5) to assess imprecision and bias values. Dosing regimens were simulated and compared between the best-performing model and its re-estimated counterparts. RESULTS None of the 3 evaluated models showed acceptable imprecision or bias values in the data sets of the 19 patients. Similar percentages of target attainment were obtained for the original and re-estimated models after the dosing regimen simulations. CONCLUSION Although the predictive performance evaluation criteria were inadequate, the original and re-estimated models yielded similar results. This raises the question of what a priori bias and imprecision thresholds should be defined as acceptable for the external evaluation of models to be applied in clinical practice. Studies evaluating the impact of these thresholds are needed.
Collapse
Affiliation(s)
- Alexandre Duong
- Faculté de Pharmacie, Université de Montréal, Montréal
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal
| | - Chantale Simard
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec
- Faculté de Pharmacie, Université Laval, Québec
| | - David Williamson
- Faculté de Pharmacie, Université de Montréal, Montréal
- Hôpital Sacré-Cœur de Montréal, Université de Montréal, Montréal ; and
| | - Amélie Marsot
- Faculté de Pharmacie, Université de Montréal, Montréal
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal
- Centre de Recherche, CHU Sainte Justine, Montréal, Canada
| |
Collapse
|
3
|
Shi AX, Qu Q, Zhuang HH, Teng XQ, Xu WX, Liu YP, Xiao YW, Qu J. Individualized antibiotic dosage regimens for patients with augmented renal clearance. Front Pharmacol 2023; 14:1137975. [PMID: 37564179 PMCID: PMC10410082 DOI: 10.3389/fphar.2023.1137975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Objectives: Augmented renal clearance (ARC) is a state of enhanced renal function commonly observed in 30%-65% of critically ill patients despite normal serum creatinine levels. Using unadjusted standard dosing regimens of renally eliminated drugs in ARC patients often leads to subtherapeutic concentrations, poor clinical outcomes, and the emergence of multidrug-resistant bacteria. We summarized pharmaceutical, pharmacokinetic, and pharmacodynamic research on the definition, underlying mechanisms, and risk factors of ARC to guide individualized dosing of antibiotics and various strategies for optimizing outcomes. Methods: We searched for articles between 2010 and 2022 in the MEDLINE database about ARC patients and antibiotics and further provided individualized antibiotic dosage regimens for patients with ARC. Results: 25 antibiotic dosage regimens for patients with ARC and various strategies for optimization of outcomes, such as extended infusion time, continuous infusion, increased dosage, and combination regimens, were summarized according to previous research. Conclusion: ARC patients, especially critically ill patients, need to make individualized adjustments to antibiotics, including dose, frequency, and method of administration. Further comprehensive research is required to determine ARC staging, expand the range of recommended antibiotics, and establish individualized dosing guidelines for ARC patients.
Collapse
Affiliation(s)
- A-Xi Shi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei-Xin Xu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Wen Xiao
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, China
| |
Collapse
|
4
|
Telles JP, Diegues MS, Migotto KC, de Souza Borges O, Reghini R, Gavazza BV, Pinto L, Caruso P, E Silva ILF, Schmidt S, de Lima Moreira F. Failure to predict amikacin elimination in critically ill patients with cancer based on the estimated glomerular filtration rate: applying PBPK approach in a therapeutic drug monitoring study. Eur J Clin Pharmacol 2023:10.1007/s00228-023-03516-1. [PMID: 37256410 DOI: 10.1007/s00228-023-03516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE The aim of this work was to integrate the Therapeutic Drug Monitoring (TDM) with the model-informed precision dosing (MIPD) approach, using Physiologically-based Pharmacokinetic/Pharmacodynamic (PBPK/PD) modelling and simulation, to explore the relationship between amikacin exposure and estimated glomerular filtration rate (GFR) in critically ill patients with cancer. METHODS In the TDM study, samples from 51 critically-ill patients with cancer treated with amikacin were analysed. Patients were stratified according to renal function based on GFR status. A full-body PBPK model with 12 organs model was developed using Simcyp V. 21, including steady-state volume of distribution of 0.21 L/kg and renal clearance of 6.9 L/h in healthy adults. PK parameters evaluated were within the 2-fold error range. RESULTS During the validation step, predicted vs observed amikacin clearance values after single infusion dose in patients with normal renal function, mild and moderate renal impairment were 7.6 vs 8.1 L/h (7.5 mg/kg dose); 3.8 vs 4.5 L/h (1500 mg dose) and 2.2 vs 3.1 L/h (25 mg/kg dose), respectively. However, predicted vs observed amikacin clearance after a single dose infusion of 1400 mg in critically-ill patients with cancer were 1.46 vs 1.63 (P = 0.6406) L/h (severe), 2.83 vs 1.08 (P < 0.05) L/h (moderate), 4.23 vs 2.49 (P = 0.0625) L/h (mild) and 7.41 vs 3.36 (P < 0.05) L/h (normal renal function). CONCLUSION This study demonstrated that estimated GFR did not predict amikacin elimination in critically-ill patients with cancer. Further studies are necessary to find amikacin PK covariates to optimize the pharmacotherapy in this population. Therefore, TDM of amikacin is imperative in cancer patients.
Collapse
Affiliation(s)
- João Paulo Telles
- Department of Infectious Diseases, AC Camargo Cancer Center, Professor Antonio Prudente Street, N. 211, São Paulo-SP, 01509-001, Brazil.
| | | | | | | | - Rodrigo Reghini
- Department of Infectious Diseases, AC Camargo Cancer Center, Professor Antonio Prudente Street, N. 211, São Paulo-SP, 01509-001, Brazil
| | - Brenda Vianna Gavazza
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Leonardo Pinto
- Laboratory of Immunopathology, Nucleus of Biological Sciences Research, Federal University of Ouro Preto, Ouro Preto-MG, Brazil
| | - Pedro Caruso
- Department of Intensive Care Unit, AC Camargo Cancer Center, São Paulo-SP, Brazil
| | - Ivan Leonardo França E Silva
- Department of Infectious Diseases, AC Camargo Cancer Center, Professor Antonio Prudente Street, N. 211, São Paulo-SP, 01509-001, Brazil
| | - Stephan Schmidt
- Department of Pharmaceutics Lake Nona, University of Florida, Orlando-FL, USA
| | | |
Collapse
|
5
|
Rufai T, Aninagyei E, Akuffo KO, Ayin CTM, Nortey P, Quansah R, Cudjoe FS, Tei-Maya E, Osei Duah Junior I, Danso-Appiah A. Malaria and typhoid fever among patients presenting with febrile illnesses in Ga West Municipality, Ghana. PLoS One 2023; 18:e0267528. [PMID: 37228010 DOI: 10.1371/journal.pone.0267528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Clinicians in areas where malaria and typhoid fever are co-endemic often treat infected patients irrationally, which may lead to the emergence of drug resistance and extra cost to patients. This study determined the proportion of febrile conditions attributable to either malaria and/or typhoid fever and the susceptibility patterns of Salmonella spp. isolates to commonly used antimicrobial agents in Ghana. METHODS One hundred and fifty-seven (157) febrile patients attending the Ga West Municipal Hospital, Ghana, from February to May 2017 were sampled. Blood samples were collected for cultivation of pathogenic bacteria and the susceptibility of the Salmonella isolates to antimicrobial agents was performed using the Kirby-Bauer disk diffusion method with antibiotic discs on Müller Hinton agar plates. For each sample, conventional Widal test for the detection of Salmonella spp was done as well as blood film preparation for detection of Plasmodium spp. Data on the socio-demographic and clinical characteristics of the study participants were collected using an android technology software kobo-collect by interview. RESULTS Of the total number of patients aged 2-37 years (median age = 6 years, IQR 3-11), 82 (52.2%) were females. The proportion of febrile patients with falciparum malaria was 57/157 (36.3%), while Salmonella typhi O and H antigens were detected in 23/157 (14.6%) of the samples. The detection rate of Salmonella spp in febrile patients was 10/157 (6.4%). Malaria and typhoid fever coinfection using Widal test and blood culture was 9 (5.7%) and 3 (1.9%), respectively. The isolates were highly susceptible to cefotaxime, ceftriaxone, ciprofloxacin, and amikacin but resistant to ampicillin, tetracycline, co-trimoxazole, gentamicin, cefuroxime, chloramphenicol, and meropenem. CONCLUSION Plasmodium falciparum and Salmonella spp coinfections were only up to 1.9%, while malaria and typhoid fever, individually, were responsible for 36.3% and 6.4%, respectively. Treatment of febrile conditions must be based on laboratory findings in order not to expose patients to unnecessary side effects of antibiotics and reduce the emergence and spread of drug resistance against antibiotics.
Collapse
Affiliation(s)
- Tanko Rufai
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, United States of America
| | - Enoch Aninagyei
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Kwadwo Owusu Akuffo
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Christian Teye-Muno Ayin
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Priscillia Nortey
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Reginald Quansah
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Francis Samuel Cudjoe
- School of Biomedical and Allied Health Science, University of Ghana, Korle-Bu, Accra
| | - Ernest Tei-Maya
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Legon, Accra, Ghana
| | - Isaiah Osei Duah Junior
- Department of Optometry and Visual Science, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Purdue University Biological Sciences, West-Lafayette, Indiana, United States of America
| | - Anthony Danso-Appiah
- Department of Epidemiology and Disease Control, School of Public Health, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
6
|
Ju Y, Liu K, Ma G, Zhu B, Wang H, Hu Z, Zhao J, Zhang L, Cui K, He XR, Huang M, Li Y, Xu S, Gao Y, Liu K, Liu H, Zhuo Z, Zhang G, Guo Z, Ye Y, Zhang L, Zhou X, Ma S, Qiu Y, Zhang M, Tao Y, Zhang M, Xian L, Xie W, Wang G, Wang Y, Wang C, Wang DH, Yu K. Bacterial antibiotic resistance among cancer inpatients in China: 2016-20. QJM 2023; 116:213-220. [PMID: 36269193 DOI: 10.1093/qjmed/hcac244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The incidence of infections among cancer patients is as high as 23.2-33.2% in China. However, the lack of information and data on the number of antibiotics used by cancer patients is an obstacle to implementing antibiotic management plans. AIM This study aimed to investigate bacterial infections and antibiotic resistance in Chinese cancer patients to provide a reference for the rational use of antibiotics. DESIGN This was a 5-year retrospective study on the antibiotic resistance of cancer patients. METHODS In this 5-year surveillance study, we collected bacterial and antibiotic resistance data from 20 provincial cancer diagnosis and treatment centers and three specialized cancer hospitals in China. We analyzed the resistance of common bacteria to antibiotics, compared to common clinical drug-resistant bacteria, evaluated the evolution of critical drug-resistant bacteria and conducted data analysis. FINDINGS Between 2016 and 2020, 216 219 bacterial strains were clinically isolated. The resistance trend of Escherichia coli and Klebsiella pneumoniae to amikacin, ciprofloxacin, cefotaxime, piperacillin/tazobactam and imipenem was relatively stable and did not significantly increase over time. The resistance of Pseudomonas aeruginosa strains to all antibiotics tested, including imipenem and meropenem, decreased over time. In contrast, the resistance of Acinetobacter baumannii strains to carbapenems increased from 4.7% to 14.7%. Methicillin-resistant Staphylococcus aureus (MRSA) significantly decreased from 65.2% in 2016 to 48.9% in 2020. CONCLUSIONS The bacterial prevalence and antibiotic resistance rates of E. coli, K. pneumoniae, P. aeruginosa, A. baumannii, S. aureus and MRSA were significantly lower than the national average.
Collapse
Affiliation(s)
- Y Ju
- From the Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - K Liu
- Department of Critical Care Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - G Ma
- Department of Critical Care Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - B Zhu
- Department of Critical Care Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - H Wang
- Department of Critical Care Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Z Hu
- Department of Critical Care Medicine, Hebei Tumor Hospital, Shijiazhuang, China
| | - J Zhao
- Department of Critical Care Medicine, Hunan Cancer Hospital, Changsha, China
| | - L Zhang
- Department of Critical Care Medicine, Hubei Cancer Hospital, Wuhan, China
| | - K Cui
- Department of Critical Care Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - X-R He
- Department of Critical Care Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - M Huang
- Department of Critical Care Medicine, Shanxi Tumor Hospital, Taiyuan, China
| | - Y Li
- Department of Critical Care Medicine, Guangxi Medical University Cancer Hospital, Nanning, China
| | - S Xu
- Department of Critical Care Medicine, Sichuan Cancer Hospital, Chengdu, China
| | - Y Gao
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - K Liu
- Department of Critical Care Medicine, Zhejiang Cancer Hospital, Hangzhou, China
| | - H Liu
- From the Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - Z Zhuo
- From the Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - G Zhang
- Department of Critical Care Medicine, Jilin Tumor Hospital, Changchun, China
| | - Z Guo
- Department of Critical Care Medicine, Shandong Cancer Hospital and Institute, Shandong, China
| | - Y Ye
- Department of Critical Care Medicine, Fujian Cancer Hospital, Fuzhou, China
| | - L Zhang
- Department of Critical Care Medicine, Anhui Provincial Cancer Hospital, Hefei, China
| | - X Zhou
- Department of Critical Care Medicine, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - S Ma
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Nanjing, China
| | - Y Qiu
- Department of Critical Care Medicine, Jiangxi Cancer Hospital, Nanchang, China
| | - M Zhang
- Department of Critical Care Medicine, Hangzhou Cancer Hospital, Hangzhou, China
| | - Y Tao
- Department of Critical Care Medicine, Nantong Tumor Hospital, Nantong, China
| | - M Zhang
- Department of Critical Care Medicine, Baotou Cancer Hospital, Baotou, China
| | - L Xian
- Department of Critical Care Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - W Xie
- Department of Critical Care Medicine, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, China
| | - G Wang
- Department of Critical Care Medicine, The First Hospital of Jilin University, Changchun, China
| | - Y Wang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - C Wang
- From the Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, China
| | - D-H Wang
- Department of Critical Care Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - K Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Aquino M, Tinoco M, Bicker J, Falcão A, Rocha M, Fortuna A. Therapeutic Drug Monitoring of Amikacin in Neutropenic Oncology Patients. Antibiotics (Basel) 2023; 12:antibiotics12020373. [PMID: 36830283 PMCID: PMC9952017 DOI: 10.3390/antibiotics12020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Amikacin is the antibiotic of choice for the treatment of Gram-negative infections, namely, those in neutropenic oncology patients. No populational pharmacokinetic studies are currently available reporting amikacin pharmacokinetics in neutropenic oncology patients despite their specific pathophysiological features and treatments. A large-scale retrospective study was herein conducted to specifically investigate the effects that tumor diseases have on the pharmacokinetic parameters of amikacin and identify whether chemotherapy, the lag time between administration of chemotherapy and amikacin, age and renal function contribute to amikacin pharmacokinetics in neutropenic cancer patients. A total of 1180 pharmacokinetic analysis from 629 neutropenic patients were enrolled. The daily dose administered to oncology patients was higher than that administered to non-oncology patients (p < 0.0001). No statistical differences were found in amikacin concentrations, probably because drug clearance was increased in cancer patients (p < 0.0001). Chemotherapy influenced amikacin pharmacokinetics and drug clearance decreased as the lag time enhanced. The elderly group revealed no statistical differences between the doses administered to both the oncology groups, suggesting that the impact of ageing is stronger than chemotherapy. Our research suggests that cancer patients require higher initial doses of amikacin, as well as when chemotherapy is received less than 30 days before amikacin treatment has started.
Collapse
Affiliation(s)
- Maria Aquino
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Tinoco
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Rocha
- Centro Hospitalar e Universitário de Coimbra (CHUC, EPE), 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
8
|
Coste A, Bellouard R, Deslandes G, Jalin L, Roger C, Ansart S, Dailly E, Bretonnière C, Grégoire M. Development of a Predictive Dosing Nomogram to Achieve PK/PD Targets of Amikacin Initial Dose in Critically Ill Patients: A Non-Parametric Approach. Antibiotics (Basel) 2023; 12:antibiotics12010123. [PMID: 36671324 PMCID: PMC9854650 DOI: 10.3390/antibiotics12010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
French guidelines recommend reaching an amikacin concentration of ≥8 × MIC 1 h after beginning infusion (C1h), with MIC = 8 mg/L for probabilistic therapy. We aimed to elaborate a nomogram guiding clinicians in choosing the right first amikacin dose for ICU patients in septic shock. A total of 138 patients with 407 observations were prospectively recruited. A population pharmacokinetic model was built using a non-parametric, non-linear mixed-effects approach. The total body weight (TBW) influenced the central compartment volume, and the glomerular filtration rate (according to the CKD-EPI formula) influenced its clearance. A dosing nomogram was produced using Monte Carlo simulations of the amikacin amount needed to achieve a C1h ≥ 8 × MIC. The dosing nomogram recommended amikacin doses from 1700 mg to 4200 mg and from 28 mg/kg to 49 mg/kg depending on the patient's TBW and renal clearance. However, a Cthrough ≤ 2.5 mg/L 24 h and 48 h after an optimal dose of amikacin was obtained with probabilities of 0.20 and 0.81, respectively. Doses ≥ 30 mg/kg are required to achieve a C1h ≥ 8 × MIC with MIC = 8 mg/L. Targeting a MIC = 8 mg/L should depend on local ecology.
Collapse
Affiliation(s)
- Anne Coste
- Service de Maladies Infectieuses et Tropicales, CHU de Brest, 29200 Brest, France
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Laboratoire de Traitement de l’Information Médicale, INSERM, UMR1101, Brest Université, 29200 Brest, France
- Correspondence:
| | - Ronan Bellouard
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Service de Pharmacologie Clinique, CHU Nantes, 44000 Nantes, France
| | | | - Laurence Jalin
- Unité de Neuro-Anesthésie-Réanimation, Groupe Hospitalier Pitié-Salpétrière, AP-HP, 75013 Paris, France
| | - Claire Roger
- Département d’anesthésie et réanimation, douleur et médecine d’urgence, CHU Carémeau, 30029 Nîmes, France
- UR UM 103 IMAGINE, Faculté de Médecine, Montpellier Université, 30029 Nîmes, France
| | - Séverine Ansart
- Service de Maladies Infectieuses et Tropicales, CHU de Brest, 29200 Brest, France
- Laboratoire de Traitement de l’Information Médicale, INSERM, UMR1101, Brest Université, 29200 Brest, France
| | - Eric Dailly
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Service de Pharmacologie Clinique, CHU Nantes, 44000 Nantes, France
| | - Cédric Bretonnière
- Service des Soins Intensifs de Pneumologie, CHU Nantes, 44000 Nantes, France
| | - Matthieu Grégoire
- Cibles et Médicaments des Infections et de l’Immunité, 9 IICiMed, UR1155, Nantes Université, 44000 Nantes, France
- Service de Pharmacologie Clinique, CHU Nantes, 44000 Nantes, France
| |
Collapse
|
9
|
Morales Junior R, Telles JP, Kwiatkowski SYC, Juodinis VD, de Souza DC, Santos SRCJ. Pharmacokinetic and pharmacodynamic considerations of antibiotics and antifungals in liver transplantation recipients. Liver Transpl 2023; 29:91-102. [PMID: 35643926 DOI: 10.1002/lt.26517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
The liver plays a major role in drug metabolism. Liver transplantation impacts the intrinsic metabolic capability and extrahepatic mechanisms of drug disposition and elimination. Different levels of inflammation and oxidative stress during transplantation, the process of liver regeneration, and the characteristics of the graft alter the amount of functional hepatocytes and activity of liver enzymes. Binding of drugs to plasma proteins is affected by the hyperbilirubinemia status and abnormal synthesis of albumin and alpha-1-acid glycoproteins. Postoperative intensive care complications such as biliary, circulatory, and cardiac also impact drug distribution. Renally eliminated antimicrobials commonly present reduced clearance due to hepatorenal syndrome and the use of nephrotoxic immunosuppressants. In addition, liver transplantation recipients are particularly susceptible to multidrug-resistant infections due to frequent manipulation, multiple hospitalizations, invasive devices, and frequent use of empiric broad-spectrum therapy. The selection of appropriate anti-infective therapy must consider the pathophysiological changes after transplantation that impact the pharmacokinetics and pharmacodynamics of antibiotics and antifungal drugs.
Collapse
Affiliation(s)
- Ronaldo Morales Junior
- Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences , University of São Paulo , São Paulo , Brazil.,Pediatric Intensive Care Unit, Department of Pediatrics , Hospital Sírio-Libanês , São Paulo , Brazil
| | - João Paulo Telles
- Department of Infectious Diseases , AC Camargo Cancer Center , São Paulo , Brazil
| | | | - Vanessa D'Amaro Juodinis
- Pediatric Intensive Care Unit, Department of Pediatrics , Hospital Sírio-Libanês , São Paulo , Brazil
| | - Daniela Carla de Souza
- Pediatric Intensive Care Unit, Department of Pediatrics , Hospital Sírio-Libanês , São Paulo , Brazil
| | | |
Collapse
|
10
|
Rahmati M, Babapoor E, Dezfulian M. Amikacin-loaded niosome nanoparticles improve amikacin activity against antibiotic-resistant Klebsiella pneumoniae strains. World J Microbiol Biotechnol 2022; 38:230. [PMID: 36184645 PMCID: PMC9527143 DOI: 10.1007/s11274-022-03405-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 08/27/2022] [Indexed: 11/30/2022]
Abstract
Amikacin is an aminoglycoside antibiotic used in drug-resistant bacterial infections. The spread of bacterial infections has become a severe concern for the treatment system because of the simultaneous drug resistance bacteria and SARS-CoV-2 hospitalized patients. One of the most common bacteria in the development of drug resistance is Klebsiella strains, which is a severe threat due to the possibility of biofilm production. In this regard, recent nanotechnology studies have proposed using nanocarriers as a practical proposal to improve the performance of antibiotics and combat drug resistance. Among drug nanocarriers, niosomes are considered for their absorption mechanism, drug coverage, and biocompatibility. In this study, niosomal formulations were synthesized by the thin-layer method. After optimizing the synthesized niosomes, their properties were evaluated in terms of stability and drug release rate. The toxicity of the optimal formulation was then analyzed. The effect of free amikacin and amikacin encapsulated in niosome on biofilm inhibition were compared in multi-drug resistant isolated Klebsiella strains, and the mrkD gene expression was calculated. The MIC and MBC were measured for the free drug and amikacin loaded in the noisome. The particle size of synthesized amikacin-loaded niosomes ranged from 175.2 to 248.3 nm. The results showed that the amount of lipid and the molar ratio of tween 60 to span 60 has a positive effect on particle size, while the molar ratio of surfactant to cholesterol has a negative effect. The highest release rate in amikacin-loaded niosomes is visible in the first 8 h, and then a slower release occurs up to 72 h. The cytotoxicity induced by amikacin-loaded niosome is significantly less than the cytotoxicity of free amikacin in HFF cells (***p < 0.001, **p < 0.01). The mrkD mRNA expression level in the studied strains was significantly reduced after treatment with niosome-containing amikacin compared to free amikacin (***p < 0.001). It was confirmed that in the presence of the niosome, the amikacin antibacterial activity increased while the concentration of the drug used decreased, the formation of biofilm inhibited, and reduced antibiotics resistance in MDR Klebsiella strains.
Collapse
Affiliation(s)
- Mohamad Rahmati
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Ebrahim Babapoor
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehrouz Dezfulian
- Biotechnology Research Center, Karaj Branch, Islamic Azad University, Karaj, Iran.
| |
Collapse
|
11
|
Zhao C, Chirkova A, Rosenborg S, Palma Villar R, Lindberg J, Hobbie SN, Friberg LE. Population pharmacokinetics of apramycin from first-in-human plasma and urine data to support prediction of efficacious dose. J Antimicrob Chemother 2022; 77:2718-2728. [PMID: 35849148 PMCID: PMC9525081 DOI: 10.1093/jac/dkac225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Apramycin is under development for human use as EBL-1003, a crystalline free base of apramycin, in face of increasing incidence of multidrug-resistant bacteria. Both toxicity and cross-resistance, commonly seen for other aminoglycosides, appear relatively low owing to its distinct chemical structure. OBJECTIVES To perform a population pharmacokinetic (PPK) analysis and predict an efficacious dose based on data from a first-in-human Phase I trial. METHODS The drug was administered intravenously over 30 min in five ascending-dose groups ranging from 0.3 to 30 mg/kg. Plasma and urine samples were collected from 30 healthy volunteers. PPK model development was performed stepwise and the final model was used for PTA analysis. RESULTS A mammillary four-compartment PPK model, with linear elimination and a renal fractional excretion of 90%, described the data. Apramycin clearance was proportional to the absolute estimated glomerular filtration rate (eGFR). All fixed effect parameters were allometrically scaled to total body weight (TBW). Clearance and steady-state volume of distribution were estimated to 5.5 L/h and 16 L, respectively, for a typical individual with absolute eGFR of 124 mL/min and TBW of 70 kg. PTA analyses demonstrated that the anticipated efficacious dose (30 mg/kg daily, 30 min intravenous infusion) reaches a probability of 96.4% for a free AUC/MIC target of 40, given an MIC of 8 mg/L, in a virtual Phase II patient population with an absolute eGFR extrapolated to 80 mL/min. CONCLUSIONS The results support further Phase II clinical trials with apramycin at an anticipated efficacious dose of 30 mg/kg once daily.
Collapse
Affiliation(s)
- Chenyan Zhao
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| | | | - Staffan Rosenborg
- Department of Laboratory Medicine, Division of Clinical Pharmacology, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-14186, Stockholm, Sweden
| | - Rodrigo Palma Villar
- Department Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | - Johan Lindberg
- Department Chemical and Pharmaceutical Safety, RISE Research Institutes of Sweden, Sweden
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, CH-8006, Zurich, Switzerland
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, SE-75123, Uppsala, Sweden
| |
Collapse
|
12
|
Yan K, Yang T, Xu J, Dong L, Wang J, Cai Y. Synergistic effect of low-frequency ultrasound and antibiotics on the treatment of Klebsiella pneumoniae pneumonia in mice. Microb Biotechnol 2022; 15:2819-2830. [PMID: 36001465 PMCID: PMC9618311 DOI: 10.1111/1751-7915.14134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
The antibiotic‐resistant Klebsiella pneumoniae (Kp) has become a significant crisis in treating pneumonia. Low‐frequency ultrasound (LFU) is promising to overcome the obstacles. Mice were infected with bioluminescent Kp Xen39 by intratracheal injection to study the therapeutic effect of LFU in combination with antibiotics. The counts per second (CPS) were assessed with an animal biophoton imaging system. Bacterial clearance, histopathology, and the concentrations of cytokines were determined to evaluate the therapeutic effect. LC–MS/MS was used to detect the distribution of antibiotics in the lung and plasma. LFU in combination with meropenem (MEM) or amikacin (AMK) significantly improved the behavioural state of mice. The CPS of the LFU combination group were more significantly decreased compared with those of the antibiotic alone groups. The average colony‐forming units of lung tissue in the LFU combination groups were also lower than those of the antibiotic groups. Although no significant changes of cytokines (IL‐6 and TNF‐α) in plasma and bronchoalveolar lavage fluid were observed, LFU in combination with antibiotics showed less inflammatory damage from histopathological results compared with the antibiotic‐alone groups. Moreover, 10 min of LFU treatment promoted the distribution of MEM and AMK in mouse lung tissue at 60 and 30 min, respectively, after dosage. LFU could enhance the effectiveness of MEM and AMK in the treatment of Kp‐induced pneumonia, which might be attributed to the fact that LFU could promote the distribution of antibiotics in lung tissue and reduce inflammatory injury.
Collapse
Affiliation(s)
- Kaicheng Yan
- Medical School of Chinese PLA, Beijing, China.,Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Tianli Yang
- Medical School of Chinese PLA, Beijing, China.,Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Juan Xu
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Liuhan Dong
- Medical School of Chinese PLA, Beijing, China.,Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Jin Wang
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| | - Yun Cai
- Department of Pharmacy, Center of Medicine Clinical Research, Medical Supplies Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Bilgiç S, Özgöçmen M, Ozer MK. Thymoquinone ameliorates amikacin induced oxidative damage in rat brain tissue. Biotech Histochem 2022; 98:38-45. [PMID: 35811486 DOI: 10.1080/10520295.2022.2087905] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
We investigated the potential neuroprotective effects of thymoquinone (TQ) on amikacin (AK) induced oxidative damage in rat brain. We used 21 male rats divided randomly into three equal groups. The control group was injected intraperitoneally (i.p.) with 0.5 ml 0.9% aqueous NaCl and given 1 ml 0.9% aqueous NaCl orally. The AK group was administered 1.2 g/kg aqueous AK i.p. as a single dose on the day 3 of the study. The AK + TQ group was given a single 1.2 g/kg dose of AK i.p. on the day 3 of the study plus 40 mg/kg/day TQ by oral gavage daily. Treatment with TQ increased serum ferritin and decreased serum calcium levels significantly. TQ also decreased NADPH oxidase-2, NADPH oxidase-4, and caspase-3 levels. Decreased malondialdehyde (MDA) levels and increased superoxide dismutase (SOD) and catalase (CAT) activities were detected in the AK + TQ group compared to the AK group. TQ administration inhibited lipid peroxide formation and blocked oxidative reactions, which reduced the MDA level and increased SOD and CAT activities induced by AK. Oxidative damage caused by AK was ameliorated by TQ treatment owing to its antioxidative and anti-apoptotic effects. TQ may be a potential therapeutic agent for reducing the severity of AK induced oxidative damage to the brain.
Collapse
Affiliation(s)
- Sedat Bilgiç
- Department of Medical Biochemistry, Vocational School of Health Services, University of Adıyaman, Adıyaman, Turkey
| | - Meltem Özgöçmen
- Department of Histology, and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Kaya Ozer
- Department of Pharmacology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| |
Collapse
|
14
|
Medellín-Garibay SE, Romano-Aguilar M, Parada A, Suárez D, Romano-Moreno S, Barcia E, Cervero M, García B. Amikacin pharmacokinetics in elderly patients with severe infections. Eur J Pharm Sci 2022; 175:106219. [PMID: 35618200 DOI: 10.1016/j.ejps.2022.106219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 05/02/2022] [Accepted: 05/22/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim of this study was to characterize the population pharmacokinetics of amikacin in elderly patients by means of nonlinear mixed effects modelling and to propose initial dosing schemes to optimize therapy based on PK/PD targets. METHOD A total of 137 elderly patients from 65 to 94 years receiving intravenous amikacin and routine therapeutic drug monitoring at Hospital Universitario Severo Ochoa were included. Concentration-time data and clinical information were retrospectively collected; initial doses of amikacin ranged from 5.7 to 22.5 mg/kg/day and each patient provided between 1 and 10 samples. RESULTS Amikacin pharmacokinetics were best described by a two-compartment open model; creatinine clearance (CrCL) was related to drug clearance (2.75 L/h/80 mL/min) and it was augmented 28% when non-steroidal anti-inflammatory drugs were concomitantly administered. Body mass index (BMI) influenced the central volume of distribution (17.4 L/25 kg/m2). Relative absolute prediction error was reduced from 33.2% (base model) to 17.9% (final model) when predictive performance was evaluated with a different group of elderly patients. A nomogram for initial amikacin dosage was developed and evaluated based on stochastic simulations considering final model to achieve PK/PD targets (Cmax/MIC>10 and AUC/MIC>75) and to avoid toxic threshold (Cmin<2.5 mg/L). CONCLUSION Initial dosing approach for amikacin was designed for elderly patients based on nonlinear mixed effects modeling to maximize the probability to attain efficacy and safety targets considering individual BMI and CrCL.
Collapse
Affiliation(s)
- Susanna E Medellín-Garibay
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, Zona Universitaria, 78210 SLP, México
| | - Melissa Romano-Aguilar
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, Zona Universitaria, 78210 SLP, México
| | - Alejandro Parada
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, Zona Universitaria, 78210 SLP, México
| | - David Suárez
- Hospital Universitario Severo Ochoa, Avenida de Orellana, 28911 Leganés, Spain; Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahona, Madrid, Spain
| | - Silvia Romano-Moreno
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Manuel Nava #6, Zona Universitaria, 78210 SLP, México
| | - Emilia Barcia
- Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Miguel Cervero
- Hospital Universitario Severo Ochoa, Avenida de Orellana, 28911 Leganés, Spain; Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahona, Madrid, Spain
| | - Benito García
- Hospital Universitario Severo Ochoa, Avenida de Orellana, 28911 Leganés, Spain; Instituto de Investigación Sanitaria Puerta de Hierro - Segovia de Arana, Majadahona, Madrid, Spain.
| |
Collapse
|
15
|
Shahrami B, Sefidani Forough A, Khezrnia SS, Najmeddin F, Arabzadeh AA, Rouini MR, Najafi A, Mojtahedzadeh M. Relationship between amikacin pharmacokinetics and biological parameters associated with organ dysfunction: a case series study of critically ill patients with intra-abdominal sepsis. Eur J Hosp Pharm 2022; 29:e72-e76. [PMID: 34764144 PMCID: PMC8899638 DOI: 10.1136/ejhpharm-2021-003089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/25/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the relationship between amikacin pharmacokinetics and the biomarkers associated with organ dysfunction in critically ill patients with intra-abdominal sepsis. METHODS A case series involving critically ill patients with intra-abdominal sepsis who received an amikacin loading dose of 20-25 mg/kg intravenous infusion was studied. The 1-, 2-, 4-, 6- and 24-hour amikacin serum concentrations were measured to calculate the pharmacokinetic parameters. The Sequential Organ Failure Assessment (SOFA) score, white blood cells, neutrophil to lymphocyte ratio, platelet count, serum creatinine, creatinine clearance, bilirubin, partial pressure of oxygen to fraction of inspired oxygen ratio, serum albumin, procalcitonin, lactate level, erythrocyte sedimentation rate (ESR) and C-reactive protein were recorded. A linear regression analysis was performed to examine the relationship between the amikacin pharmacokinetics and the biological parameters. RESULTS Twenty-one patients were studied. A significant correlation was found between the volume of distribution and ESR (p<0.05, r=0.844). Moreover, drug clearance had a significant inverse correlation with serum lactate (p<0.05, r=-0.603). No other significant correlations were found. CONCLUSIONS ESR and serum lactate were identified as useful predictors of amikacin pharmacokinetics in critically ill patients with intra-abdominal sepsis and may help guide the selection of appropriate empirical dosing.
Collapse
Affiliation(s)
- Bita Shahrami
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Aida Sefidani Forough
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Seyedeh Sana Khezrnia
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Amir Ahmad Arabzadeh
- Department of Surgery, Ardabil University of Medical Sciences, Ardabil, The Islamic Republic of Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, The Islamic Republic of Iran
| |
Collapse
|
16
|
Population Pharmacokinetics of Amikacin in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation. Pharmaceutics 2022; 14:pharmaceutics14020289. [PMID: 35214022 PMCID: PMC8879580 DOI: 10.3390/pharmaceutics14020289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/04/2022] Open
Abstract
Veno-arterial extracorporeal membrane oxygenation (V-A ECMO) support leads to complex pharmacokinetic alterations, whereas adequate drug dosing is paramount for efficacy and absence of toxicity in critically ill patients. Amikacin is a major antibiotic used in nosocomial sepsis, especially for these patients. We aimed to describe amikacin pharmacokinetics on V-A ECMO support and to determine relevant variables to improve its dosing. All critically ill patients requiring empirical antimicrobial therapy, including amikacin for nosocomial sepsis supported or not by V-A ECMO, were included in a prospective population pharmacokinetic study. This population pharmacokinetic analysis was built with a dedicated software, and Monte Carlo simulations were performed to identify doses achieving therapeutic plasma concentrations. Thirty-nine patients were included (control n = 15, V-A ECMO n = 24); 215 plasma assays were performed and used for the modeling process. Patients received 29 (24–33) and 32 (30–35) mg/kg of amikacin in control and ECMO groups, respectively. Data were best described by a two-compartment model with first-order elimination. Inter-individual variabilities were observed on clearance, central compartment volume (V1), and peripherical compartment volume (V2). Three significant covariates explained these variabilities: Kidney Disease Improving Global Outcomes (KDIGO) stage on amikacin clearance, total body weight on V1, and ECMO support on V2. Our simulations showed that the adequate dosage of amikacin was 40 mg/kg in KDIGO stage 0 patients, while 25 mg/kg in KDIGO stage 3 patients was relevant. V-A ECMO support had only a secondary impact on amikacin pharmacokinetics, as compared to acute kidney injury.
Collapse
|
17
|
Risk Factors Associated with Suboptimal Tobramycin Levels in the Medical Intensive Care Unit. Eur J Drug Metab Pharmacokinet 2022; 47:271-278. [PMID: 35029839 DOI: 10.1007/s13318-021-00749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2021] [Indexed: 11/03/2022]
Abstract
BACKGROUND Optimal aminoglycoside dosing in critically ill patients represents a challenge for practitioners, especially in the medical intensive care unit (MICU). MICU patients exhibit altered pharmacokinetics due to pathophysiological changes the body undergoes in critical illness, leading to possible treatment failure. The literature surrounding optimal dosing and therapeutic drug monitoring strategies of aminoglycosides in MICU patients is scarce and conflicting. Additionally, only a few studies have investigated risk factors for suboptimal pharmacokinetic target obtainment. Currently, no definitive risk factors have been identified to predict suboptimal aminoglycoside target obtainment in MICU patients. OBJECTIVE The objective of this study was to determine risk factors for suboptimal pharmacokinetic target obtainment in patients receiving tobramycin in the MICU. METHODS This single-center, retrospective cohort study included patients 18-89 years old who received at least one 7 mg/kg tobramycin dose in the MICU from January, 1 2015 to September, 30 2020. Patients also had to have at least two detectable drug levels obtained at least one half-life apart following the first tobramycin dose. The primary outcome was to determine the incidence of optimal pharmacokinetic target obtainment, defined as a tobramycin maximum concentration (Cmax) ≥ 10 mcg/ml, and to identify the risk factors for suboptimal (Cmax < 10 mcg/mL) pharmacokinetic target obtainment, in MICU patients. Secondary outcomes were compared between suboptimal and optimal target obtainment in patients with culture confirmed gram-negative infection susceptible to tobramycin. These secondary outcomes included all-cause in-hospital mortality, ICU length of stay (LOS), hospital LOS, and vasopressor duration in those with shock. RESULTS A total of 230 patients were included in this retrospective study. For the primary outcome, 187 (81.3%) patients achieved optimal target obtainment. Through multivariate logistic regression, female sex and serum albumin < 2.5 g/dL were identified as independent risk factors for suboptimal target obtainment; [OR = 2.14; 95% CI (1.05-4.37), p = 0.037], [OR = 2.50; 95% CI (1.21-5.19), p = 0.014], respectively. Fifty-four (23%) patients had culture-confirmed gram-negative infections susceptible to tobramycin and were included in the subgroup analysis. Of these 54 patients, 11 (20.4%) did not achieve optimal target concentrations. In patients with culture-confirmed gram-negative infection, there was no difference between patients with optimal target obtainment and suboptimal target obtainment in ICU LOS, hospital LOS, all-cause mortality, or vasopressor duration in those with shock. CONCLUSIONS Among patients receiving their first dose of tobramycin in the MICU, 81.3% obtained an optimal serum concentration. Female sex and serum albumin < 2.5 g/dL were identified as risk factors for suboptimal target obtainment; however, further research is warranted to assess the utility of using these two covariates as risk factors for more aggressive dosing in critically ill MICU patients.
Collapse
|
18
|
Xu L, Cheng X, Zhu G, Hu J, Li Q, Fan G. Therapeutic drug monitoring of amikacin: quantification in plasma by liquid chromatography-tandem mass spectrometry and work experience of clinical pharmacists. Eur J Hosp Pharm 2021; 29:e77-e82. [PMID: 34789474 PMCID: PMC8899631 DOI: 10.1136/ejhpharm-2021-003049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Objectives As part of the service provided by clinical pharmacists in our hospital, an assay for plasma amikacin quantification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been established for clinical use since 2018. This study was undertaken to describe: (1) the establishment of this assay; (2) the application and results of the testing; and (3) the analysis and impact for patients. Methods The amikacin quantification assay was validated and the plasma amikacin concentration data were extracted and analysed. The clinical data for related patients were collected from electronic health and medical records. Results 121 plasma samples from 53 patients were included in this statistical analysis. The use of amikacin was mostly monitored in the intensive care unit and the haematology department, and the monitoring range of amikacin concentrations were about 0.1–57µg/mL. The main indications for amikacin concentration detection were combined medications, impaired renal function, or people over 65 years old, which may increase the incidence of adverse reactions. Amikacin prescribing decisions were diversified due to the combination of assay results and clinical disease progression, and the effective rate of amikacin administration was about 52.8% (28/53). Conclusions The assay for plasma amikacin concentration has been successfully established to monitor the clinical use of amikacin, and the assay results served as one of the references for amikacin prescribing decisions.
Collapse
Affiliation(s)
- Lijie Xu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefang Cheng
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanhua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanni Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Ni W, Yang D, Guan J, Xi W, Zhou D, Zhao L, Cui J, Xu Y, Gao Z, Liu Y. In vitro and in vivo synergistic effects of tigecycline combined with aminoglycosides on carbapenem-resistant Klebsiella pneumoniae. J Antimicrob Chemother 2021; 76:2097-2105. [PMID: 33860309 DOI: 10.1093/jac/dkab122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Carbapenem-resistant Klebsiella pneumoniae (CR-KP) infections represent severe threats to public health worldwide. The aim of this study was to assess potential synergistic interaction between tigecycline and aminoglycosides via in vitro and in vivo studies. METHODS Antibiotic resistance profiles and molecular characteristics of 168 CR-KP clinical isolates were investigated by susceptibility testing, PCR and MLST. Chequerboard tests and time-kill assays were performed for 20 CR-KP isolates to evaluate in vitro synergistic effects of tigecycline combined with aminoglycosides. A tissue-cage infection model of rats was established to evaluate in vivo synergistic effects. Different doses of tigecycline and aminoglycosides alone or in combination were administered for 7 days via tail vein injection. Antibiotic efficacy was evaluated in tissue-cage fluid and emergence of resistance was screened. RESULTS The chequerboard tests showed that this combination displayed synergistic or partial synergistic activity against CR-KP. The time-kill assays further demonstrated that strong synergistic effects of such a combination existed against isolates that were susceptible to both drugs but for resistant isolates no synergy was observed if clinical pharmacokinetics were taken into consideration. The in vivo study showed that the therapeutic effectiveness of combination therapies was better than that of monotherapy for susceptible isolates, suggesting in vivo synergistic effects. Furthermore, combinations of tigecycline with an aminoglycoside showed significant activity in reducing the occurrence of tigecycline-resistant mutants. CONCLUSIONS Compared with single drugs, tigecycline combined with aminoglycosides could exert synergistic effects and reduce the emergence of tigecycline resistance. Such a combination might be an effective alternative when treating CR-KP infections in clinical practice.
Collapse
Affiliation(s)
- Wentao Ni
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Deqing Yang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jie Guan
- Clinical Laboratory, Peking University First Hospital, Beijing 100034, China
| | - Wen Xi
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Dexun Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Lili Zhao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Junchang Cui
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Xu
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Youning Liu
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
20
|
De Winter S, van Hest R, Dreesen E, Annaert P, Wauters J, Meersseman W, Van den Eede N, Desmet S, Verelst S, Vanbrabant P, Peetermans W, Spriet I. Quantification and Explanation of the Variability of First-Dose Amikacin Concentrations in Critically Ill Patients Admitted to the Emergency Department: A Population Pharmacokinetic Analysis. Eur J Drug Metab Pharmacokinet 2021; 46:653-663. [PMID: 34297338 DOI: 10.1007/s13318-021-00698-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND There may be a difference between the determinants of amikacin exposure in emergency department (ED) versus intensive care (ICU) patients, and the peak amikacin concentration varies widely between patients. Moreover, when the first dose of antimicrobials is administered to septic patients admitted to the ED, fluid resuscitation and vasopressors have just been initiated. Nevertheless, population pharmacokinetic modelling data for amikacin in ED patients are unavailable. OBJECTIVE The aim of this study was to quantify the interindividual variability (IIV) in the pharmacokinetics of amikacin in patients admitted to the ED and to identify the patient characteristics that explain this IIV. METHODS Patients presenting at the ED with severe sepsis or septic shock were randomly assigned to receive amikacin 25 mg/kg or 15 mg/kg intravenously. Blood samples were collected at 1, 6 and 24 h after the onset of the first amikacin infusion. Data were analysed using nonlinear mixed-effects modelling. RESULTS A two-compartment population pharmacokinetic model was developed based on 279 amikacin concentrations from 97 patients. The IIV in clearance (CL) and central distribution volume (V1) were 71% and 26%, respectively. Body mass index (BMI), serum total protein level, serum sodium level, and fluid balance 24 h after amikacin administration explained 30% of the IIV in V1, leaving 18% of the IIV unexplained. BMI and creatinine clearance according to the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation 24 h after amikacin administration explained 46% of the IIV in CL, and 39% remained unexplained. CONCLUSION The IIV of amikacin pharmacokinetics in ED patients is large. Higher doses may be considered in patients with low serum sodium levels, low total protein levels, or a high fluid balance. TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02365272.
Collapse
Affiliation(s)
- Sabrina De Winter
- Department of Pharmacy, Univesity Hospitals Leuven, Leuven, Belgium.
| | - Reinier van Hest
- Department of Hospital Pharmacy and Clinical Pharmacology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Erwin Dreesen
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Leuven, Belgium.,BioNotus, Galileilaan 15, 2845, Niel, Belgium
| | - Joost Wauters
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Meersseman
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Nele Van den Eede
- Laboratory of Clinical Bacteriology and Mycology, University Hospitals Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Laboratory of Clinical Bacteriology and Mycology, University Hospitals Leuven, Leuven, Belgium
| | - Sandra Verelst
- Department of Emergency Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Peter Vanbrabant
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Willy Peetermans
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmacy, Univesity Hospitals Leuven, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Assessment of the Effects of a High Amikacin Dose on Plasma Peak Concentration in Critically Ill Children. Paediatr Drugs 2021; 23:395-401. [PMID: 34142330 DOI: 10.1007/s40272-021-00456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES This study aimed to assess the incidence of amikacin plasma peak concentration (Cmax) below 60 mg·L-1 in critically ill children receiving an amikacin dosing regimen of 30 mg kg-1·day-1. Secondary objectives were to identify factors associated with low Cmax and to assess the incidence of acute kidney injury (AKI). METHODS A retrospective observational study was performed in two French pediatric intensive care units. All admitted children who received 30 mg·kg-1 amikacin and had a Cmax measurement were eligible. Clinical and biological data, amikacin dose, and concentrations were collected. RESULTS In total, 30 patients were included, aged from 3 weeks to 7 years. They received a median amikacin dosage of 30 mg kg-1·day-1 (range 29-33) based on admission body weight (BW), corresponding to 27 mg kg-1·day-1 (range 24-30) based on actual BW. Cmax was < 60 mg·L-1 in 21 (70%) children and none had a Cmax ≥ 80 mg·L-1. Among the 15 patients with a measured minimum inhibitory concentration (MIC), 13 (87%) had a Cmax/MIC ratio > 8. Univariate analysis showed that factors associated with Cmax < 60 mg·L-1 were high estimated glomerular filtration rate (p = 0.015) and low blood urea concentration (p = 0.001). AKI progression or occurrence was observed after amikacin administration in two (7%) and six (21%) patients, respectively. CONCLUSIONS Despite the administration of the maximal recommended amikacin dose, Cmax was below the pharmacokinetic target in 70% of our pediatric population. Further studies are needed to develop a pharmacokinetic model in a population of critically ill children to optimize target attainment.
Collapse
|
22
|
Pérez-Blanco JS, Sáez Fernández EM, Calvo MV, Lanao JM, Martín-Suárez A. Amikacin initial dosage in patients with hypoalbuminaemia: an interactive tool based on a population pharmacokinetic approach. J Antimicrob Chemother 2021; 75:2222-2231. [PMID: 32363405 DOI: 10.1093/jac/dkaa158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To characterize amikacin population pharmacokinetics in patients with hypoalbuminaemia and to develop a model-based interactive application for amikacin initial dosage. METHODS A population pharmacokinetic model was developed using a non-linear mixed-effects modelling approach (NONMEM) with amikacin concentration-time data collected from clinical practice (75% hypoalbuminaemic patients). Goodness-of-fit plots, minimum objective function value, prediction-corrected visual predictive check, bootstrapping, precision and bias of parameter estimates were used for model evaluation. An interactive model-based simulation tool was developed in R (Shiny and R Markdown). Cmax/MIC ratio, time above MIC and AUC/MIC were used for optimizing amikacin initial dose recommendation. Probabilities of reaching targets were calculated for the dosage proposed. RESULTS A one-compartment model with first-order linear elimination best described the 873 amikacin plasma concentrations available from 294 subjects (model development and external validation groups). Estimated amikacin population pharmacokinetic parameters were CL (L/h) = 0.525 + 4.78 × (CKD-EPI/98) × (0.77 × vancomycin) and V (L) = 26.3 × (albumin/2.9)-0.51 × [1 + 0.006 × (weight - 70)], where CKD-EPI is calculated with the Chronic Kidney Disease Epidemiology Collaboration equation. AMKdose is a useful interactive model-based application for a priori optimization of amikacin dosage, using individual patient and microbiological information together with predefined pharmacokinetic/pharmacodynamic (PKPD) targets. CONCLUSIONS Serum albumin, total bodyweight, estimated glomerular filtration rate (using the CKD-EPI equation) and co-medication with vancomycin showed a significant impact on amikacin pharmacokinetics. A powerful interactive initial dose-finding tool has been developed and is freely available online. AMKdose could be useful for guiding initial amikacin dose selection before any individual pharmacokinetic information is available.
Collapse
Affiliation(s)
- Jonás Samuel Pérez-Blanco
- Department of Pharmaceutical Sciences, University of Salamanca, Pharmacy Faculty, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Hospital Virgen de la Vega, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - Eva María Sáez Fernández
- Department of Pharmaceutical Sciences, University of Salamanca, Pharmacy Faculty, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Hospital Virgen de la Vega, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain.,Pharmacy Service, University Hospital of Salamanca, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - M Victoria Calvo
- Department of Pharmaceutical Sciences, University of Salamanca, Pharmacy Faculty, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Hospital Virgen de la Vega, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain.,Pharmacy Service, University Hospital of Salamanca, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - José M Lanao
- Department of Pharmaceutical Sciences, University of Salamanca, Pharmacy Faculty, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Hospital Virgen de la Vega, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| | - Ana Martín-Suárez
- Department of Pharmaceutical Sciences, University of Salamanca, Pharmacy Faculty, Campus Miguel de Unamuno, 37007 Salamanca, Spain.,Institute for Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Hospital Virgen de la Vega, Paseo de San Vicente, 58-182, 37007 Salamanca, Spain
| |
Collapse
|
23
|
Duong A, Simard C, Wang YL, Williamson D, Marsot A. Aminoglycosides in the Intensive Care Unit: What Is New in Population PK Modeling? Antibiotics (Basel) 2021; 10:antibiotics10050507. [PMID: 33946905 PMCID: PMC8145041 DOI: 10.3390/antibiotics10050507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Although aminoglycosides are often used as treatment for Gram-negative infections, optimal dosing regimens remain unclear, especially in ICU patients. This is due to a large between- and within-subject variability in the aminoglycoside pharmacokinetics in this population. Objective: This review provides comprehensive data on the pharmacokinetics of aminoglycosides in patients hospitalized in the ICU by summarizing all published PopPK models in ICU patients for amikacin, gentamicin, and tobramycin. The objective was to determine the presence of a consensus on the structural model used, significant covariates included, and therapeutic targets considered during dosing regimen simulations. Method: A literature search was conducted in the Medline/PubMed database, using the terms: ‘amikacin’, ‘gentamicin’, ‘tobramycin’, ‘pharmacokinetic(s)’, ‘nonlinear mixed effect’, ‘population’, ‘intensive care’, and ‘critically ill’. Results: Nineteen articles were retained where amikacin, gentamicin, and tobramycin pharmacokinetics were described in six, 11, and five models, respectively. A two-compartment model was used to describe amikacin and tobramycin pharmacokinetics, whereas a one-compartment model majorly described gentamicin pharmacokinetics. The most recurrent significant covariates were renal clearance and bodyweight. Across all aminoglycosides, mean interindividual variability in clearance and volume of distribution were 41.6% and 22.0%, respectively. A common consensus for an optimal dosing regimen for each aminoglycoside was not reached. Conclusions: This review showed models developed for amikacin, from 2015 until now, and for gentamicin and tobramycin from the past decades. Despite the growing challenges of external evaluation, the latter should be more considered during model development. Further research including new covariates, additional simulated dosing regimens, and external validation should be considered to better understand aminoglycoside pharmacokinetics in ICU patients.
Collapse
Affiliation(s)
- Alexandre Duong
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Correspondence: ; Tel.: +1-514-343-6111
| | - Chantale Simard
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre de Recherche, Institut Universitaire de Cardiologie et Pneumologie de Québec, Québec, QC G1V 4G5, Canada
| | - Yi Le Wang
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - David Williamson
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Hôpital Sacré-Cœur de Montréal, Montréal, QC H4J 1C5, Canada
| | - Amélie Marsot
- Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada; (Y.L.W.); (D.W.); (A.M.)
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Montréal, QC H3T 1J4, Canada
- Centre de Recherche, CHU Sainte Justine, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
24
|
Fiore M, Peluso L, Taccone FS, Hites M. The impact of continuous renal replacement therapy on antibiotic pharmacokinetics in critically ill patients. Expert Opin Drug Metab Toxicol 2021; 17:543-554. [PMID: 33733979 DOI: 10.1080/17425255.2021.1902985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Mortality due to severe infections in critically ill patients undergoing continuous renal replacement therapy (CRRT) remains high. Nevertheless, rapid administration of adequate antibiotic therapy can improve survival. Delivering optimized antibiotic therapy can be a challenge, as standard drug regimens often result in insufficient or excessive serum concentrations due to significant changes in the volume of distribution and/or drug clearance in these patients. Insufficient drug concentrations can be responsible for therapeutic failure and death, while excessive concentrations can cause toxic adverse events.Areas covered: We performed a narrative review of the impact of CRRT on the pharmacokinetics of the most frequently used antibiotics in critically ill patients. We have provided explanations for the changes in the PKs of antibiotics observed and suggestions to optimize dosage regimens in these patients.Expert opinion: Despite considerable efforts to identify optimal antibiotic dosage regimens for critically ill patients receiving CRRT, adequate target achievement remains too low for hydrophilic antibiotics in many patients. Whenever possible, individualized therapy based on results from therapeutic drug monitoring must be given to avoid undertreatment or toxicity.
Collapse
Affiliation(s)
- Marco Fiore
- Department of Intensive Care, Hopital Erasme, Brussels, Belgium
| | - Lorenzo Peluso
- Department of Intensive Care, Hopital Erasme, Brussels, Belgium
| | | | - Maya Hites
- Department of Infectious Diseases, Hopital Erasme, Brussels, Belgium
| |
Collapse
|
25
|
Abdel Jalil M, Abdullah N, Alsous M, Abu-Hammour K. Population Pharmacokinetic Studies of Digoxin in Adult Patients: A Systematic Review. Eur J Drug Metab Pharmacokinet 2021; 46:325-342. [PMID: 33616855 DOI: 10.1007/s13318-021-00672-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Digoxin is a cardiac glycoside that was introduced to cardiovascular medicine more than 200 years ago. Its use is associated with large variability, which complicates achieving the desired therapeutic outcomes. OBJECTIVES To present a synthesis of the available literature on the population pharmacokinetics of digoxin in adults and to identify the sources of variability in its pharmacokinetics. METHODS This is a PROSPERO registered systematic review (CRD42018105300). A literature search was conducted using the ISI Web of Science, Science Direct, PubMed, and SCOPUS databases to identify digoxin population pharmacokinetic studies of adults that utilized the nonlinear mixed-effect modeling approach. RESULTS Sixteen articles were included in the present analysis. Only two studies were conducted in elderly subjects as a separate population. Both the pharmacokinetics and pharmacodynamics of digoxin were investigated in one study. Furthermore, the reviewed studies were mostly conducted in East Asian populations (68.8%). Digoxin's pharmacokinetics were usually described by a one-compartment model because of the nature of the collected data. Weight, age, kidney function, presence of heart failure, and co-administered medications such as calcium channel blockers were the most commonly identified predictors of digoxin clearance. The value of apparent clearance in a typical study individual ranged from 0.005 to 0.2 l/h/kg, while the value of the apparent volume of distribution ranged from 3.14 to 15.2 l/kg. The quality of model evaluation was deemed excellent only in 31.3% of the studies. CONCLUSION This review provides information about variables that need to be considered when prescribing digoxin. The results highlight the need for prospective studies that allow two-compartment pharmacokinetic/pharmacodynamic models to be established, with a special focus on the elderly subpopulation.
Collapse
Affiliation(s)
- Mariam Abdel Jalil
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan.
| | - Noura Abdullah
- Department of Pharmacology, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Mervat Alsous
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Khawla Abu-Hammour
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
26
|
Antibiotics in Adult Cystic Fibrosis Patients: A Review of Population Pharmacokinetic Analyses. Clin Pharmacokinet 2021; 60:447-470. [PMID: 33447944 DOI: 10.1007/s40262-020-00970-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lower respiratory tract infections are common in adult patients with cystic fibrosis (CF) and are frequently caused by Pseudomonas aeruginosa, resulting in chronic lung inflammation and fibrosis. The progression of multidrug-resistant strains of P. aeruginosa and alterations in the pharmacokinetics of many antibiotics in CF make optimal antimicrobial therapy a challenge, as reflected by high between- and inter-individual variability (IIV). OBJECTIVES This review provides a synthesis of population pharmacokinetic models for various antibiotics prescribed in adult CF patients, and aims at identifying the most reported structural models, covariates and sources of variability influencing the dose-concentration relationship. METHODS A literature search was conducted using the PubMed database, from inception to August 2020, and articles were retained if they met the inclusion/exclusion criteria. RESULTS A total of 19 articles were included in this review. One-, two- and three-compartment models were reported to best describe the pharmacokinetics of various antibiotics. The most common covariates were lean body mass and creatinine clearance. After covariate inclusion, the IIV (range) in total body clearance was 27.2% (10.40-59.7%) and 25.9% (18.0-33.9%) for β-lactams and aminoglycosides, respectively. IIV in total body clearance was estimated at 36.3% for linezolid and 22.4% for telavancin. The IIV (range) in volume of distribution was 29.4% (8.8-45.9%) and 15.2 (11.6-18.0%) for β-lactams and aminoglycosides, respectively, and 26.9% for telavancin. The median (range) of residual variability for all studies, using a combined (proportional and additive) model, was 12.7% (0.384-30.80%) and 0.126 mg/L (0.007-1.88 mg/L), respectively. CONCLUSION This is the first review that highlights key aspects of different population pharmacokinetic models of antibiotics prescribed in adult CF patients, effectively proposing relevant information for clinicians and researchers to optimize antibiotic therapy in CF.
Collapse
|
27
|
Impact of Therapeutic Drug Monitoring on Once-Daily Regimen of Amikacin in Patients With Urinary Tract Infection: A Prospective Observational Study. Ther Drug Monit 2020; 42:841-847. [PMID: 32947556 DOI: 10.1097/ftd.0000000000000800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Amikacin is a semisynthetic antibiotic used in the treatment of gram-negative bacterial infections and has a narrow therapeutic index. Although therapeutic drug monitoring is recommended for amikacin, it is not routinely performed because of the use of a less toxic once-daily regimen. Only few studies have evaluated the role of therapeutic drug monitoring in patients treated with amikacin. The objective of our study was to find an association between the pharmacokinetic parameters of amikacin and the time required for a clinical cure, creatinine clearance, and frequency of ototoxicity in patients with urinary tract infection treated for 7 or more days. METHODS A prospective study was conducted on patients with urinary tract infections who were administered amikacin for 7 or more days. Blood samples were obtained from the patients to measure the maximum drug concentration (Cmax) and trough concentration (Ctrough). Minimum inhibitory concentration (MIC) values were determined for patients with positive urine cultures. Serum creatinine levels were estimated every 3 days. The auditory assessment was performed using pure tone audiometry at baseline and weekly until the patients were discharged. Levels of amikacin were analyzed using a validated liquid chromatography-tandem mass spectrometry method. RESULTS Of 125 patients analyzed, the median time required for a clinical cure was less in the group of patients who achieved a Cmax/MIC ratio ≥8 than it was in those who did not achieve this level [7 versus 8 days (P = 0.02)]. The Ctrough of amikacin was associated with the change in serum creatinine level (P = 0.01) and the incidence of nephrotoxicity (P = 0.004). CONCLUSIONS In patients receiving short-term amikacin therapy, Cmax/MIC value can be used to predict the time required for a clinical cure. Ctrough can be used to predict the occurrence of nephrotoxicity in patients receiving amikacin therapy.
Collapse
|
28
|
Ryan AC, Carland JE, McLeay RC, Lau C, Marriott DJE, Day RO, Stocker SL. Evaluation of amikacin use and comparison of the models implemented in two Bayesian forecasting software packages to guide dosing. Br J Clin Pharmacol 2020; 87:1422-1431. [PMID: 32881037 DOI: 10.1111/bcp.14542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 11/30/2022] Open
Abstract
AIMS Bayesian forecasting software can assist in guiding therapeutic drug monitoring (TDM)-based dose adjustments for amikacin to achieve therapeutic targets. This study aimed to evaluate amikacin prescribing and TDM practices, and to determine the suitability of the amikacin model incorporated into the DoseMeRx® software as a replacement for the previously available software (Abbottbase®). METHODS Patient demographics, pathology, amikacin dosing history, amikacin concentrations and Abbottbase® predicted TDM targets (area under the curve up to 24 hours, maximum concentration and trough concentration) were collected for adults receiving intravenous amikacin (2012-2017). Concordance with the Australian Therapeutic Guidelines was assessed. Observed and predicted amikacin concentrations were compared to determine the predictive performance (bias and precision) of DoseMeRx®. Amikacin TDM targets were predicted by DoseMeRx® and compared to those predicted by Abbottbase®. RESULTS Overall, guideline compliance for 63 courses of amikacin in 47 patients was suboptimal. Doses were often lower than recommended. For therapy >48 h, TDM sample collection timing was commonly discordant with recommendations, therapeutic target attainment low and 34% of dose adjustments inappropriate. DoseMeRx® under-predicted amikacin concentrations by 0.9 mg/L (95% confidence interval [CI] -1.4 to -0.5) compared with observed concentrations. However, maximum concentration values (n = 19) were unbiased (-1.7 mg/L 95%CI -5.8 to 0.8) and precise (8.6% 95%CI 5.4-18.1). Predicted trough concentration values (n = 7) were, at most, 1 mg/L higher than observed. Amikacin area under the curve values estimated using Abbottbase® (181 mg h/L 95%CI 161-202) and DoseMeRx® (176 mg h/L 95%CI 152-199) were similar (P = .59). CONCLUSION Amikacin dosing and TDM practice was suboptimal compared with guidelines. The model implemented by DoseMeRx® is satisfactory to guide amikacin dosing.
Collapse
Affiliation(s)
- Alice C Ryan
- The School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia
| | - Jane E Carland
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | | | - Cindy Lau
- Pharmacy Department, St Vincent's Hospital, Sydney, NSW, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Deborah J E Marriott
- St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Sydney, NSW, Australia
| | - Richard O Day
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sophie L Stocker
- Department of Clinical Pharmacology & Toxicology, St Vincent's Hospital, Sydney, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
29
|
Siebinga H, Robb F, Thomson AH. Population pharmacokinetic evaluation and optimization of amikacin dosage regimens for the management of mycobacterial infections. J Antimicrob Chemother 2020; 75:2933-2940. [DOI: 10.1093/jac/dkaa277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/21/2020] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
There is limited information on amikacin pharmacokinetics (PK) and dose requirements in patients with mycobacterial infections.
Objectives
To conduct a population PK analysis of amikacin data from patients with mycobacterial infections and compare predicted concentrations from standard and modified dosage guidelines with recommended target ranges.
Methods
A population PK model was developed using NONMEM. Cmax, Cmin, concentration 1 h post-infusion (C1h) and AUC0–24 using 15 mg/kg daily (once daily), the WHO table, 25 mg/kg three times weekly (TTW) and modified guidelines were compared using Monte Carlo simulations of 1000 patients.
Results
Data were available from 124 patients (684 concentrations) aged 16–92 years. CL was 4.64 L/h per 100 mL/min CLCR; V was 0.344 L/kg. With once-daily regimens, Cmax was 35–45 mg/L in 30%–35% of patients and 35–50 mg/L in 46%–48%; C1h was 25–40 mg/L in 53%–59%. The WHO table produced high Cmax values in patients <60 kg and low in patients >75 kg. With TTW dosing, around 30% of Cmax values were 65–80 mg/L, 40% were 60–80 mg/L, and 48% of C1h were 45–65 mg/L. Increasing the dosage interval for patients with CLCR <50 mL/min reduced Cmin values >2 mg/L from 34% to 25% for once-daily dosing and from 18% to 13% for TTW. In patients whose Cmin was <2 mg/L, 82% of AUC0–24 values were 100–300 mg.h/L.
Conclusions
Standard amikacin dosing guidelines achieve low percentages of target concentrations for mycobacterial infections. Extending the dosing interval in renal impairment and widening target ranges would reduce the need for dose adjustment.
Collapse
Affiliation(s)
- Hinke Siebinga
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fiona Robb
- Pharmacy Department, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde, Glasgow, UK
| | - Alison H Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
30
|
Hu C, Zhang F, Long L, Kong Q, Luo R, Wang Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J Control Release 2020; 324:204-217. [DOI: 10.1016/j.jconrel.2020.05.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022]
|
31
|
Marsot A, Hraiech S, Cassir N, Daviet F, Parzy G, Blin O, Papazian L, Guilhaumou R. Aminoglycosides in critically ill patients: which dosing regimens for which pathogens? Int J Antimicrob Agents 2020; 56:106124. [PMID: 32739478 DOI: 10.1016/j.ijantimicag.2020.106124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Modifications of antibiotic pharmacokinetic parameters have been reported in critically ill patients, resulting in a risk of treatment failure. We aimed to determine optimised amikacin (AMK), gentamicin (GEN) and tobramycin (TOB) intravenous dosing regimens in this patient population. Patients admitted to the medical ICU and treated with AMK, GEN or TOB were included. Analyses were performed using a parametric population approach. Monte Carlo simulations were performed and the probability of target attainment (PTA) was calculated using Cmax/MIC ≥ 8 and trough concentrations as targets. A total of 117 critically ill hospitalised patients were studied. Median values (interindividual variability, ɷ2) of clearance were 3.51 (0.539), 3.53 (0.297), 2.70 (0.339) and 5.07 (0.339) L/h for AMK, GEN, TOB, and TOB in cystic fibrosis (CF), respectively. Median values (ɷ2) of central volume of distribution were 30.2 (0.215), 20.0 (0.109) and 25.6 (0.177) L for AMK, GEN and TOB, respectively. Simulations showed that doses should be adjusted to actual body weight and creatinine clearance (CLCR) for AMK and GEN, and according to CLCR and presence of CF for TOB. In conclusion, our recommendations for treating Pseudomonas aeruginosa infections in this population include using initial doses of 35 mg/kg for AMK or 10 mg/kg for TOB (CF and non-CF patients). GEN demonstrated the best rates of target attainment against Staphylococcus aureus infections with a dose of 5 mg/kg. As high aminoglycoside doses are required in this population, efficacy and safety targets are conflicting and therapeutic drug monitoring remains an important tool to manage this issue.
Collapse
Affiliation(s)
- A Marsot
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada.
| | - S Hraiech
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - N Cassir
- Aix-Marseille Université, IRD, APHM, MEPHI, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - F Daviet
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - G Parzy
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - O Blin
- IHU Méditerranée Infection, Marseille, France
| | - L Papazian
- Service de Médecine Intensive-Réanimation, APHM, Hôpital Nord, Marseille, France; CEReSS-Center for Studies and Research on Health Services and Quality of Life EA3279, Aix-Marseille University, Marseille, France
| | - R Guilhaumou
- Aix-Marseille Univ., APHM, INSERM, CIC CPCET Service de Pharmacologie Clinique et Pharmacovigilance, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
32
|
Wang YL, Guilhaumou R, Blin O, Velly L, Marsot A. External evaluation of population pharmacokinetic models for continuous administration of meropenem in critically ill adult patients. Eur J Clin Pharmacol 2020; 76:1281-1289. [PMID: 32495084 DOI: 10.1007/s00228-020-02922-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Beta-lactams (BL), the most commonly prescribed class of antibiotics, are recommended as the first-line therapy for multiple indications in infectious disease guidelines. Meropenem (MERO) is frequently used in intensive care units (ICU) to treat bacterial infections with or without sepsis. The pharmacokinetics of MERO display a large variability in patients admitted to ICUs due to altered pathophysiology. The aim of this study was to perform an external evaluation of published population pharmacokinetic models of MERO in order to test their predictive performance in a cohort of ICU adult patients. METHODS A literature search in PubMed/Medline database was made following the PRISMA statement. External evaluation was performed using NONMEM software, and the bias and inaccuracy values were calculated. RESULTS An external validation dataset from the Timone Hospital in Marseille, France, included 84 concentration samples from 27 patients. Four models of MERO were identified according to the inclusion criteria of the study. None of the models presented acceptable values of bias and inaccuracy. CONCLUSION While performing external evaluations on some populations may confirm a model's suitability to diverse groups of patients, there is still some variability that cannot be explained nor solved by the procedure. This brings to light the difficulty to develop only one model for ICU patients and the need to develop one specific model to each population of critically ill patients.
Collapse
Affiliation(s)
- Y L Wang
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada.,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - R Guilhaumou
- Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France.,Pharmacologie intégrée et interface clinique et industrielle, Institut de Neuroscience des systèmes, CNRS 7289, Aix Marseille Université, 13385, Marseille, France
| | - O Blin
- Service de Pharmacologie Clinique et Pharmacovigilance, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France.,Pharmacologie intégrée et interface clinique et industrielle, Institut de Neuroscience des systèmes, CNRS 7289, Aix Marseille Université, 13385, Marseille, France
| | - L Velly
- Service d'Anesthésie-Réanimation, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille, Marseille, France
| | - Amélie Marsot
- Laboratoire de Suivi Thérapeutique Pharmacologique et Pharmacocinétique, Faculté de Pharmacie, Université de Montréal, Pavillon Jean-Coutu, 2940 chemin de Polytechnique, Montréal, QC, H3T 1J4, Canada. .,Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada. .,Centre de Recherche, CHU Sainte Justine, Montréal, QC, Canada.
| |
Collapse
|
33
|
da Silva ACC, de Lima Feltraco Lizot L, Bastiani MF, Venzon Antunes M, Brucker N, Linden R. Dried plasma spots for therapeutic monitoring of amikacin: Validation of an UHPLC-MS/MS assay and pharmacokinetic application. J Pharm Biomed Anal 2020; 184:113201. [DOI: 10.1016/j.jpba.2020.113201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/20/2020] [Accepted: 02/22/2020] [Indexed: 01/20/2023]
|
34
|
Population Pharmacokinetics of Amikacin Administered Once Daily in Patients with Different Renal Functions. Antimicrob Agents Chemother 2020; 64:AAC.02178-19. [PMID: 32041715 DOI: 10.1128/aac.02178-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this work was to evaluate the pharmacokinetics of amikacin in Mexican patients with different renal functions receiving once-daily dosing regimens and the influence of clinical and demographical covariates that may influence the optimization of this antibiotic. A prospective study was performed in a total of 63 patients with at least one determination of amikacin plasma concentration. Population pharmacokinetic (PK) parameters were estimated by nonlinear mixed-effects modeling; validations were performed for dosing recommendation purposes based on PK/pharmacodynamic simulations. The concentration-versus-time data were best described by a one-compartment open model with proportional interindividual variability associated with amikacin clearance (CL) and volume of distribution (V); residual error followed a homoscedastic trend. Creatinine clearance (CLCR) and ideal body weight (IBW) demonstrated significant influence on amikacin CL and V, respectively. The final model [CL (liters/h) = 7.1 × (CLCR/130)0.84 and V (liters) = 20.3 × (IBW/68)2.9] showed a mean prediction error of 0.11 mg/liter (95% confidence interval, -3.34, 3.55) in the validation performed in a different group of patients with similar characteristics. There is a wide variability in amikacin PK parameters in Mexican patients. This leads to inadequate dosing regimens, especially in patients with augmented renal clearance (CLCR of >130 ml/min). Optimization based on the final population PK model in Mexican patients may be useful, since reliability and clinical applicability have been demonstrated in this study.
Collapse
|
35
|
Population Pharmacokinetic Study of the Suitability of Standard Dosing Regimens of Amikacin in Critically Ill Patients with Open-Abdomen and Negative-Pressure Wound Therapy. Antimicrob Agents Chemother 2020; 64:AAC.02098-19. [PMID: 31964795 DOI: 10.1128/aac.02098-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/07/2020] [Indexed: 02/02/2023] Open
Abstract
The aim was to assess the appropriateness of recommended regimens for empirical MIC coverage in critically ill patients with open-abdomen and negative-pressure therapy (OA/NPT). Over a 5-year period, every critically ill patient who received amikacin and who underwent therapeutic drug monitoring (TDM) while being treated by OA/NPT was retrospectively included. A population pharmacokinetic (PK) modeling was performed considering the effect of 10 covariates (age, sex, total body weight [TBW], adapted body weight [ABW], body surface area [BSA], modified sepsis-related organ failure assessment [SOFA] score, vasopressor use, creatinine clearance [CLCR], fluid balance, and amount of fluids collected by the NPT over the sampling day) in patients who underwent continuous renal replacement therapy (CRRT) or did not receive CRRT. Monte Carlo simulations were employed to determine the fractional target attainment (FTA) for the PK/pharmacodynamic [PD] targets (maximum concentration of drug [C max]/MIC ratio of ≥8 and a ratio of the area under the concentration-time curve from 0 to 24 h [AUC0-24]/MIC of ≥75). Seventy critically ill patients treated by OA/NPT (contributing 179 concentration values) were included. Amikacin PK concentrations were best described by a two-compartment model with linear elimination and proportional residual error, with CLCR and ABW as significant covariates for volume of distribution (V) and CLCR for CL. The reported V) in non-CRRT and CRRT patients was 35.8 and 40.2 liters, respectively. In Monte Carlo simulations, ABW-adjusted doses between 25 and 35 mg/kg were needed to reach an FTA of >85% for various renal functions. Despite an increased V and a wide interindividual variability, desirable PK/PD targets may be achieved using an ABW-based loading dose of 25 to 30 mg/kg. When less susceptible pathogens are targeted, higher dosing regimens are probably needed in patients with augmented renal clearance (ARC). Further studies are needed to assess the effect of OA/NPT on the PK parameters of antimicrobial agents.
Collapse
|
36
|
Shahrami B, Najmeddin F, Rouini MR, Najafi A, Sadeghi K, Amini S, Khezrnia SS, Sharifnia HR, Mojtahedzadeh M. Evaluation of Amikacin Pharmacokinetics in Critically Ill Patients with Intra-abdominal Sepsis. Adv Pharm Bull 2019; 10:114-118. [PMID: 32002369 PMCID: PMC6983982 DOI: 10.15171/apb.2020.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/07/2019] [Accepted: 09/18/2019] [Indexed: 12/23/2022] Open
Abstract
Purpose: Although the current widespread use of amikacin is in intra-abdominal sepsis treatment, its pharmacokinetic changes in the present setting are not yet well known. This study was aimed to evaluate the amikacin pharmacokinetic profile in critically ill patients with intraabdominal sepsis compared to pneumosepsis.
Methods: Adult septic patients received amikacin therapy were studied. Patients with intraabdominal sepsis were enrolled in group 1 (n=16), and patients with pneumosepsis were enrolled in group 2 (n=13). The amikacin serum concentrations were evaluated in the first, second, fourth and sixth hours after initiating 30-minute infusion. The pharmacokinetic parameters were calculated for each patient.
Results: There was no significant difference in the volume of distribution between the two groups (0.33±0.08 vs. 0.28±0.10 L/kg, P=0.193). The amikacin clearance was significantly lower in group 1 compared to group 2 (58.5±21.7 vs. 83.9±37.0 mL/min, P=0.029). There was no significant correlation between amikacin clearance and creatinine clearance estimated by Cockcroft-Gault formula in all patients (P=0.206). The half-life was significantly longer in group 1 compared to group 2 (5.3±2.8 vs. 3.4±3.2 hours, P=0.015).
Conclusion: Pathophysiologic changes following intra-abdominal sepsis can affect amikacin pharmacokinetics behavior. The clearance and half-life may change, but the alteration of the volume of distribution is not significantly different in comparison with pneumosepsis. Further studies are required to evaluate the pharmacokinetic variables of amikacin in critically ill patients with intra-abdominal sepsis.
Collapse
Affiliation(s)
- Bita Shahrami
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care, Tehran University of Medical Sciences, Tehran, Iran
| | - Kourosh Sadeghi
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahideh Amini
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Sharifnia
- Department of Anesthesiology and Critical Care, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Caceres Guido P, Perez M, Halac A, Ferrari M, Ibarra M, Licciardone N, Castaños C, Gravina LP, Jimenez C, Garcia Bournissen F, Schaiquevich P. Population pharmacokinetics of amikacin in patients with pediatric cystic fibrosis. Pediatr Pulmonol 2019; 54:1801-1810. [PMID: 31402602 DOI: 10.1002/ppul.24468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/21/2019] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Amikacin is commonly used in patients with pediatric cystic fibrosis (CF) for the treatment of pulmonary exacerbations. Amikacin efficacy is related to maximum plasma concentration/minimum inhibitory concentration (Cmax/MIC) ratio >8. Pharmacokinetic data in patients with pediatric CF are scarce. The aim of this study was to develop a population pharmacokinetic (PopPK) model describing amikacin disposition in patients with pediatric CF. METHODS CF patients under 18 years of age with pulmonary exacerbation who received amikacin were enrolled. Patients received different amikacin regimens (30 mg-1 kg-1 day-1 every 8, 12, or 24 hours) depending on the patient's status and hospital protocols. Amikacin serum levels were obtained for therapeutic drug monitoring. PopPK model was developed using MONOLIX Suite-2018R1 (Lixoft). RESULTS A total of 39 patients (114 amikacin concentrations) were included in this study. Population estimates for the elimination rate constant (k) and the volume of distribution (V) were 0.541 hours-1 and 0.451 L/kg, respectively. Between-subject and between-occasion variability were 53% and 16.5% for k and 31% and 22% for V, respectively. Bodyweight was a significant covariate associated with V. Based on simulations, almost 70% of the patients receiving 30 mg-1 kg-1 day-1 every 24 hours would achieve a Cmax/MIC ratio >8 which is an appropriate therapeutic goal while no patient in the other two groups (Q8 and Q12) would achieve that objective. CONCLUSIONS The regimen of 30 mg-1 kg-1 day-1 every 24 hours more adequately fulfilled the therapeutic target for amikacin. Although all our patients had good clinical results and a good adverse-events profile, further studies are necessary to redefine the optimal treatment strategy.
Collapse
Affiliation(s)
- Paulo Caceres Guido
- Clinical Pharmacokinetics Unit, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Mariel Perez
- Pharmacy Area, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Alicia Halac
- Intermediate and Moderate Care Ward, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Mariela Ferrari
- Intermediate and Moderate Care Ward, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Manuel Ibarra
- Pharmaceutical Sciences, Department of Chemistry, Universidad de la Republica, Uruguay, Uruguay
| | - Nieves Licciardone
- Laboratory Service, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Claudio Castaños
- Department of Pulmonology, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Luis P Gravina
- Molecular Biology - Genetics, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Cristina Jimenez
- Intermediate and Moderate Care Ward, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina
| | - Facundo Garcia Bournissen
- Multidisciplinary Institute for Pediatric Pathology Research (IMIPP), Hospital General de Niños R, Gutierrez, Argentina
| | - Paula Schaiquevich
- Clinical Pharmacokinetics Unit, Hospital de Pediatria JP Garrahan, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
38
|
Amikacin Initial Dose in Critically Ill Patients: a Nonparametric Approach To Optimize A Priori Pharmacokinetic/Pharmacodynamic Target Attainments in Individual Patients. Antimicrob Agents Chemother 2019; 63:AAC.00993-19. [PMID: 31481443 DOI: 10.1128/aac.00993-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022] Open
Abstract
Amikacin is commonly used for probabilistic antimicrobial therapy in critically ill patients with sepsis. Its narrow therapeutic margin makes it challenging to determine the right individual dose that ensures the highest efficacy target attainment rate (TAR) in this setting. This study aims to develop a new initial dosing approach for amikacin by optimizing the a priori TAR in this population. A population pharmacokinetic model was built with a learning data set from critically ill patients who received amikacin. It was then used to design an initial dosing approach maximizing a priori TAR for a target ratio of ≥8 for the peak concentration to the MIC (C max/MIC) or of ≥75 for the ratio of the area under the concentration-time curve from 0 to 24 h to the MIC (AUC0-24/MIC). In the 166 patients included, 53% had amikacin C max of ≥64 mg/liter with a median dose of 23.4 mg/kg. A two-compartment model with creatinine clearance and body surface area as covariates best described the data and showed good predictive performance. Our dosing approach was successful in optimizing TAR for C max/MIC, with a rate of 92.9% versus 67.9% using a 30-mg/kg regimen, based on an external subset of data and assuming a MIC of 8 mg/liter. Mean optimal doses were higher (3.5 ± 0.5 g) than with the 30-mg/kg regimen (2.1 ± 0.3 g). Suggested doses varied with the MIC, the target index, and desired TAR threshold. A dosing algorithm based on the method is proposed for a large range of patient covariates. Clinical studies are necessary to confirm efficacy and safety of this optimized dosing approach.
Collapse
|
39
|
Studená Š, Doleželová E, Cermanová J, Prašnická A, Springer D, Mičuda S, Chládek J. Evaluation of Neutrophil Gelatinase-Associated Lipocalin as a Predictor of Glomerular Filtration Rate and Amikacin Clearance During Early Rat Endotoxemia: Comparison with Traditional Endogenous and Exogenous Biomarkers. Eur J Drug Metab Pharmacokinet 2019; 45:71-80. [PMID: 31605364 DOI: 10.1007/s13318-019-00579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Renal elimination of amikacin and other aminoglycosides is slowed down in sepsis-induced acute kidney injury increasing the risk of adverse effects. Since neutrophil gelatinase-associated lipocalin (NGAL) and aminoglycosides share the mechanisms for renal excretion, the predictive power of NGAL was examined towards the changes in amikacin pharmacokinetics during early endotoxemia in anesthetized Wistar rats. METHODS Endogenous biomarkers of inflammation and acute kidney injury were assessed including NGAL in saline-injected controls and two groups of rats challenged with an intravenous injection of bacterial lipopolysaccharide (5 mg/kg)-a fluid-resuscitated group (LPS) and a fluid-resuscitated group infused intravenously with 8 μg/kg/h terlipressin (LPS-T). Sinistrin and amikacin were infused to measure glomerular filtration rate (GFR) and amikacin clearance (CLam). The investigations included blood gas analysis, chemistry and hematology tests and assessment of urine output, creatinine clearance (CLcr) and sinistrin clearance (CLsini). RESULTS Within 3 h of injection, systemic and renal inflammatory responses were induced by lipopolysaccharide. Gene and protein expression of NGAL was increased in the kidneys and the concentrations of NGAL in the plasma (pNGAL) and urine rose 4- to 38-fold (P < 0.01). The decreases in CLam and the GFR markers (CLcr, CLsini) were proportional, reflecting the extent to which endotoxemia impaired the major elimination mechanism for the drug. Terlipressin attenuated lipopolysaccharide-induced renal dysfunction (urine output, CLcr, CLsini) and accelerated CLam. The pNGAL showed a strong association with the CLsini (rs = - 0.77, P < 0.0005). Concerning prediction of CLam, pNGAL was comparable to CLcr (mean error - 24%) and inferior to CLsini (mean error - 6.4%), while the measurement of NGAL in urine gave unsatisfactory results. CONCLUSIONS During early endotoxemia in the rat, pNGAL has a moderate predictive ability towards CLam. Clinical studies should verify whether pNGAL can support individualized dosing of aminoglycosides to septic patients.
Collapse
Affiliation(s)
- Šárka Studená
- Department of Pharmacology, Charles University, Faculty of Medicine Hradec Králové, Šimkova 870, 500 38, Hradec Králové, Czech Republic
| | - Eva Doleželová
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy, Akademika Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jolana Cermanová
- Department of Pharmacology, Charles University, Faculty of Medicine Hradec Králové, Šimkova 870, 500 38, Hradec Králové, Czech Republic
| | - Alena Prašnická
- Department of Pharmacology, Charles University, Faculty of Medicine Hradec Králové, Šimkova 870, 500 38, Hradec Králové, Czech Republic
| | - Drahomíra Springer
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, U nemocnice 2, 128 08, Praha 2, Czech Republic
| | - Stanislav Mičuda
- Department of Pharmacology, Charles University, Faculty of Medicine Hradec Králové, Šimkova 870, 500 38, Hradec Králové, Czech Republic
| | - Jaroslav Chládek
- Department of Pharmacology, Charles University, Faculty of Medicine Hradec Králové, Šimkova 870, 500 38, Hradec Králové, Czech Republic.
| |
Collapse
|
40
|
Population Pharmacokinetic Analyses for Arbekacin after Administration of ME1100 Inhalation Solution. Antimicrob Agents Chemother 2019; 63:AAC.00267-19. [PMID: 31182524 DOI: 10.1128/aac.00267-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/01/2019] [Indexed: 11/20/2022] Open
Abstract
ME1100, an inhalation solution of arbekacin, an aminoglycoside, is being developed for the treatment of hospital-acquired and ventilator-associated bacterial pneumonia. The objective of these analyses was to develop a population pharmacokinetic model to describe the arbekacin concentration-time profile in plasma and epithelial lining fluid (ELF) following ME1100 administration. Data were obtained from a postmarketing study for an intravenous (i.v.) formulation of arbekacin, a phase 1 study of ME1100 in healthy volunteers, and a phase 1b study of ME1100 in mechanically ventilated subjects with bacterial pneumonia. Data from the postmarketing study were utilized to develop a population pharmacokinetic model following i.v. administration, and this model was subsequently utilized as the foundation for development of the model characterizing arbekacin disposition following inhalation of ME1100. The final model utilized two compartments for both plasma and ELF disposition, with movement of arbekacin between the ELF and plasma parameterized using linear first-order rate constants. A bioavailability term was included for the inhalational route of administration, which was estimated to be 19.5% for a typical subject. The model included normalized creatinine clearance (CLcrn) and weight as covariates on arbekacin clearance: CL = (weight/52.2)0.855·[(CLcrn-77)·0.0289 + 2.32]. The model simultaneously described arbekacin concentrations following both i.v. and inhaled administration and provided acceptable fits to the plasma and ELF data (r 2 of 0.922 and 0.557 for observed versus fitted concentrations, respectively). The developed model will be useful for conducting future analyses to support ME1100 dose selection.
Collapse
|
41
|
da Silva ACC, de Lima Feltraco Lizot L, Bastiani MF, Antunes MV, Brucker N, Linden R. Ready for TDM: Simultaneous quantification of amikacin, vancomycin and creatinine in human plasma employing ultra-performance liquid chromatography-tandem mass spectrometry. Clin Biochem 2019; 70:39-45. [PMID: 31228434 DOI: 10.1016/j.clinbiochem.2019.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/18/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Amikacin (AMI) and vancomycin (VAN) are antibiotics largely used in intensive care in the empiric treatment of severe infections by multi-resistant gram-negative and gram-positive bacteria. AMI and VAN are eliminated untransformed by glomerular filtration, showing depuration ratio highly correlated with creatinine (CRE) clearance. AMI, VAN and CRE are highly polar structures, presenting poor retention in reversed-phase liquid chromatography when using conventional stationary phases. OBJECTIVE This study aimed to develop and validate a simple UPLC-MS/MS method for simultaneous determination of AMI, VAN, and CRE in human plasma for therapeutic drug monitoring. RESULTS Samples were prepared by protein precipitation, followed by dilution. Heptafluorobutyric acid (HFBA) was added to the mobile phase at low concentration (0.01%), and separation was performed in an ultra-performance reversed-phase column (particle diameter of 1.8 μm). These conditions allowed retention times of 0.92, 0.93, 2.12, 2.17 and 2.27 min for CRE, CRE-D3, AMI, KAN and VAN, respectively. The assay was linear from 0.5 to 100 mg L-1 for AMI and VAN and 5 to 100 mg L-1. Precision, accuracy and stability assays were acceptable according to bioanalytical validation guidelines. Suitable results. Matrix effects were in the range of +10.5 to +11.6% for AMI, -4.3 to -4.5% for VAN, and - 1.7 to +0.7 for CRE. CONCLUSION The first assay for the simultaneous determination of AMI, VAN and CRE in plasma by liquid chromatography-tandem mass spectrometry was reported. This assay allows the obtention of the necessary analytical data for the clinical application of population pharmacokinetic methods for therapeutic drug monitoring of AMI and VAN.
Collapse
Affiliation(s)
- Anne Caroline Cezimbra da Silva
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Lilian de Lima Feltraco Lizot
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marcos Frank Bastiani
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Marina Venzon Antunes
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Natália Brucker
- Graduate Program on Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Linden
- Analytical Toxicology Laboratory, Universidade Feevale, Novo Hamburgo, RS, Brazil; Graduate Program on Toxicology and Analytical Toxicology, Universidade Feevale, Novo Hamburgo, RS, Brazil.
| |
Collapse
|
42
|
Abstract
In this study, we evaluate the effect of extracorporeal membrane oxygenation (ECMO) and ventricular assist devices (Levitronix) on the pharmacokinetic of amikacin in critically ill patients. Twelve patients with ECMO and three with Levitronix devices who started treatment with amikacin were included. Amikacin pre (Cmax) and post (Cmin) dose serum concentrations were measured during the first 72-96 hours of treatment initiation. Pharmacokinetic parameters were performed by Bayesian adjustment. The median initial dose was 1,000 mg (range: 600-1,400 mg). Mean plasma concentrations were Cmax 58.6 mg/L (17.0 mg/L); Cmin 9.58 mg/L (7.8 mg/L). Patients with an ECMO device had a higher volume of distribution (0.346 [0.033] vs. 0.288 [0.110] L/kg) and a lower plasma clearance (1.58 [0.21] vs. 3.73 [1.03] L/h) than the control group. This phenomenon was also observed in those patients with simultaneous use of ECMO and hemodilafiltration. For patients with Levitronix system, no significant alterations in the volume of distribution were observed, although a lower plasma clearance was noticed. Placement of ECMO devices alters the pharmacokinetic parameters of amikacin in the critically ill patients and should be considered when selecting the initial dose.
Collapse
|
43
|
|
44
|
Ben Romdhane H, Ben Fredj N, Chaabane A, Ben Aicha S, Chadly Z, Ben Fadhel N, Boughattas N, Aouam K. Interest of therapeutic drug monitoring of aminoglycosides administered by a monodose regimen. Nephrol Ther 2019; 15:110-114. [PMID: 30660586 DOI: 10.1016/j.nephro.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Although the once-daily regimen of aminoglycosides (AG) is considered as predominantly used by many centers, the level of evidence of Therapeutic Drug Monitoring (TDM) of AG in cases of once-daily has not been clearly defined. The objective of this study is to evaluate the impact of TDM in achievement or maintaining target serum concentrations in patients receiving once-daily administration of AG. METHODS We performed a retrospective analysis of data from patients having received a once daily amikacin or gentamicin and underwent routine TDM. A longitudinal follow up was performed. Data were analyzed according to the adhesion or not to recommendations. A logistic regression was performed in order to evaluate the effect of covariates (age, gender, weight, creatinine clearance [CLcr], TDM-based dose adjustment, weighted dose of AG) on the achievement of non-toxic Cmin. RESULTS A total 437 blood samples issued from 324 patients were analyzed. The cut-off value of Clcr associated with a risk of toxic Cmin was≤41.66mL/min (OR: 11.29; 95%CI: 7.21-17.61; P<0.0001). Eighty-eight patients (27.1%) have at least two sampling points. The univariate analysis showed that the age, weight, CLcr and TDM-based dose adjustment were found to be significant factors in the achievement of non-toxic Cmin. In multivariate analysis, only TDM-based dose adjustment remains a significant factor in the achievement of non-toxic Cmin (OR: 6.66; 95%CI: 2.26-19.63; P=0.0006). CONCLUSION Our study demonstrates the usefulness of TDM-based dosing adjustment of AG antibiotics in achieving nontoxic trough concentrations, particularly in critically ill patients, as they are prone to a renal impairment.
Collapse
Affiliation(s)
- Haifa Ben Romdhane
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| | - Nadia Ben Fredj
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia.
| | - Amel Chaabane
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| | - Sana Ben Aicha
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| | - Zohra Chadly
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| | - Najeh Ben Fadhel
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| | - Naceur Boughattas
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| | - Karim Aouam
- EPS Monastir, service de pharmacologie clinique, laboratoire de pharmacologie, faculté de médecine de Monastir, rue Avicenne, 5019 Monastir, Tunisia
| |
Collapse
|
45
|
Fu J, Wu Z, Zhang L. Clinical applications of the naturally occurring or synthetic glycosylated low molecular weight drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:487-522. [DOI: 10.1016/bs.pmbts.2019.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Ruiz J, Ramirez P, Company MJ, Gordon M, Villarreal E, Concha P, Aroca M, Frasquet J, Remedios-Marqués M, Castellanos-Ortega Á. Impact of amikacin pharmacokinetic/pharmacodynamic index on treatment response in critically ill patients. J Glob Antimicrob Resist 2018; 12:90-95. [DOI: 10.1016/j.jgar.2017.09.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022] Open
|
47
|
Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017; 22:molecules22122267. [PMID: 29257114 PMCID: PMC5889950 DOI: 10.3390/molecules22122267] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/16/2022] Open
Abstract
Aminoglycosides are a group of antibiotics used since the 1940s to primarily treat a broad spectrum of bacterial infections. The primary resistance mechanism against these antibiotics is enzymatic modification by aminoglycoside-modifying enzymes that are divided into acetyl-transferases, phosphotransferases, and nucleotidyltransferases. To overcome this problem, new semisynthetic aminoglycosides were developed in the 70s. The most widely used semisynthetic aminoglycoside is amikacin, which is refractory to most aminoglycoside modifying enzymes. Amikacin was synthesized by acylation with the l-(-)-γ-amino-α-hydroxybutyryl side chain at the C-1 amino group of the deoxystreptamine moiety of kanamycin A. The main amikacin resistance mechanism found in the clinics is acetylation by the aminoglycoside 6'-N-acetyltransferase type Ib [AAC(6')-Ib], an enzyme coded for by a gene found in integrons, transposons, plasmids, and chromosomes of Gram-negative bacteria. Numerous efforts are focused on finding strategies to neutralize the action of AAC(6')-Ib and extend the useful life of amikacin. Small molecules as well as complexes ionophore-Zn+2 or Cu+2 were found to inhibit the acetylation reaction and induced phenotypic conversion to susceptibility in bacteria harboring the aac(6')-Ib gene. A new semisynthetic aminoglycoside, plazomicin, is in advance stage of development and will contribute to renewed interest in this kind of antibiotics.
Collapse
|
48
|
Ruiz-Ramos J, Villarreal E, Gordon M, Martin-Cerezula M, Broch MJ, Remedios Marqués M, Poveda JL, Castellanos-Ortega Á, Ramírez P. Implication of Haemodiafiltration Flow Rate on Amikacin Pharmacokinetic Parameters in Critically Ill Patients. Blood Purif 2017; 45:88-94. [PMID: 29232669 DOI: 10.1159/000478969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND To analyse the effect of haemodiafiltration (CVVHDF) flow rate on amikacin pharmacokinetics and blood concentrations. METHODS Prospective observational study. Patients receiving CVVHDF and amikacin treatment were included. Pharmacokinetic parameters were calculated using Bayesian analysis. Spearman correlation test was used in order to assess the influence of CVVHDF flux on amikacin minimum concentration (Cmin) and plasma clearance. RESULTS Thirty patients undergoing CVVHDF procedures were included. The treatment with amikacin started at an initial mean dose of 12.4 (4.1) mg/kg/day. An association between the flow rate and Cmin value (r = 0.261; p = 0.161) and plasma clearance was found (r = 0.268; p = 0.152). Four patients (13.3%) were not able to achieve peak concentration over MIC value higher than 8. In 4 patients, amikacin had to be discontinued due to a high Cmin value. CONCLUSIONS Amikacin clearance in patients with CVVHDF is affected by the flow rate used. Therefore, CVVHDF dose should be taken into account when dosing amikacin.
Collapse
Affiliation(s)
- Jesús Ruiz-Ramos
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - Esther Villarreal
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - Mónica Gordon
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - María Martin-Cerezula
- Department of Pharmacy, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - Maria Jesús Broch
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - María Remedios Marqués
- Department of Pharmacy, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - Jose Luis Poveda
- Department of Pharmacy, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - Álvaro Castellanos-Ortega
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| | - Paula Ramírez
- Intensive Care Unit, Hospital Universitario y Politécnico La Fe, Avenida Fernando Abríl Martorell, Valencia, Spain
| |
Collapse
|
49
|
Hahn J, Choi JH, Chang MJ. Pharmacokinetic changes of antibiotic, antiviral, antituberculosis and antifungal agents during extracorporeal membrane oxygenation in critically ill adult patients. J Clin Pharm Ther 2017; 42:661-671. [PMID: 28948652 DOI: 10.1111/jcpt.12636] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Extracorporeal membrane oxygenation (ECMO) is a life-saving system used for critically ill patients with cardiac and/or respiratory failure. The pharmacokinetics (PK) of drugs can change in patients undergoing ECMO, which can result in therapeutic failure or drug toxicity requiring further management of drug complications. In this review, we discussed changes in the PK of antibiotic, antiviral, antituberculosis and antifungal agents administered to adult patients on ECMO. These drugs are crucial for managing infections, which commonly occur during ECMO. METHODS A literature search was conducted using the PubMed and EMBASE databases with the following keywords: "extracorporeal membrane oxygenation OR extracorporeal membrane oxygenations OR ECMO" and "PK OR pharmacokinetics OR pharmacokinetic*" and "anti infective* OR antibiotic* OR antiviral* OR antituberculosis OR antifungal*." RESULTS AND DISCUSSION Generally, the volume of distribution (Vd) increases and drug clearance (CL) and elimination decrease during ECMO. Highly significant changes in drug PK can occur by interactions with the ECMO device itself, drug characteristics, pathological changes and patient characteristics. This may affect the blood concentrations of drugs, which influence the success of therapy. The PK of vancomycin, piperacillin-tazobactam, meropenem, azithromycin, amikacin and caspofungin did not change significantly in adult patients receiving ECMO. However, there were significant changes in the PK of imipenem, oseltamivir, rifampicin and voriconazole. The trough concentrations of imipenem were highly variable; oseltamivir had a decreased CL and increased Vd, and rifampicin concentrations were below therapeutic levels, even when a higher-than-standard dose was used in patients treated with ECMO. Additionally, voriconazole exhibited high mean peak concentrations during ECMO. WHAT IS NEW AND CONCLUSION The impact of ECMO on PK varies among drugs in adult patients, and there is no consistent correlation between the effects observed in adult and infant studies. This review suggested that doses of imipenem, oseltamivir, rifampicin and voriconazole should be adjusted and therapeutic drug monitoring is needed when ECMO is used in adult patients. In the future, large PK trials in adults on ECMO are needed to provide optimal dosing guidelines. A PK/PD modelling approach will be useful for determining the precise impact of ECMO and other factors that contribute to PK changes for each drug. Finally, it is important to develop dosing guidelines based on PK/PD modelling studies that can be used in clinical practice.
Collapse
Affiliation(s)
- J Hahn
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Korea
| | - J H Choi
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Korea
| | - M J Chang
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Korea.,Department of Pharmaceutical Medicine and Regulatory Science, College of Medicine and Pharmacy, Yonsei University, Incheon, Korea
| |
Collapse
|
50
|
Zilahi G, Artigas A, Martin-Loeches I. What's new in multidrug-resistant pathogens in the ICU? Ann Intensive Care 2016; 6:96. [PMID: 27714706 PMCID: PMC5053965 DOI: 10.1186/s13613-016-0199-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/29/2016] [Indexed: 12/28/2022] Open
Abstract
Over the last several decades, antibacterial drug use has become widespread with their misuse being an ever-increasing phenomenon. Consequently, antibacterial drugs have become less effective or even ineffective, resulting in a global health security emergency. The prevalence of multidrug-resistant organisms (MDROs) varies widely among regions and countries. The primary aim of antibiotic stewardship programs is to supervise the three most influential factors contributing to the development and transmission of MDROs, namely: (1) appropriate antibiotic prescribing; (2) early detection and prevention of cross-colonization of MDROs; and (3) elimination of reservoirs. In the future, it is expected that a number of countries will experience a rise in MDROs. These infections will be associated with a high consumption of healthcare resources manifested by a prolonged hospital stay and high mortality. As a counteractive strategy, minimization of broad-spectrum antibiotic use and prompt antibiotic administration will aid in reduction of antibiotic resistance. Innovative management approaches include development and implementation of rapid diagnostic tests that will help in both shortening the duration of therapy and allowing early targeted therapy. The institution of more accessible therapeutic drug monitoring will help to optimize drug administration and support a patient-specific approach. Areas where further research is required are investigation into the heterogeneity of critically ill patients and the need for new antibacterial drug development.
Collapse
Affiliation(s)
- Gabor Zilahi
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust‐HRB Clinical Research, St James’s Hospital, St James’s University Hospital, Dublin 8, Ireland
| | - Antonio Artigas
- Critical Care Center, Parc Taulí Hospital-Sabadell, CIBERes, Parc Tauli s/n., Sabadell, Barcelona, Spain
- Centros de Investigación Biomédica en Red (CIBER), Madrid, Spain
| | - Ignacio Martin-Loeches
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust‐HRB Clinical Research, St James’s Hospital, St James’s University Hospital, Dublin 8, Ireland
- Centros de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Wellcome Trust‐HRB Clinical Research, Dublin, Ireland
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Dublin, Ireland
| |
Collapse
|