1
|
Fenton SE, Hussain M. Olaparib monotherapy or in combination with abiraterone for treating mutated metastatic castration-resistant prostate cancer: alone or stronger together? Expert Opin Investig Drugs 2024; 33:993-999. [PMID: 39135527 DOI: 10.1080/13543784.2024.2391828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Prostate cancer has entered the era of precision medicine with the introduction of PARP inhibitors for patients with specific mutations in genes associated with DNA damage repair. Recent studies have shown benefit in combination therapy with PARP inhibitors like olaparib and antiandrogens like abiraterone. AREAS COVERED This review discusses the pharmacodynamics and pharmacokinetics of olaparib as well as the data supporting combination therapy with olaparib and abiraterone. EXPERT OPINION Co-targeting the androgen receptor and PARP pathway has shown clear clinical benefit in the management of patients with metastatic castration resistant prostate cancer and mutations in BRCA1, BRCA2, and ATM. The benefit in patients without these mutations is less clear, and the benefit of olaparib combination therapy in the management of hormone sensitive disease remains to be seen.
Collapse
Affiliation(s)
- Sarah E Fenton
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Maha Hussain
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
2
|
Shin Y, Kim M, Kim C, Jeon H, Koo J, Oh J, Shin S, Youn YS, Lim C, Oh KT. Development and Characterization of Olaparib-Loaded Solid Self-Nanoemulsifying Drug Delivery System (S-SNEDDS) for Pharmaceutical Applications. AAPS PharmSciTech 2024; 25:221. [PMID: 39317842 DOI: 10.1208/s12249-024-02927-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
This study aims to enhance the solubility of Olaparib, classified as biopharmaceutical classification system (BCS) class IV due to its low solubility and bioavailability using a solid self-nanoemulsifying drug delivery system (S-SNEDDS). For this purpose, SNEDDS formulations were created using Capmul MCM as the oil, Tween 80 as the surfactant, and PEG 400 as the co-surfactant. The SNEDDS formulation containing olaparib (OLS-352), selected as the optimal formulation, showed a mean droplet size of 87.0 ± 0.4 nm and drug content of 5.53 ± 0.09%. OLS-352 also demonstrated anticancer activity against commonly studied ovarian (SK-OV-3) and breast (MCF-7) cancer cell lines. Aerosil® 200 and polyvinylpyrrolidone (PVP) K30 were selected as solid carriers, and S-SNEDDS formulations were prepared using the spray drying method. The drug concentration in S-SNEDDS showed no significant changes (98.4 ± 0.30%, 25℃) with temperature fluctuations during the 4-week period, demonstrating improved storage stability compared to liquid SNEDDS (L-SNEDDS). Dissolution tests under simulated gastric and intestinal conditions revealed enhanced drug release profiles compared to those of the raw drug. Additionally, the S-SNEDDS formulation showed a fourfold greater absorption in the Caco-2 assay than the raw drug, suggesting that S-SNEDDS could improve the oral bioavailability of poorly soluble drugs like olaparib, thus enhancing therapeutic outcomes. Furthermore, this study holds significance in crafting a potent and cost-effective pharmaceutical formulation tailored for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Mikyung Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Chaeyeon Kim
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Hyewon Jeon
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jain Koo
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Jimin Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Soyoung Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon, Gyeonggi-Do, 16419, Republic of Korea
| | - Chaemin Lim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam, Gyeonggi-do, 13488, Republic of Korea.
| | - Kyung Taek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
- College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
3
|
Strobl MAR, Martin AL, West J, Gallaher J, Robertson-Tessi M, Gatenby R, Wenham R, Maini PK, Damaghi M, Anderson ARA. To modulate or to skip: De-escalating PARP inhibitor maintenance therapy in ovarian cancer using adaptive therapy. Cell Syst 2024; 15:510-525.e6. [PMID: 38772367 PMCID: PMC11190943 DOI: 10.1016/j.cels.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/23/2024]
Abstract
Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase inhibitor (PARPi) maintenance therapy of ovarian cancer. We propose that adaptive therapy, which dynamically reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse microscopy and stepwise model selection, we calibrate and validate a differential equation mathematical model, which we leverage to test different plausible adaptive treatment schedules. Our model indicates that adjusting the dosage, rather than skipping treatments, is more effective at reducing drug use while maintaining efficacy due to a delay in cell kill and a diminishing dose-response relationship. In vivo pilot experiments confirm this conclusion. Although our focus is toxicity mitigation, reducing drug use may also delay resistance. This study enhances our understanding of PARPi treatment scheduling and illustrates the first steps in developing adaptive therapies for new treatment settings. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Maximilian A R Strobl
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA; Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| | - Alexandra L Martin
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA; Division of Gynecologic Oncology, West Cancer Center and Research Institute, Memphis, TN, USA
| | - Jeffrey West
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jill Gallaher
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA; Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Robert Wenham
- Gynecologic Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK.
| | - Mehdi Damaghi
- Department of Pathology, Stony Brook Medicine, SUNY, Brookhaven, NY, USA; Stony Brook Cancer Center, Stony Brook Medicine, SUNY, Brookhaven, NY, USA.
| | | |
Collapse
|
4
|
Satora M, Kułak K, Zaremba B, Grunwald A, Świechowska-Starek P, Tarkowski R. New hopes and promises in the treatment of ovarian cancer focusing on targeted treatment-a narrative review. Front Pharmacol 2024; 15:1416555. [PMID: 38948462 PMCID: PMC11212463 DOI: 10.3389/fphar.2024.1416555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Unfortunately, ovarian cancer is still diagnosed most often only in an advanced stage and is also the most lethal gynecological cancer. Another problem is the fact that treated patients have a high risk of disease recurrence. Moreover, ovarian cancer is very diverse in terms of molecular, histological features and mutations. Many patients may also develop platinum resistance, resulting in poor response to subsequent lines of treatment. To improve the prognosis of patients with ovarian cancer, it is expected to make better existing and implement new, promising treatment methods. Targeted therapies seem very promising. Currently, bevacizumab - a VEGF inhibitor and therapy with olaparib - a polyADP-ribose polymerase inhibitor are approved. Other methods worth considering in the future include: folate receptor α, immune checkpoints or other immunotherapy methods. To improve the treatment of ovarian cancer, it is also important to ameliorate the determination of molecular features to describe and understand which group of patients will benefit most from a given treatment method. This is important because a larger group of patients treated for ovarian cancer can have a greater chance of surviving longer without recurrence.
Collapse
Affiliation(s)
- Małgorzata Satora
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Krzysztof Kułak
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Zaremba
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Grunwald
- 1st Chair and Department of Oncological Gynecology and Gynecology, Students’ Scientific Association, Medical University of Lublin, Lublin, Poland
| | | | - Rafał Tarkowski
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Overbeek JK, Guchelaar NAD, Mohmaed Ali MI, Ottevanger PB, Bloemendal HJ, Koolen SLW, Mathijssen RHJ, Boere IA, Hamberg P, Huitema ADR, Sonke GS, Opdam FL, Ter Heine R, van Erp NP. Pharmacokinetic boosting of olaparib: A randomised, cross-over study (PROACTIVE-study). Eur J Cancer 2023; 194:113346. [PMID: 37806255 DOI: 10.1016/j.ejca.2023.113346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Pharmacokinetic (PK) boosting is the intentional use of a drug-drug interaction to enhance systemic drug exposure. PK boosting of olaparib, a CYP3A-substrate, has the potential to reduce PK variability and financial burden. The aim of this study was to investigate equivalence of a boosted, reduced dose of olaparib compared to the non-boosted standard dose. METHODS This cross-over, multicentre trial compared olaparib 300 mg twice daily (BID) with olaparib 100 mg BID boosted with the strong CYP3A-inhibitor cobicistat 150 mg BID. Patients were randomised to the standard therapy followed by the boosted therapy, or vice versa. After seven days of each therapy, dense PK sampling was performed for noncompartmental PK analysis. Equivalence was defined as a 90% Confidence Interval (CI) of the geometric mean ratio (GMR) of the boosted versus standard therapy area under the plasma concentration-time curve (AUC0-12 h) within no-effect boundaries. These boundaries were set at 0.57-1.25, based on previous pharmacokinetic studies with olaparib capsules and tablets. RESULTS Of 15 included patients, 12 were eligible for PK analysis. The GMR of the AUC0-12 h was 1.45 (90% CI 1.27-1.65). No grade ≥3 adverse events were reported during the study. CONCLUSIONS Boosting a 100 mg BID olaparib dose with cobicistat increases olaparib exposure 1.45-fold, compared to the standard dose of 300 mg BID. Equivalence of the boosted olaparib was thus not established. Boosting remains a promising strategy to reduce the olaparib dose as cobicistat increases olaparib exposure Adequate tolerability of the boosted therapy with higher exposure should be established.
Collapse
Affiliation(s)
- Joanneke K Overbeek
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands.
| | - Niels A D Guchelaar
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, South Holland, the Netherlands
| | - Ma Ida Mohmaed Ali
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, North Holland, the Netherlands
| | - Petronella B Ottevanger
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Haiko J Bloemendal
- Department of Medical Oncology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, South Holland, the Netherlands; Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, South Holland, the Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, South Holland, the Netherlands
| | - Ingrid A Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, South Holland, the Netherlands
| | - Paul Hamberg
- Department of Internal Medicine, Franciscus Gasthuis and Vlietland, Rotterdam, South Holland, the Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, North Holland, the Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, Utrecht, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, Utrecht, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, North Holland, the Netherlands
| | - Frans L Opdam
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, North Holland, the Netherlands
| | - Rob Ter Heine
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, Gelderland, the Netherlands
| |
Collapse
|
6
|
Kim YH, Kim SB, Choi SH, Nguyen TTL, Ahn SH, Moon KS, Cho KH, Sim TY, Heo EJ, Kim ST, Jung HS, Jee JP, Choi HG, Jang DJ. Development and Evaluation of Self-Microemulsifying Drug Delivery System for Improving Oral Absorption of Poorly Water-Soluble Olaparib. Pharmaceutics 2023; 15:1669. [PMID: 37376117 DOI: 10.3390/pharmaceutics15061669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this study is to develop and evaluate a self-microemulsifying drug delivery system (SMEDDS) to improve the oral absorption of poorly water-soluble olaparib. Through the solubility test of olaparib in various oils, surfactants and co-surfactants, pharmaceutical excipients were selected. Self-emulsifying regions were identified by mixing the selected materials at various ratios, and a pseudoternary phase diagram was constructed by synthesizing these results. The various physicochemical properties of microemulsion incorporating olaparib were confirmed by investigating the morphology, particle size, zeta potential, drug content and stability. In addition, the improved dissolution and absorption of olaparib were also confirmed through a dissolution test and a pharmacokinetic study. An optimal microemulsion was generated in the formulation of Capmul® MCM 10%, Labrasol® 80% and PEG 400 10%. The fabricated microemulsions were well-dispersed in aqueous solutions, and it was also confirmed that they were maintained well without any problems of physical or chemical stability. The dissolution profiles of olaparib were significantly improved compared to the value of powder. Associated with the high dissolutions of olaparib, the pharmacokinetic parameters were also greatly improved. Taken together with the results mentioned above, the microemulsion could be an effective tool as a formulation for olaparib and other similar drugs.
Collapse
Affiliation(s)
- Yong-Han Kim
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, Seoul 03722, Republic of Korea
| | - Se-Hee Choi
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Pharmaceutical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | | | - Sung-Hoon Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyung-Sun Moon
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwan-Hyung Cho
- College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Tae-Yong Sim
- Department of Artificial Intelligence, Sejong University, Seoul 05006, Republic of Korea
| | - Eun-Ji Heo
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Bio-Pharmaceutical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sung Tae Kim
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Republic of Korea
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Hyun-Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea
| | - Dong-Jin Jang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
7
|
Mohmaed Ali MI, Bruin MAC, Dezentjé VO, Beijnen JH, Steeghs N, Huitema ADR. Exposure-Response Analyses of Olaparib in Real-Life Patients with Ovarian Cancer. Pharm Res 2023; 40:1239-1247. [PMID: 36944815 DOI: 10.1007/s11095-023-03497-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Olaparib is given in a fixed dose of twice-daily 300 mg in patients who are diagnosed with ovarian cancer, breast cancer, prostate cancer or pancreas cancer and has a high interpatient variability in pharmacokinetic exposure. The objective of this study was to investigate whether pharmacokinetic exposure of olaparib is related to efficacy and safety in a real-life patient' cohort. METHODS A longitudinal observational study was conducted in patients who received olaparib for metastatic ovarian cancer of whom pharmacokinetic samples were collected. A Kaplan-Meier analyses was used to explore the relationship between olaparib exposure, measured as (calculated) minimum plasma concentrations (Cmin), and efficacy, Univariate and multivariate cox-regression analyses were performed. Also, the Cmin of patients who experienced toxicity was compared with patients who did not experience any toxicity. RESULTS Thirty-five patients were included in the exposure-efficacy analyses, with a median olaparib Cmin of 1514 ng/mL. There was no statistical significant difference in PFS of patients below and above the median Cmin concentration of olaparib, with a hazard ratio of 1.06 (95% confidence interval: 0.46-2.45, p = 0.9)). For seven patients pharmacokinetic samples were available before toxicity occurred, these patients had a higher Cmin of olaparib in comparison with patients who had not experienced any toxicity (n = 33), but it was not statistically significant (p = 0.069). CONCLUSIONS Our study shows that exposure of olaparib is not related to PFS. This suggests that the approved dose of olaparib yields sufficient target inhibition in the majority of patients.
Collapse
Affiliation(s)
- Ma Ida Mohmaed Ali
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Maaike A C Bruin
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Vincent O Dezentjé
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmaco-Epidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Neeltje Steeghs
- Division of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Maiorano BA, Maiorano MFP, Maiello E. Olaparib and advanced ovarian cancer: Summary of the past and looking into the future. Front Pharmacol 2023; 14:1162665. [PMID: 37153769 PMCID: PMC10160416 DOI: 10.3389/fphar.2023.1162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Ovarian cancer (OC) is women's eighth most common cancer, bearing the highest mortality rates of all female reproductive system malignancies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have reshaped the treatment scenario of metastatic OC as a maintenance post platinum-based chemotherapy. Olaparib is the first PARPi developed for this disease. Results from Study 42, Study 19, SOLO2, OPINION, SOLO1, and PAOLA-1 clinical trials, led to the FDA and EMA approval of olaparib for the maintenance treatment of women with high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer without platinum progression: in the platinum-sensitive recurrent OC; in the newly diagnosed setting in case Breast Cancer (BRCA) mutations and, in combination with bevacizumab, in case of BRCA mutation or deficiency of homologous recombination genes. In this review, we synthetized olaparib's pharmacokinetic and pharmacodynamic properties and its use in special populations. We summarized the efficacy and safety of the studies leading to the current approvals and discussed the future developments of this agent.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Mauro Francesco Pio Maiorano,
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| |
Collapse
|
9
|
Bruin MAC, Sonke GS, Beijnen JH, Huitema ADR. Pharmacokinetics and Pharmacodynamics of PARP Inhibitors in Oncology. Clin Pharmacokinet 2022; 61:1649-1675. [PMID: 36219340 PMCID: PMC9734231 DOI: 10.1007/s40262-022-01167-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 12/15/2022]
Abstract
Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treatment of ovarian, breast, pancreatic, and/or prostate cancer. Poly (ADP-ribose) polymerase inhibitors are potent inhibitors of the PARP enzymes with comparable half-maximal inhibitory concentrations in the nanomolar range. Olaparib and rucaparib are orally dosed twice a day, extensively metabolized by cytochrome P450 enzymes, and inhibitors of several enzymes and drug transporters with a high risk for drug-drug interactions. Niraparib and talazoparib are orally dosed once a day with a lower risk for niraparib and a minimal risk for talazoparib to cause drug-drug interactions. All four PARP inhibitors show moderate-to-high interindividual variability in plasma exposure. Higher exposure is associated with an increase in toxicity, mostly hematological toxicity. For talazoparib, exposure-efficacy relationships have been described, but for olaparib, niraparib, and rucaparib this relationship remains inconclusive. Further studies are required to investigate exposure-response relationships to improve dosing of PARP inhibitors, in which therapeutic drug monitoring could play an important role. In this review, we give an overview of the pharmacokinetic properties of the four PARP inhibitors, including considerations for patients with renal dysfunction or hepatic impairment, the effect of food, and drug-drug interactions. Furthermore, we focus on the pharmacodynamics and summarize the available exposure-efficacy and exposure-toxicity relationships.
Collapse
Affiliation(s)
- Maaike A C Bruin
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
10
|
Bouchet S, Molimard M. Pharmacokinetics and therapeutic drug monitoring of anticancer protein/kinase inhibitors. Therapie 2022; 77:157-170. [PMID: 35101282 DOI: 10.1016/j.therap.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023]
Abstract
Over the past two decades, protein/kinase inhibitors, as targeted therapies, raised in number and have become increasingly mainstream in the treatment of malignant diseases, thanks to the ease of oral administration and the minimal adverse drug reactions. These drugs have similar pharmacokinetic properties: a relatively good absorption and distribution, a strong hepatic metabolism, and a mainly biliary excretion. However, this pharmacokinetic and route of administration has the disadvantage of resulting in a large inter- and intra-individual variability. Despite this significant variability, these drugs are largely prescribed at the same initial dose for quite all patients (flat dose), even though this variability would require individualized adaptation for each patient and/or each new circumstance. Promptly after their commercialization, scientific teams have performed concentration measurements of several drugs and showed the existence of efficacy or toxicity thresholds. This has contributed to the development of therapeutic drug monitoring as one of the strategies to improve the response and reduce the adverse reactions of these drugs. There is still a need to determine precise thresholds for the remaining drugs and to evaluate the impact of TDM in therapeutic management. In order to determine the current state of the art, this article reviews indications, pharmacokinetics and TDM data for 49 marketed PKIs.
Collapse
Affiliation(s)
- Stéphane Bouchet
- Inserm U1219, laboratoire de pharmaco-toxicologie, service de pharmacologie médicale, CHU de Bordeaux, 33076 Bordeaux, France.
| | - Mathieu Molimard
- Inserm U1219, laboratoire de pharmaco-toxicologie, service de pharmacologie médicale, CHU de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
11
|
Velev M, Puszkiel A, Blanchet B, de Percin S, Delanoy N, Medioni J, Gervais C, Balakirouchenane D, Khoudour N, Pautier P, Leary A, Ajgal Z, Hirsch L, Goldwasser F, Alexandre J, Beinse G. Association between Olaparib Exposure and Early Toxicity in BRCA-Mutated Ovarian Cancer Patients: Results from a Retrospective Multicenter Study. Pharmaceuticals (Basel) 2021; 14:ph14080804. [PMID: 34451901 PMCID: PMC8399031 DOI: 10.3390/ph14080804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/12/2021] [Indexed: 12/27/2022] Open
Abstract
Factors associated with olaparib toxicity remain unknown in ovarian cancer patients. The large inter-individual variability in olaparib pharmacokinetics could contribute to the onset of early significant adverse events (SAE). We aimed to retrospectively analyze the pharmacokinetic/pharmacodynamic relationship for toxicity in ovarian cancer patients from “real life” data. The clinical endpoint was the onset of SAE (grade III/IV toxicity or dose reduction/discontinuation). Plasma olaparib concentration was assayed using liquid chromatography at any time over the dosing interval. Trough concentrations (CminPred) were estimated using a population pharmacokinetic model. The association between toxicity and clinical characteristics or CminPred was assessed by logistic regression and non-parametric statistical tests. Twenty-seven patients were included, among whom 13 (48%) experienced SAE during the first six months of treatment. Olaparib CminPred was the only covariate significantly associated with increased risk of SAE onset (odds ratio = 1.31, 95% CI = [1.10; 1.57], for each additional 1000 ng/mL). The ROC curve identified a threshold of CminPred = 2500 ng/mL for prediction of SAE onset (sensitivity/specificity 0.62 and 1.00, respectively). This study highlights a significant association between olaparib plasma exposure and SAE onset and identified the threshold of 2500 ng/mL trough concentration as potentially useful to guide dose adjustment in ovarian cancer patients.
Collapse
Affiliation(s)
- Maud Velev
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
| | - Alicja Puszkiel
- Department of Pharmacokinetics and Pharmacochemistry, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (A.P.); (B.B.); (D.B.); (N.K.)
- INSERM UMR-S1144, Faculté de Pharmacie, Université de Paris, 75006 Paris, France
| | - Benoit Blanchet
- Department of Pharmacokinetics and Pharmacochemistry, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (A.P.); (B.B.); (D.B.); (N.K.)
- UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, CARPEM, 75006 Paris, France
| | - Sixtine de Percin
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
| | - Nicolas Delanoy
- Department of Medical Oncology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; (N.D.); (J.M.); (C.G.)
| | - Jacques Medioni
- Department of Medical Oncology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; (N.D.); (J.M.); (C.G.)
| | - Claire Gervais
- Department of Medical Oncology, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France; (N.D.); (J.M.); (C.G.)
| | - David Balakirouchenane
- Department of Pharmacokinetics and Pharmacochemistry, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (A.P.); (B.B.); (D.B.); (N.K.)
| | - Nihel Khoudour
- Department of Pharmacokinetics and Pharmacochemistry, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (A.P.); (B.B.); (D.B.); (N.K.)
| | - Patricia Pautier
- Gustave Roussy Cancer Center, Department of Medical Oncology, Université Paris-Saclay, 94805 Villejuif, France; (P.P.); (A.L.)
| | - Alexandra Leary
- Gustave Roussy Cancer Center, Department of Medical Oncology, Université Paris-Saclay, 94805 Villejuif, France; (P.P.); (A.L.)
| | - Zahra Ajgal
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
| | - Laure Hirsch
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
| | - François Goldwasser
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
| | - Jerome Alexandre
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), 75006 Paris, France
- Correspondence: ; Tel.: +33-01-(58)-414141
| | - Guillaume Beinse
- Department of Medical Oncology, Cochin University Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; (M.V.); (S.d.P.); (Z.A.); (L.H.); (F.G.); (G.B.)
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm, Team Personalized Medicine, Pharmacogenomics and Therapeutic Optimization (MEPPOT), 75006 Paris, France
| |
Collapse
|
12
|
The evolving role of PARP inhibitors in advanced ovarian cancer. FORUM OF CLINICAL ONCOLOGY 2021. [DOI: 10.2478/fco-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The field of ovarian cancer has been revolutionized with the use of poly (ADP-ribose) polymerase (PARP) inhibitors, which present greater inhibition effect in epithelial subtype due to high rates of homologous recombination deficiency. PARP inhibition exploits this cancer pitfall by disrupting DNA repair, leading to genomic instability and apoptosis. Three PARP inhibitors (olaparib, niraparib, and rucaparib) are now approved for use in women with epithelial ovarian cancer, while others are under development. Among women with BRCA1/2 mutations, maintenance PARP therapy has led to a nearly fourfold prolongation of PFS, while those without BRCA1/2 mutations experience an approximately twofold increase in PFS. Differences in trial design, patient selection and primary analysis population affect the conclusions on PARP inhibitors. Limited OS data have been published and there is also limited experience regarding long-term safety. With regard to toxicity profile, there are no differences in serious adverse events between the experimental and control groups. However, combining adverse event data from maintenance phases, a trend towards more events in the experimental group, compared with controls, has been shown. The mechanisms of PARP-inhibitor resistance include restoration of HR through reversion mutations in HR genes, leading to resumed HR function. Other mechanisms that sustain sufficient DNA repair are discussed as well. PARP inhibitors play a pivotal role in the management of ovarian cancer, affecting the future treatment choices. Defining exactly which patients will benefit from them is a challenge and the need for HRD testing to define ‘BRCA-ness’ will add additional costs to treatment.
Collapse
|
13
|
Mueller-Schoell A, Groenland SL, Scherf-Clavel O, van Dyk M, Huisinga W, Michelet R, Jaehde U, Steeghs N, Huitema ADR, Kloft C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol 2021; 77:441-464. [PMID: 33165648 PMCID: PMC7935845 DOI: 10.1007/s00228-020-03014-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.
Collapse
Affiliation(s)
- Anna Mueller-Schoell
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program, PharMetrX, Berlin/Potsdam, Germany
| | - Stefanie L Groenland
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Madelé van Dyk
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Neeltje Steeghs
- Department of Clinical Pharmacology, Division of Medical Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center, Utrecht University, Utrecht, The Netherlands
| | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Geenen JJJ, Dackus GMHE, Schouten PC, Pluim D, Marchetti S, Sonke GS, Jóźwiak K, Huitema ADR, Beijnen JH, Schellens JHM, Linn SC. A Phase I dose-escalation study of two cycles carboplatin-olaparib followed by olaparib monotherapy in patients with advanced cancer. Int J Cancer 2021; 148:3041-3050. [PMID: 33539540 PMCID: PMC8248128 DOI: 10.1002/ijc.33498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Preclinical studies have shown synergistic effects when combining PARP1/2 inhibitors and platinum drugs in BRCA1/2 mutated cancer cell models. After a formulation change of olaparib from capsules to tablets, we initiated a dose finding study of olaparib tablets bidaily (BID) continuously with carboplatin to prepare comparative studies in this patient group. Patients were included in a 3 + 3 dose‐escalation schedule: olaparib 25 mg BID and carboplatin area under the curve (AUC) 3 mg*min/mL d1/d22, olaparib 25 mg BID and carboplatin AUC 4 mg*min/mL d1/d22, followed by increasing dose‐levels of olaparib from 50 mg BID, 75 mg BID, to 100 mg BID with carboplatin at AUC 4 mg*min/mL d1/d22. After two cycles, patients continued olaparib 300 mg BID as monotherapy. Primary objective was to assess the maximum tolerable dose (MTD). Twenty‐four patients with a confirmed diagnosis of advanced cancer were included. Most common adverse events were nausea (46%), fatigue (33%) and platelet count decrease (33%). Dose‐level 3 (olaparib 75 mg BID and carboplatin AUC 4 mg*min/mL; n = 6) was defined as MTD. Fourteen out of 24 patients (56%) had a partial response as best response (RECIST 1.1). Systemic exposure of the olaparib tablet formulation appeared comparable to the previous capsule formulation with olaparib tablet AUC0‐12 of 16.3 μg/mL*h at MTD. Polymers of ADP‐ribose levels in peripheral blood mononuclear cells were reduced by 98.7% ± 0.14% at Day 8 compared to Day 1 for dose‐level 3. Olaparib tablets 75 mg BID and carboplatin AUC 4 mg*min/mL for two cycles preceding olaparib monotherapy 300 mg is a feasible and tolerable treatment schedule for patients with advanced cancer.
What's new?
Preclinical studies have shown synergistic effects when combining PARP1/2‐inhibitors and platinum drugs in BRCA1/2 mutated cancer cell models. This phase I trial of olaparib tablets combined with carboplatin in advanced cancer patients showed that the combination has an acceptable side‐effect profile. The maximum tolerable dose was olaparib tablets 75 mg BID and carboplatin AUC 4 mg*min/ml. The observed preliminary anti‐tumor activity was encouraging, with 58% of patients having a decrease in tumor volume of more than 30%. This study shows that the tablet formulation of olaparib can be administered safely in combination with carboplatin, compared to the previous capsule formulation.
Collapse
Affiliation(s)
- Jill J J Geenen
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gwen M H E Dackus
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Philip C Schouten
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dick Pluim
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Serena Marchetti
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Katarzyna Jóźwiak
- Brandenburg Medical School Theodor Fontane, Institute of Biostatistics and Registry Research, Neuruppin, Germany
| | - Alwin D R Huitema
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Utrecht University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | - Jos H Beijnen
- Department of Clinical Pharmacology, Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Clinical Pharmacy, Utrecht University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | - Jan H M Schellens
- Faculty of Science, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht, The Netherlands
| | - Sabine C Linn
- Department of Molecular Pathology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, Utrecht University Medical Center, Utrecht, The Netherlands.,Department of Medical Oncology, Antoni van Leeuwenhoek Hospital - Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Egnell AC, Johansson S, Chen C, Berges A. Clinical Pharmacology Modeling and Simulation in Drug Development. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Rolfo C, de Vos-Geelen J, Isambert N, Molife LR, Schellens JHM, De Grève J, Dirix L, Grundtvig-Sørensen P, Jerusalem G, Leunen K, Mau-Sørensen M, Plummer R, Learoyd M, Bannister W, Fielding A, Ravaud A. Pharmacokinetics and Safety of Olaparib in Patients with Advanced Solid Tumours and Renal Impairment. Clin Pharmacokinet 2020; 58:1165-1174. [PMID: 30877569 DOI: 10.1007/s40262-019-00754-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Olaparib, a potent oral poly(ADP-ribose) polymerase inhibitor, is partially renally cleared. We investigated the pharmacokinetics and safety of olaparib in patients with mild or moderate renal impairment to provide dosing recommendations. METHODS This phase I open-label study assessed the pharmacokinetics, safety and tolerability of single-dose, oral 300-mg olaparib tablets in adults (aged 18-75 years) with solid tumours. Patients had normal renal function, or mild or moderate renal impairment (estimated creatinine clearance ≥ 81, 51-80 or 31-50 mL/min, respectively). Blood was collected for 96 h, and urine samples collected for 24 h post-dose. Patients could continue taking olaparib 300 mg twice daily for a long-term safety assessment. RESULTS Overall, 44 patients received one or more doses of olaparib and 38 were included in the pharmacokinetic assessment. Patients with mild renal impairment had an area under the curve geometric least-squares mean ratio of 1.24 (90% confidence interval 1.06-1.47) and a geometric least-squares mean maximum plasma concentration ratio of 1.15 (90% confidence interval 1.04-1.27) vs. those with normal renal function. In patients with moderate renal impairment, the geometric least-squares mean ratio for the area under the curve was 1.44 (90% confidence interval 1.10-1.89) and for the maximum plasma concentration was 1.26 (90% confidence interval 1.06-1.48) vs. those with normal renal function. No new safety signals were detected in patients with mild or moderate renal impairment. CONCLUSIONS In patients with mild renal impairment, the small increase in exposure to olaparib was not considered clinically relevant. In patients with moderate renal impairment, exposure to olaparib increased by 44%; thus, these patients should be carefully monitored and the tablet dose should be adjusted to 200 mg twice daily. CLINICAL TRIALS REGISTRATION NCT01894256.
Collapse
Affiliation(s)
- Christian Rolfo
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| | - Judith de Vos-Geelen
- Department of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Jan H M Schellens
- The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jacques De Grève
- Medical Oncology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Luc Dirix
- GZA Ziekenhuizen-Campus Sint Augustinus, Wilrijk, Belgium
| | | | - Guy Jerusalem
- Centre Hospitalier Universitaire du Sart Tilman, Liège University, Liège, Belgium
| | | | | | | | | | | | | | - Alain Ravaud
- Hôpital Saint André, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
17
|
Lloyd RL, Wijnhoven PWG, Ramos-Montoya A, Wilson Z, Illuzzi G, Falenta K, Jones GN, James N, Chabbert CD, Stott J, Dean E, Lau A, Young LA. Combined PARP and ATR inhibition potentiates genome instability and cell death in ATM-deficient cancer cells. Oncogene 2020; 39:4869-4883. [PMID: 32444694 PMCID: PMC7299845 DOI: 10.1038/s41388-020-1328-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
The poly (ADP-ribose) polymerase (PARP) inhibitor olaparib is FDA approved for the treatment of BRCA-mutated breast, ovarian and pancreatic cancers. Olaparib inhibits PARP1/2 enzymatic activity and traps PARP1 on DNA at single-strand breaks, leading to replication-induced DNA damage that requires BRCA1/2-dependent homologous recombination repair. Moreover, DNA damage response pathways mediated by the ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia mutated and Rad3-related (ATR) kinases are hypothesised to be important survival pathways in response to PARP-inhibitor treatment. Here, we show that olaparib combines synergistically with the ATR-inhibitor AZD6738 (ceralasertib), in vitro, leading to selective cell death in ATM-deficient cells. We observe that 24 h olaparib treatment causes cells to accumulate in G2-M of the cell cycle, however, co-administration with AZD6738 releases the olaparib-treated cells from G2 arrest. Selectively in ATM-knockout cells, we show that combined olaparib/AZD6738 treatment induces more chromosomal aberrations and achieves this at lower concentrations and earlier treatment time-points than either monotherapy. Furthermore, single-agent olaparib efficacy in vitro requires PARP inhibition throughout multiple rounds of replication. Here, we demonstrate in several ATM-deficient cell lines that the olaparib and AZD6738 combination induces cell death within 1-2 cell divisions, suggesting that combined treatment could circumvent the need for prolonged drug exposure. Finally, we demonstrate in vivo combination activity of olaparib and AZD6738 in xenograft and PDX mouse models with complete ATM loss. Collectively, these data provide a mechanistic understanding of combined PARP and ATR inhibition in ATM-deficient models, and support the clinical development of AZD6738 in combination with olaparib.
Collapse
Affiliation(s)
- Rebecca L Lloyd
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
- The Wellcome trust and CRUK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Zena Wilson
- Bioscience, Oncology R&D, AstraZeneca, Alderley Park, UK
| | | | | | - Gemma N Jones
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Neil James
- Bioscience, Oncology R&D, AstraZeneca, Alderley Park, UK
| | | | - Jonathan Stott
- Quantitative Biology, Discovery Science, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Emma Dean
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alan Lau
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Lucy A Young
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
18
|
Yuan P, Shentu J, Xu J, Burke W, Hsu K, Learoyd M, Zhu M, Xu B. Pharmacokinetics and safety of olaparib tablets as monotherapy and in combination with paclitaxel: results of a Phase I study in Chinese patients with advanced solid tumours. Cancer Chemother Pharmacol 2019; 83:963-974. [PMID: 30887180 DOI: 10.1007/s00280-019-03799-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE Chinese patients have been enrolled in multiple Phase III trials of the poly(ADP-ribose) polymerase (PARP) inhibitor olaparib (Lynparza); however, the pharmacokinetic (PK) profile of olaparib has not been investigated in this population. This two-part, open-label Phase I study was, therefore, carried out to determine the PK and safety profile of olaparib (tablet formulation) in Chinese patients with advanced solid tumours as monotherapy and in combination with paclitaxel (NCT02430311). METHODS The PK profile of olaparib 300 mg (twice daily [bid]; Cohort 1) as monotherapy after a single dose and at steady state, and 100 mg (bid; Cohort 2) as monotherapy (single dose and at steady state) and in combination (at steady state) with weekly paclitaxel (80 mg/m2) was assessed during Part A. Patients could continue to receive treatment (monotherapy, Cohort 1; combination therapy, Cohort 2) in Part B, which assessed safety and tolerability. RESULTS Twenty and 16 patients were enrolled into Cohorts 1 and 2, respectively. Steady-state olaparib exposure increased slightly less than proportionally with increasing monotherapy dose and inter-patient variability was high. A statistically significant decrease in olaparib exposure was seen when given in combination with paclitaxel. Discontinuation due to adverse events (AEs) was rare and haematological AEs were more common in patients receiving combination treatment. CONCLUSIONS The PK and safety profile of olaparib monotherapy in Chinese patients is consistent with that seen previously in Western and Japanese patients, and the recommended Phase III monotherapy tablet dose (300 mg bid) is suitable for use in this population.
Collapse
Affiliation(s)
- Peng Yuan
- National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 17 Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital of Zhejiang University, Zhejiang, China
| | - Jianming Xu
- Affiliated Hospital Cancer Center, The 307th Hospital of Chinese People's Liberation Army, Academy of Military Medical Sciences, Beijing, China
| | | | | | | | - Min Zhu
- AstraZeneca, Shanghai, China
| | - Binghe Xu
- National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), No. 17 Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
19
|
Zhou D, Li J, Learoyd M, Bui K, Berges A, Milenkova T, Al‐Huniti N, Tomkinson H, Xu H. Efficacy and Safety Exposure‐Response Analyses of Olaparib Capsule and Tablet Formulations in Oncology Patients. Clin Pharmacol Ther 2019; 105:1492-1500. [DOI: 10.1002/cpt.1338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Diansong Zhou
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Boston Massachusetts USA
| | - Jianguo Li
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Boston Massachusetts USA
| | - Maria Learoyd
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Cambridge UK
| | - Khanh Bui
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Boston Massachusetts USA
| | - Alienor Berges
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Cambridge UK
| | | | - Nidal Al‐Huniti
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Boston Massachusetts USA
| | - Helen Tomkinson
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Cambridge UK
| | - Hongmei Xu
- Quantitative Clinical Pharmacology, Early Clinical DevelopmentIMED Biotech UnitAstraZeneca Boston Massachusetts USA
| |
Collapse
|
20
|
Xu H, Tong X, Mugundu G, Scott ML, Cook C, Arfvidsson C, Pease E, Zhou D, Lyne P, Al-Huniti N. Population pharmacokinetic analysis of danvatirsen supporting flat dosing switch. J Pharmacokinet Pharmacodyn 2019; 46:65-74. [PMID: 30661177 DOI: 10.1007/s10928-019-09619-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Danvatirsen is a Generation 2.5 antisense oligonucleotide under clinical development. Population PK modelling was conducted using data from 3 available danvatirsen Phase I/II studies in oncology patients to investigate the impact of flat dosing on exposure compared to ideal body weight-based dosing. A total of 126 patients who received danvatirsen doses ranging from 1 to 4 mg/kg as monotherapy or in combination with durvalumab, most at 3 mg/kg (n = 70), was used in the danvatirsen population PK analysis. A 2-compartment model with linear elimination described the data well. Covariate analysis revealed ideal body weight was not a significant covariate on the PK of danvatirsen; nor was age, sex or race. The model-based simulation suggested that steady state weekly AUC and Cmax were very similar between 3 mg/kg and 200 mg flat dosing (geometric mean of AUC: 62.5 vs. 63.4 mg h/L and Cmax: 26.2 vs. 26.5 mg/L for two dose groups) with slightly less overall between-subject variability in the flat dosing regimen. The switch to flat dosing was approved by multiple regulatory agencies, including FDA, EMA, PMDA and ANSM. Several ongoing studies have been evaluating flat dosing. Interim analysis from an ongoing study (D5660C00016, NCT03421353) has shown the observed steady state concentration from 200 mg flat dose is in agreement with the model predictions. The population PK model could be further utilized in subsequent exposure-response efficacy and safety modelling.
Collapse
Affiliation(s)
- Hongmei Xu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Xiao Tong
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Ganesh Mugundu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, MA, USA. .,AstraZeneca, 35 Gatehouse Dr., Waltham, MA, 02451, USA.
| | | | - Carl Cook
- Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Cecilia Arfvidsson
- Clinical Sample and Bioanalytical Science, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Diansong Zhou
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| | - Paul Lyne
- Oncology, IMED Biotech Unit, AstraZeneca, Boston, USA
| | - Nidal Al-Huniti
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca, Boston, MA, USA
| |
Collapse
|
21
|
Friedlander M, Shannon C, Goh J, Scott C, Mileshkin L. Practical considerations for clinicians for transitioning patients on maintenance therapy with olaparib capsules to the tablet formulation of olaparib. Asia Pac J Clin Oncol 2018; 14:459-464. [PMID: 30479036 DOI: 10.1111/ajco.13104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE Olaparib was originally formulated as 50 mg capsules with a recommended dose of 400 mg twice daily which requires patients to take 16 capsules a day. More recently, a tablet formulation with equivalent efficacy has become available and reduces the pill burden for patients to two tablets twice daily which is more convenient for patients. However, it is important to understand the key differences between the olaparib capsule and tablet formulations as they are not bioequivalent, and the doses are not interchangeable. Educating patients when transitioning from capsules to tablets is critical to avoid dosing errors and maintain both safety and efficacy of olaparib maintenance therapy. MAIN RECOMMENDATIONS There are no established guidelines on transitioning patients from capsules to tablets. Patients taking 400 mg of the capsules twice daily should be switched to 300 mg of the tablets twice daily. In patients on a reduced dose of 200 mg capsules twice daily, consider switching to 250 mg twice daily of the tablet formulation. In patients on 100 mg capsules twice daily, consider 200 mg tablets twice daily. Particular care should be taken in transitioning patients who are on a reduced dose due to anemia and who have a low hemoglobin (9 g/dL) where a lower dose of the tablets should be considered initially. Close monitoring of patients for the first 3 months with further dose reductions based on tolerability is recommended. The tablet dose can be escalated or de-escalated depending on tolerance.
Collapse
Affiliation(s)
- Michael Friedlander
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, New South Wales, Australia.,The Prince of Wales Clinical School, University of New South Wales, UNSW, New South Wales, Australia
| | | | - Jeffrey Goh
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,The University of Queensland, St Lucia, Queensland, Australia
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Linda Mileshkin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|