1
|
Ahmad S, Shah SA, Nishan U, Khan N, Almutairi MH, Fozia F, Jamila N, Almutairi BO, Ullah Z. 6-Aminoflavone Activates Nrf2 to Inhibit the Phospho-JNK/TNF-α Signaling Pathway to Reduce Amyloid Burden in an Aging Mouse Model. ACS OMEGA 2023; 8:26955-26964. [PMID: 37546603 PMCID: PMC10399177 DOI: 10.1021/acsomega.3c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
In the current study, we examined the antioxidant activity and anti-amyloidogenic potential of 6-aminoflavone in an adult mice model of d-galactose-induced aging. Male albino eight-week-old mice were assigned into four groups: 1. the control group (saline-treated), 2. d-galactose-treated mice (100 mg/kg/day, intravenously) for eight weeks, 3. d-galactose-treated mice (100 mg/kg/day, intravenously for eight weeks) and 6-AF-treated mice (30 mg/kg/day, intravenously for the final four weeks), and 4. 6-AF-treated mice (30 mg/kg/day i.p. for four weeks). We conducted many assays for antioxidant enzymes, including lipid peroxidation, catalase, glutathione (GSH), peroxidase (POD), and sulfoxide dismutase (SOD) (LPO). Western blotting was used to assess protein expression while the Morris water maze (MWM) and Y-maze (YM) were used to study behavior. The findings show that 6-AF greatly improved neuronal synapse and memory impairment brought on by d-galactose and it significantly inhibited BACE1 to reduce the amyloidogenic pathway of A (both amyloid β production and aggregation) by upregulating Nrf2 proteins (validated through molecular docking studies) and suppressing phosphorylated JNK and TNF-α proteins in adult albino mice's brain homogenates. These findings suggest that 6-AF, through the Nrf2/p-JNK/TNF-α signaling pathway, can diminish the oxidative stress caused by d-galactose, as well as the amyloidogenic route of A formation and memory impairment.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Shahid Ali Shah
- Department
of Biology, University of Haripur, Haripur 22620, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Mikhlid H. Almutairi
- Zoology
Department, College of Science, King Saud
University, P.O. Box: 2455, 11451 Riyadh, Saudi
Arabia
| | - Fozia Fozia
- Department
of Biochemistry, KMU Institute of Medical
Sciences, Kohat 26000, KP, Pakistan
| | - Nargis Jamila
- Department
of Chemistry, Shaheed Benazir Bhutto Women
University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Bader O. Almutairi
- Zoology
Department, College of Science, King Saud
University, P.O. Box: 2455, 11451 Riyadh, Saudi
Arabia
| | - Zia Ullah
- College of
Professional Studies, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Levodopa-Induced Dyskinesia in Parkinson's Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022; 11:cells11233736. [PMID: 36496996 PMCID: PMC9736114 DOI: 10.3390/cells11233736] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The most commonly used treatment for Parkinson's disease (PD) is levodopa, prescribed in conjunction with carbidopa. Virtually all patients with PD undergo dopamine replacement therapy using levodopa during the course of the disease's progression. However, despite the fact that levodopa is the "gold standard" in PD treatments and has the ability to significantly alleviate PD symptoms, it comes with side effects in advanced PD. Levodopa replacement therapy remains the current clinical treatment of choice for Parkinson's patients, but approximately 80% of the treated PD patients develop levodopa-induced dyskinesia (LID) in the advanced stages of the disease. A better understanding of the pathological mechanisms of LID and possible means of improvement would significantly improve the outcome of PD patients, reduce the complexity of medication use, and lower adverse effects, thus, improving the quality of life of patients and prolonging their life cycle. This review assesses the recent advancements in understanding the underlying mechanisms of LID and the therapeutic management options available after the emergence of LID in patients. We summarized the pathogenesis and the new treatments for LID-related PD and concluded that targeting pathways other than the dopaminergic pathway to treat LID has become a new possibility, and, currently, amantadine, drugs targeting 5-hydroxytryptamine receptors, and surgery for PD can target the Parkinson's symptoms caused by LID.
Collapse
|
3
|
Latif K, Ullah A, Shkodina AD, Boiko DI, Rafique Z, Alghamdi BS, Alfaleh MA, Ashraf GM. Drug reprofiling history and potential therapies against Parkinson's disease. Front Pharmacol 2022; 13:1028356. [PMID: 36386233 PMCID: PMC9643740 DOI: 10.3389/fphar.2022.1028356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022] Open
Abstract
Given the high whittling down rates, high costs, and moderate pace of new medication, revelation, and improvement, repurposing "old" drugs to treat typical and uncommon illnesses is progressively becoming an appealing proposition. Drug repurposing is the way toward utilizing existing medications in treating diseases other than the purposes they were initially designed for. Faced with scientific and economic challenges, the prospect of discovering new medication indications is enticing to the pharmaceutical sector. Medication repurposing can be used at various stages of drug development, although it has shown to be most promising when the drug has previously been tested for safety. We describe strategies of drug repurposing for Parkinson's disease, which is a neurodegenerative condition that primarily affects dopaminergic neurons in the substantia nigra. We also discuss the obstacles faced by the repurposing community and suggest new approaches to solve these challenges so that medicine repurposing can reach its full potential.
Collapse
Affiliation(s)
- Komal Latif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aman Ullah
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millet University, Islamabad, Pakistan
| | - Anastasiia D. Shkodina
- Department of Neurological Diseases, Poltava State Medical University, Poltava, Ukraine
- Municipal Enterprise “1 City Clinical Hospital of Poltava City Council”, Poltava, Ukraine
| | - Dmytro I. Boiko
- Department of Psychiatry, Narcology and Medical Psychology, Poltava State Medical University, Poltava, Ukraine
| | - Zakia Rafique
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Badrah S. Alghamdi
- Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A. Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Division of Vaccines and Immunotherapy, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
de Bartolomeis A, Vellucci L, Barone A, Manchia M, De Luca V, Iasevoli F, Correll CU. Clozapine's multiple cellular mechanisms: What do we know after more than fifty years? A systematic review and critical assessment of translational mechanisms relevant for innovative strategies in treatment-resistant schizophrenia. Pharmacol Ther 2022; 236:108236. [PMID: 35764175 DOI: 10.1016/j.pharmthera.2022.108236] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
Almost fifty years after its first introduction into clinical care, clozapine remains the only evidence-based pharmacological option for treatment-resistant schizophrenia (TRS), which affects approximately 30% of patients with schizophrenia. Despite the long-time experience with clozapine, the specific mechanism of action (MOA) responsible for its superior efficacy among antipsychotics is still elusive, both at the receptor and intracellular signaling level. This systematic review is aimed at critically assessing the role and specific relevance of clozapine's multimodal actions, dissecting those mechanisms that under a translational perspective could shed light on molecular targets worth to be considered for further innovative antipsychotic development. In vivo and in vitro preclinical findings, supported by innovative techniques and methods, together with pharmacogenomic and in vivo functional studies, point to multiple and possibly overlapping MOAs. To better explore this crucial issue, the specific affinity for 5-HT2R, D1R, α2c, and muscarinic receptors, the relatively low occupancy at dopamine D2R, the interaction with receptor dimers, as well as the potential confounder effects resulting in biased ligand action, and lastly, the role of the moiety responsible for lipophilic and alkaline features of clozapine are highlighted. Finally, the role of transcription and protein changes at the synaptic level, and the possibility that clozapine can directly impact synaptic architecture are addressed. Although clozapine's exact MOAs that contribute to its unique efficacy and some of its severe adverse effects have not been fully understood, relevant information can be gleaned from recent mechanistic understandings that may help design much needed additional therapeutic strategies for TRS.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy.
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment Resistant Psychosis, Department of Neuroscience, Reproductive Science and Dentistry, University Medical School of Naples "Federico II", Naples, Italy
| | - Christoph U Correll
- The Zucker Hillside Hospital, Department of Psychiatry, Northwell Health, Glen Oaks, NY, USA; Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Department of Psychiatry and Molecular Medicine, Hempstead, NY, USA; Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
| |
Collapse
|
5
|
Coulson J. Identifying and managing adverse drug reactions to promote medicines adherence and safety. Nurs Stand 2022; 37:e11829. [PMID: 35599604 DOI: 10.7748/ns.2022.e11829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Unpleasant side effects or adverse drug reactions (ADRs) caused by medicines can have significant effects on people's quality of life and therapeutic outcomes. Knowledge of how ADRs occur enables nurses who prescribe and/or administer medicines to identify and manage them effectively, which can improve the patient experience and increase adherence. This article outlines the types of ADRs and explains how nurses can reduce medicines-related harm by following the principles of medicines optimisation, undertaking regular medication reviews and communicating openly with patients about their medicines.
Collapse
Affiliation(s)
- Jodie Coulson
- Department of Health Sciences, University of York, Heslington, England
| |
Collapse
|
6
|
Bandopadhyay R, Mishra N, Rana R, Kaur G, Ghoneim MM, Alshehri S, Mustafa G, Ahmad J, Alhakamy NA, Mishra A. Molecular Mechanisms and Therapeutic Strategies for Levodopa-Induced Dyskinesia in Parkinson's Disease: A Perspective Through Preclinical and Clinical Evidence. Front Pharmacol 2022; 13:805388. [PMID: 35462934 PMCID: PMC9021725 DOI: 10.3389/fphar.2022.805388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.
Collapse
Affiliation(s)
- Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Nainshi Mishra
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ruhi Rana
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gagandeep Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gulam Mustafa
- College of Pharmacy (Boys), Al-Dawadmi Campus, Shaqra University, Riyadh, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Nabil. A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Guwahati, India
| |
Collapse
|
7
|
Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022; 492:92-107. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022]
Abstract
Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.
Collapse
|
8
|
Shi WZ, Li W, Cheng Y, Zhang M, Niu XC, Gao QW, Lu Y, Tian T, Du S, Mi Y, Chang MZ, Tian Y. The cytoprotective role of omentin against oxidative stress-induced PC12 apoptosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:483-492. [PMID: 34151664 DOI: 10.1080/21691401.2021.1892707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/15/2021] [Indexed: 10/21/2022]
Abstract
Oxidative stress has been proven to play a critical role in the pathogenesis of neuronal injury. As a novel adipocytokine, omentin is produced by visceral adipose with insulin sensitizing effects and has been revealed to possess anti-inflammatory effects. However, the possible effect of omentin on oxidative stress remains unknown. The present study aimed to detect the potential protective effect of omentin against hydrogen peroxide (H2O2)-induced cytotoxicity of PC12 cells. The results showed that no cytotoxic effect was shown in PC12 cells co-cultured with omentin alone at a concentration of 50-1000 ng/mL. The CCK8 and TUNEL assays suggested that omentin could remarkably attenuate apoptosis induced by 100 μM H2O2. The PCR and western blotting showed that the expression levels of Bax was significantly inhibited by omentin via the upregulation of miR-128-3p at its 3'-UTR. Taken together, these results indicated that omentin protects PC12 cells against H2O2-induced apoptosis, and further studies need to be conducted before utilization in the clinic for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen-Zhen Shi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Wu Li
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Ye Cheng
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Meng Zhang
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Xiao-Chen Niu
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Qi-Wei Gao
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Ying Lu
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Tian Tian
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Shan Du
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Yan Mi
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| | - Ming-Ze Chang
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
| | - Ye Tian
- Medical Research Center, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
- Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, The College of Life Sciences, Northwest University, Xi'an, China
- Medical Research and Experimental Center, School of Medicine, Yan'an University, Yan'an, Shaanxi, China
| |
Collapse
|
9
|
Tsuboi Y, Nakamura M, Maruyama H, Matsumoto Y. Zonisamide improves wearing off in Parkinson's disease without exacerbating dyskinesia: Post hoc analysis of phase 2 and phase 3 clinical trials. J Neurol Sci 2021; 430:120026. [PMID: 34715471 DOI: 10.1016/j.jns.2021.120026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Although phase 2 and 3 clinical trials in Japan showed that zonisamide improved wearing off in patients with Parkinson's disease (PD), no studies to date have evaluated whether zonisamide improves wearing off in patients with PD without exacerbating dyskinesia. Therefore, we examined this hypothesis in a post hoc analysis of pooled data from the previous phase 2 and 3 trials. METHODS Both trials evaluated zonisamide 25 mg and 50 mg versus placebo during a 12-week treatment period. In our analysis, primary efficacy variables were adjusted mean change in wearing off (evaluated as change in "off" time) and dyskinesia from baseline to 12 weeks. Dyskinesia was evaluated using Unified Parkinson's Disease Rating Scale (UPDRS) part 4 items 32 (4-32; duration of dyskinesia) and 33 (4-33; disability of dyskinesia) score. Criteria outcomes included rates of patients meeting specific criteria based on off time plus UPDRS part 4-32 or 4-33. RESULTS A total of 212 patients were included in this analysis. Zonisamide 50 mg significantly reduced off time and UPDRS part 4-33 score at week 12 versus placebo without increasing UPDRS part 4-32 score. The proportion of patients receiving zonisamide 50 mg who met the criterion "Off time decreased and UPDRS part 4-33 score did not increase" was significantly higher than that of patients receiving placebo. CONCLUSION Zonisamide improves wearing off without exacerbating dyskinesia in Japanese patients with PD. Moreover, zonisamide 50 mg may improve dyskinesia. Further studies are needed to prospectively determine the benefits and clinical relevance of zonisamide on dyskinesia.
Collapse
Affiliation(s)
- Yoshio Tsuboi
- Department of Neurology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Masatoshi Nakamura
- Data Science, Sumitomo Dainippon Pharma Co., Ltd., 1-13-1, Kyobashi, Chuo-ku, Tokyo 104-8356, Japan.
| | - Hidenori Maruyama
- Medical Affairs, Sumitomo Dainippon Pharma Co., Ltd., 1-13-1, Kyobashi, Chuo-ku, Tokyo 104-8356, Japan.
| | - Yuji Matsumoto
- Medical Affairs, Sumitomo Dainippon Pharma Co., Ltd., 1-13-1, Kyobashi, Chuo-ku, Tokyo 104-8356, Japan.
| |
Collapse
|
10
|
Gammon D, Cheng C, Volkovinskaia A, Baker GB, Dursun SM. Clozapine: Why Is It So Uniquely Effective in the Treatment of a Range of Neuropsychiatric Disorders? Biomolecules 2021; 11:1030. [PMID: 34356654 PMCID: PMC8301879 DOI: 10.3390/biom11071030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 12/16/2022] Open
Abstract
Clozapine is superior to other antipsychotics as a therapy for treatment-resistant schizophrenia and schizoaffective disorder with increased risk of suicidal behavior. This drug has also been used in the off-label treatment of bipolar disorder, major depressive disorder (MDD), and Parkinson's disease (PD). Although usually reserved for severe and treatment-refractory cases, it is interesting that electroconvulsive therapy (ECT) has also been used in the treatment of these psychiatric disorders, suggesting some common or related mechanisms. A literature review on the applications of clozapine and electroconvulsive therapy (ECT) to the disorders mentioned above was undertaken, and this narrative review was prepared. Although both treatments have multiple actions, evidence to date suggests that the ability to elicit epileptiform activity and alter EEG activity, to increase neuroplasticity and elevate brain levels of neurotrophic factors, to affect imbalances in the relationship between glutamate and γ-aminobutyric acid (GABA), and to reduce inflammation through effects on neuron-glia interactions are common underlying mechanisms of these two treatments. This evidence may explain why clozapine is effective in a range of neuropsychiatric disorders. Future increased investigations into epigenetic and connectomic changes produced by clozapine and ECT should provide valuable information about these two treatments and the disorders they are used to treat.
Collapse
Affiliation(s)
- Dara Gammon
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Catherine Cheng
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Anna Volkovinskaia
- Saba University School of Medicine, Saba, The Netherlands; (D.G.); (A.V.)
| | - Glen B. Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Serdar M. Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (C.C.); (G.B.B.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
11
|
Isaacson SH, Lyons KE, Amjad F, Pahwa R. Development, Efficacy and Safety of Once-daily, Bedtime, Extended-release Amantadine (Gocovri®) to Treat Dyskinesia and OFF Time in Parkinson’s Disease. Neurology 2021. [DOI: 10.17925/usn.2021.17.1.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
12
|
Hauser RA, Kremens DE, Elmer LW, Kreitzman DL, Walsh RR, Johnson R, Howard R, Nguyen JT, Patni R. Prevalence of Dyskinesia and OFF by 30-Minute Intervals Through the Day and Assessment of Daily Episodes of Dyskinesia and OFF: Novel Analyses of Diary Data from Gocovri Pivotal Trials. JOURNAL OF PARKINSONS DISEASE 2020; 9:591-600. [PMID: 31081793 PMCID: PMC6700613 DOI: 10.3233/jpd-181565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Parkinson’s disease (PD) patients using levodopa commonly develop dyskinesia and OFF episodes that reduce quality of life. Objective: Evaluate prevalence of troublesome dyskinesia and OFF through the day, assessed by 30-minute intervals, as well as the mean number and duration of troublesome dyskinesia and OFF episodes, transitions between PD states, and effects of Gocovri® (amantadine) extended release capsules on these episodes. Methods: Evaluate diary data from pooled Gocovri phase 3, placebo-controlled trials—analyzed for 17 hours following wake-up—at baseline and week 12. Results: Diaries were evaluable for 162 patients. At baseline, 67% of patients woke up OFF, with prevalence decreasing to 13% at 2 hours and then remaining relatively steady at ∼12% (range, 6–17%) across half-hour intervals thereafter. Troublesome dyskinesia prevalence rose steadily from 5% to 24% over the first 2 hours, then fluctuated between 20% and 44% through the rest of the waking day. At baseline, patients experienced a mean of 3.0 daily episodes of troublesome dyskinesia (average duration 2.0 hours each), and 2.2 daily episodes of OFF (average duration 1.1 hour each). At week 12, Gocovri-treated patients showed greater reductions than placebo in troublesome dyskinesia and OFF episodes per day (treatment difference: –1.0 episodes and –0.4 episodes, respectively) and average episode duration (treatment difference: –0.6 hours and –0.3 hours, respectively). Mean duration of individual episodes of ON without troublesome dyskinesia (Good ON) increased by 5.0 hours for Gocovri, compared with 2.0 hours for placebo. Patients taking Gocovri experienced 2.2 fewer transitions between states than patients taking placebo. Conclusions: Troublesome dyskinesia and OFF occurred in the morning and throughout the waking day. Gocovri-treated patients experienced fewer, shorter episodes of both troublesome dyskinesia and OFF, thereby increasing the duration of continuous Good ON episodes and reducing the frequency of transitions between motor states.
Collapse
Affiliation(s)
| | | | | | - David L Kreitzman
- Parkinson's Disease and Movement Disorders Center of Long Island, Commack, NY, USA
| | - Ryan R Walsh
- Muhammad Ali Parkinson Center at Barrow Neurological Institute, Phoenix, AZ, USA
| | - Reed Johnson
- Adamas Pharmaceuticals, Inc., Emeryville, CA, USA
| | | | | | - Rajiv Patni
- Adamas Pharmaceuticals, Inc., Emeryville, CA, USA
| |
Collapse
|
13
|
Historical Perspective: Models of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21072464. [PMID: 32252301 PMCID: PMC7177377 DOI: 10.3390/ijms21072464] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder with motor and nonmotor signs. The current therapeutic regimen for PD is mainly symptomatic as the etio-pathophysiology has not been fully elucidated. A variety of animal models has been generated to study different aspects of the disease for understanding the pathogenesis and therapeutic development. The disease model can be generated through neurotoxin-based or genetic-based approaches in a wide range of animals such as non-human primates (NHP), rodents, zebrafish, Caenorhabditis (C.) elegans, and drosophila. Cellular-based disease model is frequently used because of the ease of manipulation and suitability for large-screen assays. In neurotoxin-induced models, chemicals such as 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat are used to recapitulate the disease. Genetic manipulation of PD-related genes, such as α-Synuclein(SNCA), Leucine-rich repeat kinase 2 (LRRK2), Pten-Induced Kinase 1 (PINK1), Parkin(PRKN), and Protein deglycase (DJ-1) Are used in the transgenic models. An emerging model that combines both genetic- and neurotoxin-based methods has been generated to study the role of the immune system in the pathogenesis of PD. Here, we discuss the advantages and limitations of the different PD models and their utility for different research purposes.
Collapse
|
14
|
Chen X, Wang Y, Wu H, Cheng C, Le W. Research advances on L-DOPA-induced dyskinesia: from animal models to human disease. Neurol Sci 2020; 41:2055-2065. [DOI: 10.1007/s10072-020-04333-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
|
15
|
Müller T, Möhr JD. Recent Clinical Advances in Pharmacotherapy for Levodopa-Induced Dyskinesia. Drugs 2020; 79:1367-1374. [PMID: 31332769 DOI: 10.1007/s40265-019-01170-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Onset of involuntary movement patterns of the face, body and limbs are known as dyskinesia. They mostly appear in association with long-term levodopa (L-dopa) therapy in patients with Parkinson's disease. Consequences include patient distress, caregiver embarrassment and reduced quality of life. A severe intensity of this motor complication may result in troublesome disability; however, patients typically prefer motor behaviour with slight, non-troublesome dyskinesia to 'OFF' states. Pharmacotherapy of dyskinesia is complex. Continuous nigrostriatal postsynaptic dopaminergic receptor stimulation may delay onset of L-dopa-associated dyskinesia, while non-physiological, 'pulsatile' receptor stimulation facilitates appearance of dyskinesia. In the past, there have been many clinical trial failures with compounds that were effective in animal models of dyskinesia. Only the N-methyl-D-aspartate antagonist amantadine has shown moderate antidyskinetic effects in small well-designed clinical studies. Amantadine is an old antiviral compound, which moderately improves impaired motor behaviour. Recently, there has been a resurgence of its use due to the US Food and Drug Administration approval of an extended-release (ER) amantadine formulation for treatment of L-dopa-induced dyskinesia. This pharmacokinetic innovation improved dyskinesia and 'OFF' states in pivotal trials, with a once-daily oral application in the evening. Amantadine ER provides higher and more continuous amantadine plasma bioavailability than conventional immediate-release formulations, which require administration up to three times daily.
Collapse
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088, Berlin, Germany.
| | - Jan-Dominique Möhr
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Gartenstr. 1, 13088, Berlin, Germany
| |
Collapse
|
16
|
Striatal overexpression of β-arrestin2 counteracts L-dopa-induced dyskinesia in 6-hydroxydopamine lesioned Parkinson's disease rats. Neurochem Int 2019; 131:104543. [DOI: 10.1016/j.neuint.2019.104543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/16/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
|
17
|
Masilamoni GJ, Smith Y. Group I metabotropic glutamate receptors in the primate motor thalamus: subsynaptic association with cortical and sub-cortical glutamatergic afferents. Brain Struct Funct 2019; 224:2787-2804. [PMID: 31422483 DOI: 10.1007/s00429-019-01937-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022]
Abstract
Preclinical evidence indicates that mGluR5 is a potential therapeutic target for Parkinson's disease and L-DOPA-induced dyskinesia. However, the mechanisms through which these therapeutic benefits are mediated remain poorly understood. Although the regulatory role of mGluR5 on glutamatergic transmission has been examined in various basal ganglia nuclei, very little is known about the localization and function of mGluR5 in the ventral motor and intralaminar thalamic nuclei, the main targets of basal ganglia output in mammals. Thus, we used immuno-electron microscopy to map the cellular and subcellular localization of group I mGluRs (mGluR1a and mGluR5) in the ventral motor and caudal intralaminar thalamic nuclei in rhesus monkeys. Furthermore, using double immuno-electron microscopy, we examined the subsynaptic localization of mGluR5 in relation to cortical and sub-cortical glutamatergic afferents. Four major conclusions can be drawn from these data. First, mGluR1a and mGluR5 are expressed postsynaptically on the plasma membrane of dendrites of projection neurons and GABAergic interneurons in the basal ganglia- and cerebellar-receiving regions of the ventral motor thalamus and in CM. Second, the plasma membrane-bound mGluR5 immunoreactivity is preferentially expressed perisynaptically at the edges of cortical and sub-cortical glutamatergic afferents. Third, the mGluR5 immunoreactivity is more strongly expressed in the lateral than the medial tiers of CM, suggesting a preferential association with thalamocortical over thalamostriatal neurons in the primate CM. Overall, mGluR5 is located to subserve powerful modulatory role of cortical and subcortical glutamatergic transmission in the primate ventral motor thalamus and CM.
Collapse
Affiliation(s)
- Gunasingh Jeyaraj Masilamoni
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA. .,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA, 30329, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.,Udall Center of Excellence for Parkinson's Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
18
|
Ferreira-Junior NC, Campos AC, Guimarães FS, Del-Bel E, Zimmermann PMDR, Brum Junior L, Hallak JE, Crippa JA, Zuardi AW. Biological bases for a possible effect of cannabidiol in Parkinson's disease. ACTA ACUST UNITED AC 2019; 42:218-224. [PMID: 31314869 PMCID: PMC7115443 DOI: 10.1590/1516-4446-2019-0460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Current pharmacotherapy of Parkinson’s disease (PD) is palliative and unable to modify the progression of neurodegeneration. Treatments that can improve patients’ quality of life with fewer side effects are needed, but not yet available. Cannabidiol (CBD), the major non-psychotomimetic constituent of cannabis, has received considerable research attention in the last decade. In this context, we aimed to critically review the literature on potential therapeutic effects of CBD in PD and discuss clinical and preclinical evidence supporting the putative neuroprotective mechanisms of CBD. We searched MEDLINE (via PubMed) for indexed articles published in English from inception to 2019. The following keywords were used: cannabis; cannabidiol and neuroprotection; endocannabinoids and basal ganglia; Parkinson’s animal models; Parkinson’s history; Parkinson’s and cannabidiol. Few studies addressed the biological bases for the purported effects of CBD on PD. Six preclinical studies showed neuroprotective effects, while three targeted the antidyskinetic effects of CBD. Three human studies have tested CBD in patients with PD: an open-label study, a case series, and a randomized controlled trial. These studies reported therapeutic effects of CBD on non-motor symptoms. Additional research is needed to elucidate the potential effectiveness of CBD in PD and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Nilson C Ferreira-Junior
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Alline C Campos
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- Departamento de Morfologia, Fisiologia e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto (FORP), USP, Ribeirão Preto, SP, Brazil
| | | | | | - Jaime E Hallak
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| | - José A Crippa
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| | - Antonio W Zuardi
- Departamento de Neurociências e Ciências do Comportamento, FMRP, USP, Ribeirão Preto, SP, Brazil
| |
Collapse
|
19
|
Dong X, Zheng D, Nao J. Measurement of serum cystatin C: A valuable tool for evaluating dyskinesia in Parkinson's disease. Neurosci Lett 2019; 705:172-176. [PMID: 31054924 DOI: 10.1016/j.neulet.2019.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/09/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022]
Abstract
Although cystatin C (Cys C) has been implicated in the pathophysiology of Parkinson's disease (PD), whether it can be used as a tool for evaluating dyskinesia is unknown. In the present study, the association of Cys C with dyskinesia in PD patients was investigated. Fasting serum Cys C levels were measured from 120 PD patients and 156 healthy controls. Demographic information was collected for all patients. In addition, levodopa (L-dopa)-equivalent dose, Unified Parkinson's Disease Rating Scale (UPDRS) score, Hoehn and Yahr (H&Y) stage, and dyskinesia were assessed in PD patients. Receiver operating characteristic (ROC) curves were adopted to assess the evaluating accuracy of Cys C levels for distinguishing dyskinesia in PD patients. Patients with PD exhibited significantly higher serum Cys C levels compared with heathy controls. Dyskinesia was observed in 32 patients (26.7%). Multiple logistic regression showed serum Cys C levels (odds ratio, OR 12.93; 95% confidence interval, CI 1.08-54.23; p = 0.043), duration of disease (OR 1.03, 95% CI 1.01-1.05, p = 0.001) and UPDRS II score (OR 1.07, 95% CI 1.01-1.14, p = 0.019) were independently associated with dyskinesia. The ROC curve for the Cys C levels yielded a valuable accuracy for distinguishing dyskinesia in PD patients. Serum Cys C levels were independently associated with dyskinesia and may be a valuable screening tool for differentiating dyskinesia in PD patients. Although the pathophysiological mechanism of PD is complicated, the results from our study provide a better understanding of the association between Cys C and dyskinesia in PD patients and may yield insights into the pathogenesis of PD.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Dongming Zheng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
20
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
21
|
Pahwa R, Isaacson S, Jimenez-Shaheed J, Malaty IA, Deik A, Johnson R, Patni R. Impact of dyskinesia on activities of daily living in Parkinson's disease: Results from pooled phase 3 ADS-5102 clinical trials. Parkinsonism Relat Disord 2019; 60:118-125. [DOI: 10.1016/j.parkreldis.2018.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
|
22
|
Chen HH, Chang PC, Wey SP, Chen PM, Chen C, Chan MH. Therapeutic effects of honokiol on motor impairment in hemiparkinsonian mice are associated with reversing neurodegeneration and targeting PPARγ regulation. Biomed Pharmacother 2018; 108:254-262. [DOI: 10.1016/j.biopha.2018.07.095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
|
23
|
Dragašević-Mišković N, Petrović I, Stanković I, Kostić VS. Chemical management of levodopa-induced dyskinesia in Parkinson's disease patients. Expert Opin Pharmacother 2018; 20:219-230. [PMID: 30411647 DOI: 10.1080/14656566.2018.1543407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Levodopa-induced dyskinesias (LID) appears in more than 50% of Parkinson's disease patients after 5 years of treatment and clinicians always have to ensure that there is a balance between the beneficial effect of the treatment and the potential complications. AREAS COVERED In this review, the authors discuss the treatment of LID. Treatment can be divided into strategies for preventing their occurrence, modification of dopaminergic therapy, and providing more continuous dopaminergic stimulation as well as the use of nondopaminergic drugs. EXPERT OPINION Amantadine is currently considered the most effective drug for the treatment of LID. Several compounds developed to target adenosine, adrenergic, glutamatergic, and serotonergic receptors have shown to significantly decrease dyskinesias in animal models. However, despite promising preclinical results, translation to clinical practice remains challenging and majority of these compounds failed to decrease LID in randomized controlled trials with moderate-to-advanced parkinsonian patients. Despite promising results with nondopaminergic drugs, treatment of dyskinesias is still challenging and largely due to their side effects. Future research should focus on developing treatments that can provide continuous dopaminergic delivery throughout the day in a noninvasive manner. Studies on the impact of the early administration of long-acting formulations of levo-3,4-dihydroxy-phenylalanine on dyskinesias are also necessary.
Collapse
Affiliation(s)
| | - Igor Petrović
- a Neurology Clinic, CCS, School of Medicine , Universtiy of Belgrade , Belgrade , Serbia
| | - Iva Stanković
- a Neurology Clinic, CCS, School of Medicine , Universtiy of Belgrade , Belgrade , Serbia
| | - Vladimir S Kostić
- a Neurology Clinic, CCS, School of Medicine , Universtiy of Belgrade , Belgrade , Serbia
| |
Collapse
|
24
|
Paik J, Keam SJ. Amantadine Extended-Release (GOCOVRI ™): A Review in Levodopa-Induced Dyskinesia in Parkinson's Disease. CNS Drugs 2018; 32:797-806. [PMID: 30088203 DOI: 10.1007/s40263-018-0552-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amantadine extended-release (ER) capsules (GOCOVRI™) are approved in the USA for the treatment of dyskinesia in patients with Parkinson's disease (PD) receiving levodopa-based therapy, with or without concomitant dopaminergic medications. With a recommended dosage of 274 mg once daily at bedtime, this new formulation of amantadine allows a more gradual time to peak plasma amantadine concentration and higher drug concentrations in the morning and throughout the day, the time period when levodopa-induced dyskinesia (LID) is the most problematic. In 13-week (EASE LID 3) and 25-week (EASE LID), randomized, double-blind phase III trials, once-daily amantadine ER 274 mg capsules significantly improved levodopa-induced dyskinesia (LID), while also increasing ON time without troublesome dyskinesia and reducing OFF time and ON time with troublesome dyskinesia from the morning and throughout the day, compared with placebo. In the ongoing, longer-term EASE LID 2 study (with interim results reported for up to 64 weeks), patients previously treated with amantadine ER maintained improvements in LID, as per patient-reported Unified Dyskinesia Rating Scale (UDysRS) scoring and ON/OFF times. Amantadine ER was generally well tolerated, with most adverse events (AEs) being transient and mild or moderate in severity. The most common (incidence > 15%) treatment-related AEs in the placebo-controlled trials were hallucinations, dizziness, dry mouth and peripheral oedema. While long-term data are needed to establish durability of response and safety, including the completion of the ≈ 2-year EASE LID 2 study, current evidence indicates that amantadine ER is an effective treatment option to consider in the management of LID in PD patients.
Collapse
Affiliation(s)
- Julia Paik
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| | - Susan J Keam
- Springer, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand
| |
Collapse
|
25
|
Baek JS, Tee JK, Pang YY, Tan EY, Lim KL, Ho HK, Loo SCJ. Improved Bioavailability of Levodopa Using Floatable Spray-Coated Microcapsules for the Management of Parkinson's Disease. Neuromolecular Med 2018; 20:262-270. [PMID: 29696585 DOI: 10.1007/s12017-018-8491-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
Oral administration of levodopa (LD) is the gold standard in managing Parkinson's disease (PD). Although LD is the most effective drug in treating PD, chronic administration of LD induces levodopa-induced dyskinesia. A continuous and sustained provision of LD to the brain could, therefore, reduce peak-dose dyskinesia. In commercial oral formulations, LD is co-administrated with an AADC inhibitor (carbidopa) and a COMT inhibitor (entacapone) to enhance its bioavailability. Nevertheless, patients are known to take up to five tablets a day because of poor sustained-releasing capabilities that lead to fluctuations in plasma concentrations. To achieve a prolonged release of LD with the aim of improving its bioavailability, floatable spray-coated microcapsules containing all three PD drugs were developed. This gastro-retentive delivery system showed sustained release of all PD drugs, at similar release kinetics. Pharmacokinetics study was conducted and this newly developed formulation showed a more plateaued delivery of LD that is void of the plasma concentration fluctuations observed for the control (commercial formulation). At the same time, measurements of LD and dopamine of mice administered with this formulation showed enhanced bioavailability of LD. This study highlights a floatable, sustained-releasing delivery system in achieving improved pharmacokinetics data compared to a commercial formulation.
Collapse
Affiliation(s)
- Jong-Suep Baek
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jie Kai Tee
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Yi Yun Pang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Ern Yu Tan
- General Surgery Clinic, Tan Tock Seng Hospital, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Kah Leong Lim
- National Neuroscience Institute (NNI), 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore. .,Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
26
|
The striatal cholinergic system in L-dopa-induced dyskinesias. J Neural Transm (Vienna) 2018; 125:1251-1262. [PMID: 29492663 DOI: 10.1007/s00702-018-1845-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Cholinergic signaling plays a key role in regulating striatal function. The principal source of acetylcholine in the striatum is the cholinergic interneurons which, although low in number, densely arborize to modulate striatal neurotransmission. This modulation occurs via strategically positioned nicotinic and muscarinic acetylcholine receptors that influence striatal dopamine, GABA and other neurotransmitter release. Cholinergic interneurons integrate multiple striatal synaptic inputs and outputs to regulate motor activity under normal physiological conditions. Consequently, an imbalance between these systems is associated with basal ganglia disorders. Here, we provide an overview of how striatal cholinergic interneurons modulate striatal activity under normal and pathological conditions. Numerous studies show that nigrostriatal damage such as that occurs with Parkinson's disease affects cholinergic receptor-mediated striatal activity. This altered cholinergic signaling is an important contributor to Parkinson's disease as well as to the dyskinesias that develop with L-dopa therapy, the gold standard for treatment. Indeed, multiple preclinical studies show that cholinergic receptor drugs may be beneficial for the treatment of L-dopa-induced dyskinesias. In this review, we discuss the evidence indicating that therapeutic modulation of the cholinergic system, particularly targeting of nicotinic cholinergic receptors, may offer a novel approach to manage this debilitating side effect of dopamine replacement therapy for Parkinson's disease.
Collapse
|
27
|
Nakajima A, Shimo Y, Sekimoto S, Kamagata K, Jo T, Oyama G, Umemura A, Hattori N. Dopamine transporter imaging predicts motor responsiveness to levodopa challenge in patients with Parkinson's disease: A pilot study of DATSCAN for subthalamic deep brain stimulation. J Neurol Sci 2018; 385:134-139. [PMID: 29406893 DOI: 10.1016/j.jns.2017.12.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 01/06/2023]
Abstract
Imaging studies are necessary prior to subthalamic deep brain stimulation (STN-DBS). Dopamine transporter (DAT) imaging is a powerful tool for visualizing dopamine terminals in the striatum, but its usefulness in STN-DBS is unclear. Here, we retrospectively investigated the relationship between motor symptoms and the specific binding ratio (SBR) on DAT imaging in patients with Parkinson's disease (PD). We included 23 consecutive patients (9 female; 14 male) who were evaluated for DBS eligibility between October 2013 and October 2014 and subsequently received bilateral STN-DBS. Correlation and simple regression analyses were performed on SBR values and clinical parameters before and after surgery. SBR value was negatively correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor score in the "ON" state before surgery (rs=-0.637, p=0.001) and positively correlated with the reduction of the levodopa equivalent daily dose by surgery (r=0.422, p=0.045). A simple regression analysis revealed that SBR value was positively correlated with UPDRS motor score improvement after levodopa challenge before surgery (p=0.001, R2=0.423). DAT imaging may be useful in STN-DBS candidate selection and the identification of the therapeutic mechanism of STN-DBS in patients with advanced PD and motor symptom fluctuations.
Collapse
Affiliation(s)
- Asuka Nakajima
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan; Department of Research and Therapeutics for Movement Disorders, School of Medicine, Juntendo University, Tokyo, Japan.
| | - Satoko Sekimoto
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Takayuki Jo
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Atsushi Umemura
- Department of Research and Therapeutics for Movement Disorders, School of Medicine, Juntendo University, Tokyo, Japan; Department of Neurosurgery, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
28
|
Effect of Concomitant Medications on the Safety and Efficacy of Extended-Release Carbidopa-Levodopa (IPX066) in Patients With Advanced Parkinson Disease: A Post Hoc Analysis. Clin Neuropharmacol 2018; 41:47-55. [PMID: 29432286 PMCID: PMC5865491 DOI: 10.1097/wnf.0000000000000269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Extended-release (ER) carbidopa-levodopa (CD-LD) (IPX066/RYTARY/NUMIENT) produces improvements in "off" time, "on" time without troublesome dyskinesia, and Unified Parkinson Disease Rating Scale scores compared with immediate-release (IR) CD-LD or IR CD-LD plus entacapone (CLE). Post hoc analyses of 2 ER CD-LD phase 3 trials evaluated whether the efficacy and safety of ER CD-LD relative to the respective active comparators were altered by concomitant medications (dopaminergic agonists, monoamine oxidase B [MAO-B] inhibitors, or amantadine). METHODS ADVANCE-PD (n = 393) assessed safety and efficacy of ER CD-LD versus IR CD-LD. ASCEND-PD (n = 91) evaluated ER CD-LD versus CLE. In both studies, IR- and CLE-experienced patients underwent a 6-week, open-label dose-conversion period to ER CD-LD prior to randomization. For analysis, the randomized population was divided into 3 subgroups: dopaminergic agonists, rasagiline or selegiline, and amantadine. For each subgroup, changes from baseline in PD diary measures ("off" time and "on" time with and without troublesome dyskinesia), Unified Parkinson Disease Rating Scale Parts II + III scores, and adverse events were analyzed, comparing ER CD-LD with the active comparator. RESULTS AND CONCLUSIONS Concomitant dopaminergic agonist or MAO-B inhibitor use did not diminish the efficacy (improvement in "off" time and "on" time without troublesome dyskinesia) of ER CD-LD compared with IR CD-LD or CLE, whereas the improvement with concomitant amantadine failed to reach significance. Safety and tolerability were similar among the subgroups, and ER CD-LD did not increase troublesome dyskinesia. For patients on oral LD regimens and taking a dopaminergic agonist, and/or a MAO-B inhibitor, changing from an IR to an ER CD-LD formulation provides approximately an additional hour of "good" on time.
Collapse
|
29
|
Wu N, Wan Y, Song L, Qi C, Liu Z, Gan J. The abnormal activation of D1R/Shp-2 complex involved in levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats. Neuropsychiatr Dis Treat 2018; 14:1779-1786. [PMID: 30013350 PMCID: PMC6038854 DOI: 10.2147/ndt.s162562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Levodopa-induced dyskinesia (LID) is a troublesome problem in the treatment of Parkinson's disease (PD). The mechanisms of LID are still mysterious. Recently, the interaction between Shp-2 and D1 dopamine receptor (D1R) has been identified to be indispensable in the D1R-mediated extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation and the occurrence of LID. However, the role of Shp-2 in the D1R-mediated signaling pathway of dyskinetic rat models is not fully clear. We designed this study with the purpose of exploring the role of D1R/Shp-2 complex in the D1R-mediated signaling pathway in the occurrence of LID. MATERIALS AND METHODS The 6-hydroxydopamine (6-OHDA) was injected unilaterally to produce the rat models of PD. Successful PD rat models were randomly divided into three groups to receive the treatment with L-3,4-dihydroxyphenylalanine (l-DOPA) + benserazide, l-DOPA + benserazide + D1R antagonist (SCH23390) or D1R agonist (SKF38393). Abnormal involuntary movements were assessed in different groups during the treatment. The interaction between D1R and Shp-2 was confirmed in the sham and LID rats through the methods of coimmunoprecipitation. In addition, the levels of p-Shp-2, p-ERK1/2 and p-mTOR were determined by Western blot in different groups. RESULTS After the treatment with l-DOPA + benserazide for 22 days, PD rats presented with dyskinesia. D1R agonist, SKF38393, induced similar involuntary movements in PD rats. In contrast, the dyskinetic movements were not induced by coadministration of l-DOPA + D1R antagonist (SCH23390). The interaction between D1R and Shp-2 in the normal rats was kept stable after the long-term use of l-DOPA. Moreover, we found that the pulsatile levodopa administration induced hyperphosphorylation of Shp-2, ERK1/2 and mTOR, while the coadministration of l-DOPA and D1R antagonist, SCH23390, did not induce the hyperphosphorylation of these proteins. CONCLUSION These data verified the existence of D1R/Shp-2 complex and its crucial role in the D1R-mediated signaling pathway in dyskinetic rats. Focus on the D1R/Shp-2 complex might be a potential treatment of LID in the future.
Collapse
Affiliation(s)
- Na Wu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, ;
| | - Ying Wan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, ;
| | - Lu Song
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, ;
| | - Chen Qi
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, ;
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, ;
| | - Jing Gan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China, ;
| |
Collapse
|
30
|
Elmer LW, Juncos JL, Singer C, Truong DD, Criswell SR, Parashos S, Felt L, Johnson R, Patni R. Pooled Analyses of Phase III Studies of ADS-5102 (Amantadine) Extended-Release Capsules for Dyskinesia in Parkinson's Disease. CNS Drugs 2018; 32. [PMID: 29532440 PMCID: PMC5934466 DOI: 10.1007/s40263-018-0498-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although levodopa is considered the most effective pharmacotherapy for motor symptoms of Parkinson's disease (PD), chronic use is associated with motor complications, including fluctuating response and unpredictable, involuntary movements called dyskinesia. ADS-5102 (amantadine) extended-release (ER) capsules (GOCOVRITM) is a recent US FDA-approved treatment for dyskinesia in PD patients. ADS-5102 is a high-dose, ER formulation of amantadine, administered orally once daily at bedtime, that achieves high plasma drug concentrations throughout the day. OBJECTIVE In this study, we present pooled results from two randomized, double-blind, placebo-controlled, phase III ADS-5102 trials. PATIENTS AND METHODS The two studies in PD patients with dyskinesia shared design and eligibility criteria, differing only in treatment duration. Results from common assessment time points were pooled. RESULTS At 12 weeks, the least squares (LS) mean change in total score on the Unified Dyskinesia Rating Scale among 100 patients randomized to ADS-5102 and 96 patients randomized to placebo was - 17.7 (standard error [SE] 1.3) vs. - 7.6 (1.3) points, respectively (- 10.1 points, 95% confidence interval [CI] - 13.8, - 6.5; p < 0.0001). The relative treatment difference between groups was 27.3% (p < 0.0001). At 12 weeks, the LS mean change in OFF time was - 0.59 (0.21) vs. +0.41 (0.20) h/day, a difference of - 1.00 h/day (95% CI - 1.57, - 0.44; p = 0.0006). For both efficacy measures, a significant difference from placebo was attained by two weeks, the first post-baseline assessment, and was maintained throughout 12 weeks. In the pooled ADS-5102 group, the most common adverse events were hallucination, dizziness, dry mouth, peripheral edema, constipation, falls, and orthostatic hypotension. CONCLUSIONS These analyses provide further evidence supporting ADS-5102 as an adjunct to levodopa for treating both dyskinesia and OFF time in PD patients with dyskinesia. Clinicaltrials.gov identifier: NCT02136914 and NCT02274766.
Collapse
Affiliation(s)
- Lawrence W. Elmer
- Department of Neurology, University of Toledo College of Medicine, 3120 Glendale Avenue, Toledo, OH 43614 USA
| | - Jorge L. Juncos
- Department of Neurology and Movement Disorders, Emory University School of Medicine, Atlanta, GA USA
| | - Carlos Singer
- Department of Neurology, University of Miami, Miami, FL USA
| | - Daniel D. Truong
- The Parkinson’s and Movement Disorder Institute, Fountain Valley, CA USA
| | | | | | - Larissa Felt
- Adamas Pharmaceuticals, Inc., Emeryville, CA USA
| | - Reed Johnson
- Adamas Pharmaceuticals, Inc., Emeryville, CA USA
| | - Rajiv Patni
- Adamas Pharmaceuticals, Inc., Emeryville, CA USA
| |
Collapse
|
31
|
Wang WW, Zhang MM, Zhang XR, Zhang ZR, Chen J, Feng L, Xie CL. A Meta-Analysis of Adenosine A2A Receptor Antagonists on Levodopa-Induced Dyskinesia In Vivo. Front Neurol 2017; 8:702. [PMID: 29375464 PMCID: PMC5770694 DOI: 10.3389/fneur.2017.00702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background Long-term use of levodopa (l-dopa) is inevitably complicated with highly disabling fluctuations and drug-induced dyskinesias, which pose major challenges to the existing drug therapy of Parkinson's disease. Methods In this study, we conducted a systematic review and meta-analysis to assess the efficacy of A2A receptor antagonists on reducing l-dopa-induced dyskinesias (LID). Results Nine studies with a total of 152 animals were included in this meta-analysis. Total abnormal involuntary movements (AIM) score, locomotor activity, and motor disability were reported as outcome measures in 5, 5, and 3 studies, respectively. Combined standardized mean difference (SMD) estimates were calculated using a random-effects model. We pooled the whole data and found that, when compared to l-dopa alone, A2A receptor antagonists plus l-dopa treatment showed no effect on locomotor activity (SMD -0.00, 95% confidence interval (CI): -2.52 to 2.52, p = 1.0), superiority in improvement of motor disability (SMD -5.06, 95% CI: -9.25 to -0.87, p = 0.02) and more effective in control of AIM (SMD -1.82, 95% CI: -3.38 to -0.25, p = 0.02). Conclusion To sum up, these results demonstrated that A2A receptor antagonists appear to have efficacy in animal models of LID. However, large randomized clinical trials testing the effects of A2A receptor antagonists in LID patients are always warranted.
Collapse
Affiliation(s)
- Wen-Wen Wang
- The Center of Traditional Chinese Medicine, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Man-Man Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xing-Ru Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeng-Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Feng
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Mao CJ, Yang YP, Chen JP, Wang F, Chen J, Zhang JR, Zhang HJ, Zhuang S, Xiong YT, Gu CC, Yuan W, Huang JY, Fay A, Zhong CK, Liu CF. Poor nighttime sleep is positively associated with dyskinesia in Parkinson's disease patients. Parkinsonism Relat Disord 2017; 48:68-73. [PMID: 29305084 DOI: 10.1016/j.parkreldis.2017.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/16/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dyskinesia is a troublesome complication of long-term dopaminergic medications in Parkinson's disease (PD) patients. Many factors are reported to be associated with dyskinesia in PD. OBJECTIVE To investigate the association between sleep quality and dyskinesia in patients with PD. METHODS Four hundred twenty-five patients with PD were enrolled in this study. Demographic information was collected. Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (H-Y) stage scale were also performed. Epworth Sleepiness Scale (ESS) and Pittsburgh Sleep Quality Index (PSQI) were applied to evaluate daytime sleepiness and overall nighttime sleep quality, respectively, in PD patients. RESULTS Patients with dyskinesia tended to have a longer duration of disease, higher daily levodopa-equivalent dose (LED), H-Y stage, UPDRS II and PSQI score, and a higher percentage of levodopa treatment than those without dyskinesia. After adjusting for age, sex, age at onset of PD, disease duration, UPDRS I, UPDRS II, UPDRS III, cigarette smoking, use of different antiparkinsonian drugs, phenotype, daily LED, and restless leg syndrome (RLS), PSQI score was still associated with dyskinesia, with corresponding ORs 1.111 (95% CI, 1.004-1.229) as a continuous variable, and 2.469 (95% CI, 1.051-5.800) as a categorical variable, respectively. Further analysis of PSQI components showed that subjective sleep quality and sleep latency were associated with dyskinesia in PD patients. CONCLUSIONS Our data showed that poor nighttime sleep is positively associated with dyskinesia in PD patients. Attention to the management of nighttime sleep quality may be beneficial to dyskinesia in patients with PD.
Collapse
Affiliation(s)
- Cheng-Jie Mao
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ya-Ping Yang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ju-Ping Chen
- Department of Neurology, Changshu Traditional Chinese Medicine Hospital, East Huanghe Road, Changshu 215000, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou 215123 China
| | - Jing Chen
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jin-Ru Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hui-Jun Zhang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Sheng Zhuang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yi-Tong Xiong
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chen-Chen Gu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Wen Yuan
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Juan-Ying Huang
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Alexander Fay
- Department of Neurology, UCSF School of Medicine, Medical Center, San Francisco, California CA94143, United States
| | - Chong-Ke Zhong
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Institute of Neuroscience, Soochow University, Suzhou 215123 China.
| |
Collapse
|
33
|
Zhang SF, Xie CL, Lin JY, Wang MH, Wang XJ, Liu ZG. Lipoic acid alleviates L‑DOPA‑induced dyskinesia in 6‑OHDA parkinsonian rats via anti‑oxidative stress. Mol Med Rep 2017; 17:1118-1124. [PMID: 29115484 DOI: 10.3892/mmr.2017.7974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 04/06/2017] [Indexed: 11/05/2022] Open
Abstract
Levodopa (L‑DOPA) is the gold standard for symptomatic treatment of Parkinson's disease (PD); however, long‑term therapy is associated with the emergence of L‑DOPA‑induced dyskinesia (LID). Nigral dopaminergic cell loss determines the degree of drug exposure and time required for the initial onset of LID. Accumulating evidence indicates that α‑lipoic acid (ALA) decreases this nigral dopaminergic cell loss. However, until now, the precise mechanisms of ALA have only been partially understood in LID. Chronic L‑DOPA treatment was demonstrated to develop intense AIM scores to assess dyskinetic symptoms. Rats in the LID group were administrated twice daily with L‑DOPA + benserazide for 3 weeks to induce a rat model of dyskinesia. Moreover, other 6‑OHDA‑lesioned rats were treatment with ALA (31.5 mg/kg or 63 mg/kg) in combination with L‑DOPA treatment. Furthermore, the authors investigated the level of malondialdehyde (MDA) and glutathione (GSH) activity, as well as IBa‑1, caspase‑3 and poly (ADP-ribose) polymerase (PARP) in substantia nigra by the way of western blotting and immunofluorescence. ALA reduced LID in a dose‑dependent manner without compromising the anti‑PD effect of L‑DOPA. Moreover, ALA reduced the level of MDA and upregulated the GSH activity, as well as ameliorated IBa‑1 positive neurons in the substantia nigra. Finally, it was identified that ALA could reduce L‑DOPA‑induced cleaved‑caspase‑3 and PARP overexpression in the substantia nigra. Based on the present findings, ALA could be recommended as a promising disease‑modifying therapy when administered with L‑DOPA early in the course of PD. The exact mechanism for this action, although incompletely understood, appears to relate to anti‑oxidative stress and anti‑apoptosis.
Collapse
Affiliation(s)
- Su-Fang Zhang
- Department of Neurology, Xinhua Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Cheng-Long Xie
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China
| | - Jing-Ya Lin
- Department of Neurology, Xinhua Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Mei-Hua Wang
- Department of Neurology, Xinhua Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Xi-Jin Wang
- Department of Neurology, Xinhua Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200092, P.R. China
| | - Zhen-Guo Liu
- Department of Neurology, Xinhua Hospital, Medical School of Shanghai Jiaotong University, Shanghai 200092, P.R. China
| |
Collapse
|
34
|
Oertel W, Eggert K, Pahwa R, Tanner CM, Hauser RA, Trenkwalder C, Ehret R, Azulay JP, Isaacson S, Felt L, Stempien MJ. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson's disease (EASE LID 3). Mov Disord 2017; 32:1701-1709. [PMID: 28833562 PMCID: PMC5763269 DOI: 10.1002/mds.27131] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/25/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The treatment of levodopa-induced dyskinesia in Parkinson's disease (PD) is an unmet need with no approved drug therapy. OBJECTIVE The purpose of this study was to investigate the efficacy and safety of 274 mg ADS-5102 (amantadine) extended-release capsules (equivalent to 340-mg amantadine HCl) for levodopa-induced dyskinesia in a randomized controlled trial. METHODS PD patients with ≥1 hour of troublesome dyskinesia and at least mild functional impact were randomized to placebo or ADS-5102 once daily at bedtime for 13 weeks. The primary efficacy analysis was based on change from baseline to week 12 on the Unified Dyskinesia Rating Scale total score in the modified intent-to-treat population. OFF time was a key secondary measure. RESULTS At week 12, least-squares mean change in the Unified Dyskinesia Rating Scale was -20.7 (standard error 2.2) for ADS-5102 (n = 37) and -6.3 (standard error 2.1) for placebo (n = 38; treatment difference -14.4, 95% confidence interval -20.4 to -8.3, P < .0001), indicating improvement in levodopa-induced dyskinesia. OFF time decreased 0.5 hours (standard error 0.3) for ADS-5102 from a baseline mean of 2.6 hours and increased 0.6 hours (standard error 0.3) for placebo from a baseline mean of 2.0 hours (treatment difference -1.1 hours, 95% confidence interval -2.0 to -0.2, P = .0199). The most common adverse events (ADS-5102 versus placebo) included dry mouth (13.5% versus 2.6%), nausea (13.5% versus 2.6%), decreased appetite (10.8% versus 0%), insomnia (10.8% versus 0%), orthostatic hypotension (10.8% versus 0%), constipation (8.1% versus 0%), falls (8.1% versus 5.3%), and visual hallucinations (8.1% versus 5.3%). Adverse events led to treatment discontinuation in 19% versus 8%, respectively. CONCLUSION ADS-5102 274 mg is an oral pharmacotherapy demonstrating a significant decrease in levodopa-induced dyskinesia and improving OFF time. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | - Rajesh Pahwa
- University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Caroline M Tanner
- University of California San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel and Clinic Neurosurgery, University Medical Center, Goettingen, Germany
| | | | | | - Stuart Isaacson
- Parkinson's Disease and Movement Disorders Center, Boca Raton, Florida, USA
| | - Larissa Felt
- Adamas Pharmaceuticals, Inc., Emeryville, California, USA
| | | |
Collapse
|
35
|
Herrera A, Muñoz P, Steinbusch HWM, Segura-Aguilar J. Are Dopamine Oxidation Metabolites Involved in the Loss of Dopaminergic Neurons in the Nigrostriatal System in Parkinson's Disease? ACS Chem Neurosci 2017; 8:702-711. [PMID: 28233992 DOI: 10.1021/acschemneuro.7b00034] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 1967, L-dopa was introduced as part of the pharmacological therapy of Parkinson's disease (PD) and, in spite of extensive research, no additional effective drugs have been discovered to treat PD. This brings forward the question: why have no new drugs been developed? We consider that one of the problems preventing the discovery of new drugs is that we still have no information on the pathophysiology of the neurodegeneration of the neuromelanin-containing nigrostriatal dopaminergic neurons. Currently, it is widely accepted that the degeneration of dopaminergic neurons, i.e., in the substantia nigra pars compacta, involves mitochondrial dysfunction, the formation of neurotoxic oligomers of alpha-synuclein, the dysfunction of protein degradation systems, neuroinflammation, and oxidative and endoplasmic reticulum stress. However, the initial trigger of these mechanisms in the nigrostriatal system is still unknown. It has been reported that aminochrome induces the majority of these mechanisms involved in the neurodegeneration process. Aminochrome is formed within the cytoplasm of neuromelanin-containing dopaminergic neurons during the oxidation of dopamine to neuromelanin. The oxidation of dopamine to neuromelanin is a normal and harmless process, because healthy individuals have intact neuromelanin-containing dopaminergic neurons. Interestingly, aminochrome-induced neurotoxicity is prevented by two enzymes: DT-diaphorase and glutathione transferase M2-2, which explains why melanin-containing dopaminergic neurons are intact in healthy human brains.
Collapse
Affiliation(s)
- Andrea Herrera
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Harry W. M. Steinbusch
- Department of Neuroscience, Faculty of
Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
36
|
Neuroprotective Effect and Mechanism of Thiazolidinedione on Dopaminergic Neurons In Vivo and In Vitro in Parkinson's Disease. PPAR Res 2017; 2017:4089214. [PMID: 28356907 PMCID: PMC5357540 DOI: 10.1155/2017/4089214] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/08/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to gain insight into the neuroprotection effects and mechanism of thiazolidinedione pioglitazone in both in vitro and in vivo MPP+/MPTP induced PD models. In vivo experimental results showed that oral treatment of pioglitazone resulted in significant improvements in behavior symptoms damaged by MPTP and increase in the survival of TH positive neurons in the pioglitazone intervention groups. In addition, oral treatment of pioglitazone increased the expression of peroxisome proliferator-activated receptor-γ coactivator of 1α (PGC-1α) and increased the number of mitochondria, along with an observed improvement in mitochondrial ultrastructure. From in vitro studies, 2,4-thiazolidinedione resulted in increased levels of molecules regulated function of mitochondria, including PGC-1α, nuclear respiratory factor 1 (NRF1), NRF2, and mitochondria fusion 2 (Mfn2), and inhibited mitochondria fission 1 (Fis1). We show that protein levels of Bcl-2 and ERK were reduced in the MPP+-treated group compared with the control group. This effect was observed to be reversed upon treatment with 2,4-thiazolidinedione, as Bcl-2 and ERK expression levels were increased. We also observed that levels of the apoptotic protein Bax showed opposite changes compared to Bcl-2 and ERK levels. The results from this study confirm that pioglitazone/2,4-thiazolidinedione is able to activate PGC-1α and prevent damage of dopaminergic neurons and restore mitochondria ultrastructure through the regulation of mitochondria function.
Collapse
|
37
|
Morin N, Morissette M, Grégoire L, Di Paolo T. mGlu5, Dopamine D2 and Adenosine A2A Receptors in L-DOPA-induced Dyskinesias. Curr Neuropharmacol 2017; 14:481-93. [PMID: 26639458 PMCID: PMC4983750 DOI: 10.2174/1570159x14666151201185652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
Patients with Parkinson's disease (PD) receiving L-3,4-dihydroxyphenylalanine (L-DOPA, the gold-standard treatment for this disease) frequently develop abnormal involuntary movements, termed L-DOPA-induced dyskinesias (LID). Glutamate overactivity is well documented in PD and LID. An approach to manage LID is to add to L-DOPA specific agents to reduce dyskinesias such as metabotropic glutamate receptor (mGlu receptor) drugs. This article reviews the contribution of mGlu type 5 (mGlu5) receptors in animal models of PD. Several mGlu5 negative allosteric modulators acutely attenuate LID in 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP) monkeys and 6-hydroxydopamine(6-OHDA)-lesioned rats. Chronic administration of mGlu5 negative allosteric modulators to MPTP monkeys and 6-OHDA rats also attenuates LID while maintaining the antiparkinsonian effect of L-DOPA. Radioligand autoradiography shows an elevation of striatal mGlu5 receptors of dyskinetic L-DOPA-treated MPTP monkeys but not in those without LID. The brain molecular correlates of the long-term effect of mGlu5 negative allosteric modulators treatments with L-DOPA attenuating development of LID was shown to extend beyond mGlu5 receptors with normalization of glutamate activity in the basal ganglia of L-DOPA-induced changes of NMDA, AMPA, mGlu2/3 receptors and VGlut2 transporter. In the basal ganglia, mGlu5 receptor negative allosteric modulators also normalize the L-DOPA-induced changes of dopamine D2receptors, their associated signaling proteins (ERK1/2 and Akt/GSK3β) and neuropeptides (preproenkephalin, preprodynorphin) as well as the adenosine A2A receptors expression. These results show in animal models of PD reduction of LID with mGlu5 negative allosteric modulation associated with normalization of glutamate, dopamine and adenosine receptors suggesting a functional link of these receptors in chronic treatment with L-DOPA.
Collapse
Affiliation(s)
| | | | | | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre de recherche du CHU de Québec, 2705 Laurier Boulevard, Quebec, Qc, Canada, G1V 4G2.
| |
Collapse
|
38
|
Lancioni G, Singh N, O'Reilly M, Sigafoos J, D'Amico F, Sasanelli G, Denitto F, Lang R. Technology-aided leisure and communication: Opportunities for persons with advanced Parkinson's disease. Dev Neurorehabil 2016; 19:398-404. [PMID: 25826719 DOI: 10.3109/17518423.2014.1002637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE This study investigated whether simple technology-aided programs could be used to promote leisure and communication engagement in three persons with advanced Parkinson's disease. METHOD The programs included music and video options, which were combined with (a) text messaging and telephone calls for the first participant, (b) verbal statements/requests, text messaging, and reading for the second participant, and (c) verbal statements/requests and prayers for the third participant. The participants could activate those options via hand movement or vocal emission and specific microswitches. RESULTS All three participants were successful in activating the options available. The mean cumulative frequencies of option activations were about five per 15-min session for the first two participants and about four per 10-min session for the third participant. CONCLUSION The results were considered encouraging and relevant given the limited amount of evidence available on helping persons with advanced Parkinson's disease with leisure and communication.
Collapse
Affiliation(s)
- Giulio Lancioni
- a Department of Neuroscience and Sense Organs , University of Bari , Bari , Italy
| | - Nirbhay Singh
- b Medical College of Georgia, Georgia Regents University , Augusta , GA , USA
| | - Mark O'Reilly
- c Department of Special Education , University of Texas at Austin , Austin , TX , USA
| | - Jeff Sigafoos
- d Department of Educational Psychology , Victoria University of Wellington , Wellington , New Zealand
| | - Fiora D'Amico
- e S. Raffaele Medical Care Center , Alberobello , Italy
| | | | | | - Russell Lang
- g Department of Curriculum Instruction , Texas State University , San Marcos , TX , USA
| |
Collapse
|
39
|
Continuous leg dyskinesia assessment in Parkinson's disease –clinical validity and ecological effect. Parkinsonism Relat Disord 2016; 26:41-6. [DOI: 10.1016/j.parkreldis.2016.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 01/22/2023]
|
40
|
Perez XA. Preclinical Evidence for a Role of the Nicotinic Cholinergic System in Parkinson's Disease. Neuropsychol Rev 2015; 25:371-83. [PMID: 26553323 DOI: 10.1007/s11065-015-9303-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
One of the primary deficits in Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta which leads to striatal dopaminergic deficits that underlie the motor symptoms associated with the disease. A plethora of animal models have been developed over the years to uncover the molecular alterations that lead to PD development. These models have provided valuable information on neurotransmitter pathways and mechanisms involved. One such a system is the nicotinic cholinergic system. Numerous studies show that nigrostriatal damage affects nicotinic receptor-mediated dopaminergic signaling; therefore therapeutic modulation of the nicotinic cholinergic system may offer a novel approach to manage PD. In fact, there is evidence showing that nicotinic receptor drugs may be useful as neuroprotective agents to prevent Parkinson's disease progression. Additional preclinical studies also show that nicotinic receptor drugs may be beneficial for the treatment of L-dopa induced dyskinesias. Here, we review preclinical findings supporting the idea that nicotinic receptors are valuable therapeutic targets for PD.
Collapse
Affiliation(s)
- Xiomara A Perez
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, Menlo Park, CA, 94025, USA.
| |
Collapse
|
41
|
Quik M, Zhang D, McGregor M, Bordia T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson's disease. Biochem Pharmacol 2015; 97:399-407. [PMID: 26093062 PMCID: PMC4600450 DOI: 10.1016/j.bcp.2015.06.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Accumulating evidence suggests that CNS α7 nicotinic acetylcholine receptors (nAChRs) are important targets for the development of therapeutic approaches for Parkinson's disease. This progressive neurodegenerative disorder is characterized by debilitating motor deficits, as well as autonomic problems, cognitive declines, changes in affect and sleep disturbances. Currently l-dopa is the gold standard treatment for Parkinson's disease motor problems, particularly in the early disease stages. However, it does not improve the other symptoms, nor does it reduce the inevitable disease progression. Novel therapeutic strategies for Parkinson's disease are therefore critical. Extensive pre-clinical work using a wide variety of experimental models shows that nicotine and nAChR agonists protect against damage to nigrostriatal and other neuronal cells. This observation suggests that nicotine and/or nAChR agonists may be useful as disease modifying agents. Additionally, studies in several parkinsonian animal models including nonhuman primates show that nicotine reduces l-dopa-induced dyskinesias, a side effect of l-dopa therapy that may be as incapacitating as Parkinson's disease itself. Work with subtype selective nAChR agonists indicate that α7 nAChRs are involved in mediating both the neuroprotective and antidyskinetic effects, thus offering a targeted strategy with optimal beneficial effects and minimal adverse responses. Here, we review studies demonstrating a role for α7 nAChRs in protection against neurodegenerative effects and for the reduction of l-dopa-induced dyskinesias. Altogether, this work suggests that α7 nAChRs may be useful targets for reducing Parkinson's disease progression and for the management of the dyskinesias that arise with l-dopa therapy.
Collapse
Affiliation(s)
- Maryka Quik
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA.
| | - Danhui Zhang
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Matthew McGregor
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| | - Tanuja Bordia
- Center for Health Sciences, SRI International, 333 Ravenswood Ave, CA 94025, USA
| |
Collapse
|
42
|
Quik M, Bordia T, Zhang D, Perez XA. Nicotine and Nicotinic Receptor Drugs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 124:247-71. [DOI: 10.1016/bs.irn.2015.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|