1
|
Ioakeimidis V, Busse M, Drew CJG, Pallmann P, Watson GB, Jones D, Palombo M, Schubert R, Rosser AE, Metzler-Baddeley C. Protocol for a randomised controlled unblinded feasibility trial of HD-DRUM: a rhythmic movement training application for cognitive and motor symptoms in people with Huntington's disease. BMJ Open 2024; 14:e082161. [PMID: 39089721 PMCID: PMC11418498 DOI: 10.1136/bmjopen-2023-082161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Huntington's disease (HD) is an inherited neurodegenerative disease causing progressive cognitive and motor decline, largely due to basal ganglia (BG) atrophy. Rhythmic training offers promise as therapy to counteract BG-regulated deficits. We have developed HD-DRUM, a tablet-based app to enhance movement synchronisation skills and improve cognitive and motor abilities in people with HD. This paper outlines a randomised controlled unblinded trial protocol to determine the feasibility of a larger effectiveness trial for HD-DRUM. Additionally, the trial investigates cognitive and motor function measures, along with brain microstructure, aiming to advance our understanding of the neural mechanisms underlying training effects. METHODS, DESIGN AND ANALYSIS 50 individuals with HD, confirmed by genetic testing, and a Total Functional Capacity (TFC) score of 9-13, will be recruited into a two-arm randomised controlled feasibility trial. Consenting individuals with HD will be randomised to the intervention group, which entails 8 weeks of at-home usage of HD-DRUM or a usual-activity control group. All participants will undergo cognitive and motor assessments, alongside ultra-strong gradient (300 mT/m) brain microstructural MRI before and after the 8-week period. The feasibility assessment will encompass recruitment, retention, adherence and acceptability of HD-DRUM following prespecified criteria. The study will also evaluate variations in cognitive and motor performance and brain microstructure changes resulting from the intervention to determine effect size estimates for future sample size calculations. ETHICS AND DISSEMINATION The study has received favourable ethical opinion from the Wales Research Ethics Committee 2 (REC reference: 22/WA/0147) and is sponsored by Cardiff University (SPON1895-22) (Research Integrity, Governance and Ethics Team, Research & Innovation Services, Cardiff University, second Floor, Lakeside Building, University Hospital of Wales, Cardiff, CF14 4XW). Findings will be disseminated to researchers and clinicians in peer-reviewed publications and conference presentations, and to participants, carers and the general public via newsletters and public engagement activities. Data will be shared with the research community via the Enroll-HD platform. TRIAL REGISTRATION NUMBER ISRCTN11906973.
Collapse
Affiliation(s)
- Vasileios Ioakeimidis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Monica Busse
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Cheney J G Drew
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Philip Pallmann
- Centre for Trials Research, School of Medicine, Cardiff University, Cardiff, UK
| | - Guy B Watson
- HD Voice, Huntington's Disease Association, Liverpool, UK
| | - Derek Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Marco Palombo
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | | | - Anne E Rosser
- Cardiff Brain Repair Group, Cardiff, UK
- Department of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Huang C, Zheng X, Yan S, Zhang Z. Advances in Clinical Therapies for Huntington's Disease and the Promise of Multi-Targeted/Functional Drugs Based on Clinicaltrials.gov. Clin Pharmacol Ther 2024. [PMID: 38863261 DOI: 10.1002/cpt.3341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a triad of motor, cognitive, and psychiatric problems. Caused by CAG repeat expansion in the huntingtin gene (HTT), the disease involves a complex network of pathogenic mechanisms, including synaptic dysfunction, impaired autophagy, neuroinflammation, oxidative damage, mitochondrial dysfunction, and extrasynaptic excitotoxicity. Although current therapies targeting the pathogenesis of HD primarily aim to reduce mHTT levels by targeting HTT DNA, RNA, or proteins, these treatments only ameliorate downstream pathogenic effects. While gene therapies, such as antisense oligonucleotides, small interfering RNAs and gene editing, have emerged in the field of HD treatment, their safety and efficacy are still under debate. Therefore, pharmacological therapy remains the most promising breakthrough, especially multi-target/functional drugs, which have diverse pharmacological effects. This review summarizes the latest progress in HD drug development based on clinicaltrials.gov search results (Search strategy: key word "Huntington's disease" in HD clinical investigational drugs registered as of December 31, 2023), and highlights the key role of multi-target/functional drugs in HD treatment strategies.
Collapse
Affiliation(s)
- Chunhui Huang
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiao Zheng
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Sen Yan
- School of Medicine, Jinan University, Guangzhou, China
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of TCM and New Drugs Research and Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Shafie A, Ashour AA, Anwar S, Anjum F, Hassan MI. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington's disease. Arch Pharm Res 2024; 47:571-595. [PMID: 38764004 DOI: 10.1007/s12272-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Huntington's disease (HD) is a paradigm of a genetic neurodegenerative disorder characterized by the expansion of CAG repeats in the HTT gene. This extensive review investigates the molecular complexities of HD by highlighting the pathogenic mechanisms initiated by the mutant huntingtin protein. Adverse outcomes of HD include mitochondrial dysfunction, compromised protein clearance, and disruption of intracellular signaling, consequently contributing to the gradual deterioration of neurons. Numerous therapeutic strategies, particularly precision medicine, are currently used for HD management. Antisense oligonucleotides, such as Tominersen, play a leading role in targeting and modulating the expression of mutant huntingtin. Despite the promise of these therapies, challenges persist, particularly in improving delivery systems and the necessity for long-term safety assessments. Considering the future landscape, the review delineates promising directions for HD research and treatment. Innovations such as Clustered regularly interspaced short palindromic repeats associated system therapies (CRISPR)-based genome editing and emerging neuroprotective approaches present unprecedented opportunities for intervention. Collaborative interdisciplinary endeavors and a more insightful understanding of HD pathogenesis are on the verge of reshaping the therapeutic landscape. As we navigate the intricate landscape of HD, this review serves as a guide for unraveling the intricacies of this disease and progressing toward transformative treatments.
Collapse
Affiliation(s)
- Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
4
|
Dhingra H, Gaidhane SA. Huntington's Disease: Understanding Its Novel Drugs and Treatments. Cureus 2023; 15:e47526. [PMID: 38021751 PMCID: PMC10664735 DOI: 10.7759/cureus.47526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
An inherited neurodegenerative ailment called Huntington's disease (HD) of gradual physical impairment, cognitive decline, and psychiatric symptoms. It is brought on by a mutation of the HTT gene, which causes aberrant huntingtin protein buildup in neurons. This predominantly affects the striatum and cerebral cortex, where neuronal malfunction and eventual cell death follow. The quality index of life for both patients and their families is significantly impacted when symptoms first appear in mid-adulthood. An overview of the available therapies for HD is given in this article. Although HD has no known treatment options, there are several that try to lessen symptoms and reduce the disease's development. By lowering involuntary movements, pharmaceutical treatments like tetrabenazine and deutetrabenazine focus on motor symptoms. Antidepressants and antipsychotic medicines are also used to manage the mental and cognitive symptoms of HD. The investigation of prospective gene-based medicines is a result of research into disease-modifying medications. Reduced synthesis of mutant huntingtin protein is the goal of RNA interference (RNAi) strategies, which may halt the course of illness. Additionally, continuing research into Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated protein 9 (CRISPR-Cas9) and other gene editing methods shows promise for reversing the genetic mutation that causes HD. Individuals with HD can benefit from non-pharmacological therapies such as physical therapy, speech therapy, and occupational therapy to increase their functional abilities and general well-being. Supportive treatment, psychiatric therapy, and caregiver support groups are also essential in addressing the difficult problems the illness presents. In conclusion, tremendous progress is being made in the domain of HD treatment, with an emphasis on symptom control, disease modification, and prospective gene-based therapeutics. Even though there has been significant improvement, more study is still required to provide better therapies and ultimately discover a solution for this debilitating condition.
Collapse
Affiliation(s)
- Hitaansh Dhingra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shilpa A Gaidhane
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
5
|
Translational proteomics and phosphoproteomics: Tissue to extracellular vesicles. Adv Clin Chem 2022; 112:119-153. [PMID: 36642482 DOI: 10.1016/bs.acc.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We are currently experiencing a rapidly developing era in terms of translational and clinical medical sciences. The relatively mature state of nucleic acid examination has significantly improved our understanding of disease mechanism and therapeutic potential of personalized treatment, but misses a large portion of phenotypic disease information. Proteins, in particular phosphorylation events that regulates many cellular functions, could provide real-time information for disease onset, progression and treatment efficacy. The technical advances in liquid chromatography and mass spectrometry have realized large-scale and unbiased proteome and phosphoproteome analyses with disease relevant samples such as tissues. However, tissue biopsy still has multiple shortcomings, such as invasiveness of sample collection, potential health risk for patients, difficulty in protein preservation and extreme heterogeneity. Recently, extracellular vesicles (EVs) have offered a great promise as a unique source of protein biomarkers for non-invasive liquid biopsy. Membranous EVs provide stable preservation of internal proteins and especially labile phosphoproteins, which is essential for effective routine biomarker detection. To aid efficient EV proteomic and phosphoproteomic analyses, recent developments showcase clinically-friendly EV techniques, facilitating diagnostic and therapeutic applications. Ultimately, we envision that with streamlined sample preparation from tissues and EVs proteomics and phosphoproteomics analysis will become routine in clinical settings.
Collapse
|
6
|
Metzger JJ, Pereda C, Adhikari A, Haremaki T, Galgoczi S, Siggia ED, Brivanlou AH, Etoc F. Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington's disease models. CELL REPORTS METHODS 2022; 2:100297. [PMID: 36160045 PMCID: PMC9500000 DOI: 10.1016/j.crmeth.2022.100297] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/06/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022]
Abstract
Organoids are carrying the promise of modeling complex disease phenotypes and serving as a powerful basis for unbiased drug screens, potentially offering a more efficient drug-discovery route. However, unsolved technical bottlenecks of reproducibility and scalability have prevented the use of current organoids for high-throughput screening. Here, we present a method that overcomes these limitations by using deep-learning-driven analysis for phenotypic drug screens based on highly standardized micropattern-based neural organoids. This allows us to distinguish between disease and wild-type phenotypes in complex tissues with extremely high accuracy as well as quantify two predictors of drug success: efficacy and adverse effects. We applied our approach to Huntington's disease (HD) and discovered that bromodomain inhibitors revert complex phenotypes induced by the HD mutation. This work demonstrates the power of combining machine learning with phenotypic drug screening and its successful application to reveal a potentially new druggable target for HD.
Collapse
Affiliation(s)
- Jakob J. Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Carlota Pereda
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Arjun Adhikari
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| | - Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H. Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
- RUMI Scientific, Alexandria LaunchLabs, New York, NY 10016, USA
| |
Collapse
|
7
|
Achenbach J, Matusch A, Elmenhorst D, Bauer A, Saft C. Divergent Effects of the Nonselective Adenosine Receptor Antagonist Caffeine in Pre-Manifest and Motor-Manifest Huntington's Disease. Biomedicines 2022; 10:biomedicines10061258. [PMID: 35740281 PMCID: PMC9219784 DOI: 10.3390/biomedicines10061258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/22/2022] [Accepted: 05/25/2022] [Indexed: 01/27/2023] Open
Abstract
There is a controversy about potentially positive or negative effects of caffeine consumption on onset and disease progression of neurodegenerative diseases such as Huntington’s Disease (HD). On the molecular level, the psychoactive drug caffeine targets in particular adenosine receptors (AR) as a nonselective antagonist. The aim of this study was to evaluate clinical effects of caffeine consumption in patients suffering from premanifest and motor-manifest HD. Data of the global observational study ENROLL-HD were used, in order to analyze the course of HD regarding symptoms onset, motor, functional, cognitive and psychiatric parameters, using cross-sectional and longitudinal data of up to three years. We split premanifest and manifest participants into two subgroups: consumers of >3 cups of caffeine (coffee, cola or black tea) per day (>375 mL) vs. subjects without caffeine consumption. Data were analyzed using ANCOVA-analyses for cross-sectional and repeated measures analysis of variance for longitudinal parameters in IBM SPSS Statistics V.28. Within n = 21,045 participants, we identified n = 1901 premanifest and n = 4072 manifest HD patients consuming >3 cups of caffeine/day vs. n = 841 premanifest and n = 2243 manifest subjects without consumption. Manifest HD patients consuming >3 cups exhibited a significantly better performance in a series of neuropsychological tests. They also showed at the median a later onset of symptoms (all p < 0.001), and, during follow-up, less motor, functional and cognitive impairments in the majority of tests (all p < 0.050). In contrast, there were no beneficial caffeine-related effects on neuropsychological performance in premanifest HD mutation carriers. They showed even worse cognitive performances in stroop color naming (SCNT) and stroop color reading (SWRT) tests (all p < 0.050) and revealed more anxiety, depression and irritability subscores in comparison to premanifest participants without caffeine consumption. Similarly, higher self-reported anxiety and irritability were observed in genotype negative/control group high dose caffeine drinkers, associated with a slightly better performance in some cognitive tasks (all p < 0.050). The analysis of the impact of caffeine consumption in the largest real-world cohort of HD mutation carriers revealed beneficial effects on neuropsychological performance as well as manifestation and course of disease in manifest HD patients while premanifest HD mutation carrier showed no neuropsychological improvements, but worse cognitive performances in some tasks and exhibited more severe signs of psychiatric impairment. Our data point to state-related psychomotor-stimulant effects of caffeine in HD that might be related to regulatory effects at cerebral adenosine receptors. Further studies are required to validate findings, exclude potential other unknown biasing factors such as physical activity, pharmacological interventions, gender differences or chronic habitual influences and test for dosage related effects.
Collapse
Affiliation(s)
- Jannis Achenbach
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
- Correspondence:
| | - Andreas Matusch
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50923 Cologne, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (A.M.); (D.E.); (A.B.)
| | - Carsten Saft
- Department of Neurology, Huntington Center North Rhine-Westphalia, St. Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstraße 56, 44791 Bochum, Germany;
| |
Collapse
|
8
|
Riccardi C, D’Aria F, Digilio FA, Carillo MR, Amato J, Fasano D, De Rosa L, Paladino S, Melone MAB, Montesarchio D, Giancola C. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci 2022; 23:4804. [PMID: 35563194 PMCID: PMC9101412 DOI: 10.3390/ijms23094804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity. Then, using a well-established Drosophila melanogaster model for Huntington's disease, which expresses the mutated form of human huntingtin, a significant improvement in the motor neuronal function in flies fed with MS3 was observed, proving the in vivo efficacy of this aptamer.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Federica D’Aria
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Filomena Anna Digilio
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
| | - Maria Rosaria Carillo
- Research Institute on Terrestrial Ecosystems (IRET), UOS Naples-CNR, 80131 Napoli, Italy; (F.A.D.); (M.R.C.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Napoli, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| | - Dominga Fasano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
| | - Laura De Rosa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Napoli, Italy; (D.F.); (L.D.R.); (S.P.)
| | - Mariarosa Anna Beatrice Melone
- Center for Rare Diseases and Inter University Center for Research in Neurosciences, Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, University of Campania Luigi Vanvitelli, 80131 Napoli, Italy;
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, 80126 Napoli, Italy;
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy; (F.D.); (J.A.)
| |
Collapse
|
9
|
Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12030344. [PMID: 35327542 PMCID: PMC8945600 DOI: 10.3390/biom12030344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Most neurodegenerative disorders have complex and still unresolved pathology characterized by progressive neuronal damage and death. Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies. In the last 14 years, the differentiation of human iPSCs into astrocytes allowed for the opportunity to explore the contribution of astrocytes to neurodegenerative diseases. This review discusses the development protocols and applications of human iPSC-derived astrocytes in the most common neurodegenerative conditions.
Collapse
|
10
|
Mendonça MCP, Cronin MF, Cryan JF, O'Driscoll CM. Modified cyclodextrin-based nanoparticles mediated delivery of siRNA for huntingtin gene silencing across an in vitro BBB model. Eur J Pharm Biopharm 2021; 169:309-318. [PMID: 34793942 DOI: 10.1016/j.ejpb.2021.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 01/21/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene, leading to a toxic version of the HTT protein. There are currently no disease-modifying therapies available. In this scenario, gene-based treatments for HD aimed at lowering HTT levels have become one of the most promising emerging therapeutic options. To date, however, promising results have only been achieved following direct intrathecal or intracranial injections designed to circumvent the blood-brain barrier (BBB). Consequently, efforts to develop less invasive delivery platforms are highly desirable. Here, we described a novel delivery system based on modified cyclodextrin nanoparticles (CDs) loaded with small interfering RNAs (siRNAs) targeting HTT andcomplexed with the rabies virus glycoprotein(RVG), a BBB-shuttle peptide. Results using an in vitro BBB model, indicate the formulation successfully crosses the brain endothelial cells, releases the encapsulated siRNAs into the cytoplasm of neuronal cells, and mediates downregulation of HTT. In conclusion, the CD platform is a promising option for delivery of siRNA-based therapeutics for HD with wider potential to treat other diseases with a genetically validated target in the central nervous system.
Collapse
Affiliation(s)
| | - Michael F Cronin
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | |
Collapse
|
11
|
Dong X, Cong S. MicroRNAs in Huntington's Disease: Diagnostic Biomarkers or Therapeutic Agents? Front Cell Neurosci 2021; 15:705348. [PMID: 34421543 PMCID: PMC8377808 DOI: 10.3389/fncel.2021.705348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
MicroRNA (miRNA) is a non-coding single-stranded small molecule of approximately 21 nucleotides. It degrades or inhibits the translation of RNA by targeting the 3′-UTR. The miRNA plays an important role in the growth, development, differentiation, and functional execution of the nervous system. Dysregulated miRNA expression has been associated with several pathological processes of neurodegenerative disorders, including Huntington’s disease (HD). Recent studies have suggested promising roles of miRNAs as biomarkers and potential therapeutic targets for HD. Here, we review the emerging role of dysregulated miRNAs in HD and describe general biology of miRNAs, their pathophysiological implications, and their potential roles as biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
12
|
Kim A, Lalonde K, Truesdell A, Gomes Welter P, Brocardo PS, Rosenstock TR, Gil-Mohapel J. New Avenues for the Treatment of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22168363. [PMID: 34445070 PMCID: PMC8394361 DOI: 10.3390/ijms22168363] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a CAG expansion in the HD gene. The disease is characterized by neurodegeneration, particularly in the striatum and cortex. The first symptoms usually appear in mid-life and include cognitive deficits and motor disturbances that progress over time. Despite being a genetic disorder with a known cause, several mechanisms are thought to contribute to neurodegeneration in HD, and numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. Although current clinical trials may lead to the identification or refinement of treatments that are likely to improve the quality of life of those living with HD, major efforts continue to be invested at the pre-clinical level, with numerous studies testing novel approaches that show promise as disease-modifying strategies. This review offers a detailed overview of the currently approved treatment options for HD and the clinical trials for this neurodegenerative disorder that are underway and concludes by discussing potential disease-modifying treatments that have shown promise in pre-clinical studies, including increasing neurotropic support, modulating autophagy, epigenetic and genetic manipulations, and the use of nanocarriers and stem cells.
Collapse
Affiliation(s)
- Amy Kim
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Kathryn Lalonde
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
| | - Aaron Truesdell
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Priscilla Gomes Welter
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Patricia S. Brocardo
- Neuroscience Graduate Program, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil; (P.G.W.); (P.S.B.)
| | - Tatiana R. Rosenstock
- Institute of Cancer and Genomic Science, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
- Department of Pharmacology, University of São Paulo, São Paulo 05508-000, Brazil
| | - Joana Gil-Mohapel
- Island Medical Program and Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada; (A.K.); (K.L.)
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: ; Tel.: +1-250-472-4597; Fax: +1-250-472-5505
| |
Collapse
|
13
|
Ananbeh H, Vodicka P, Kupcova Skalnikova H. Emerging Roles of Exosomes in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22084085. [PMID: 33920936 PMCID: PMC8071291 DOI: 10.3390/ijms22084085] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Huntington’s disease (HD) is a rare hereditary autosomal dominant neurodegenerative disorder, which is caused by expression of mutant huntingtin protein (mHTT) with an abnormal number of glutamine repeats in its N terminus, and characterized by intracellular mHTT aggregates (inclusions) in the brain. Exosomes are small extracellular vesicles that are secreted generally by all cell types and can be isolated from almost all body fluids such as blood, urine, saliva, and cerebrospinal fluid. Exosomes may participate in the spreading of toxic misfolded proteins across the central nervous system in neurodegenerative diseases. In HD, such propagation of mHTT was observed both in vitro and in vivo. On the other hand, exosomes might carry molecules with neuroprotective effects. In addition, due to their capability to cross blood-brain barrier, exosomes hold great potential as sources of biomarkers available from periphery or carriers of therapeutics into the central nervous system. In this review, we discuss the emerging roles of exosomes in HD pathogenesis, diagnosis, and therapy.
Collapse
|
14
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
15
|
Cano A, Ettcheto M, Espina M, Auladell C, Folch J, Kühne BA, Barenys M, Sánchez-López E, Souto EB, García ML, Turowski P, Camins A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond) 2021; 16:19-35. [PMID: 33410329 DOI: 10.2217/nnm-2020-0239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To compare free and nanoparticle (NP)-encapsulated epigallocatechin-3-gallate (EGCG) for the treatment of Huntington's disease (HD)-like symptoms in mice. Materials & methods: EGCG was incorporated into PEGylated poly(lactic-co-glycolic) acid NPs with ascorbic acid (AA). HD-like striatal lesions and motor deficit were induced in mice by 3-nitropropionic acid-intoxication. EGCG and EGCG/AA NPs were co-administered and behavioral motor assessments and striatal histology performed after 5 days. Results: EGCG/AA NPs were significantly more effective than free EGCG in reducing motor disturbances and depression-like behavior associated with 3-nitropropionic acid toxicity. EGCG/AA NPs treatment also mitigated neuroinflammation and prevented neuronal loss. Conclusion: NP encapsulation enhances therapeutic robustness of EGCG in this model of HD symptomatology. Together with our previous findings, this highlights the potential of EGCG/AA NPs in the symptomatic treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology & Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Unit of Biochemistry & Pharmacology, Faculty of Medicine & Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain.,Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology & Physical Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience & Nanotechnology (IN2UB), Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, London, UK
| | - Antonio Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Department of Pharmacology, Toxicology & Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Spain
| |
Collapse
|
16
|
Godoy LAD, Bomfim FRCD. CRISPR-CAS9 como ferramenta para edição do gene IT-15 na Doença de Huntington. REVISTA CIÊNCIAS EM SAÚDE 2020. [DOI: 10.21876/rcshci.v10i4.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A Doença de Huntington (DH) é uma doença neurodegenerativa, autossômica dominante e hereditária que ocorre devido a uma mutação genética que gera uma sequência repetitiva de trinucleotídeos CAG, presentes no gene IT-15, gene da huntingtina, localizado no cromossomo 4. O objetivo foi revisar a neuropatologia da doença de Huntington (DH) e a utilização do método CRISPR-Cas9 para silenciar o gene IT-15 e verificar assim, a consequência nos genes HIP14 e HAP1, que possuem interação com a Huntigtina mutada e o resultado desta no organismo do paciente. Foram pesquisados artigos em bases indexadas (Scielo, PubMed e LILACs) com os seguintes descritores: ((Huntington) OR (Proteína Huntingtina)) AND (edição gênica). Também foi utilizada a ferramenta on line GeneMania, acesso livre, para análise de probabilidades e interações gênicas. O silenciamento do gene IT-15 acarreta alterações nas proteínas que interagem com a Huntingtina mutada, levando a perturbações em diversos processos.
Collapse
|
17
|
Bozzi M, Sciandra F. Molecular Mechanisms Underlying Muscle Wasting in Huntington's Disease. Int J Mol Sci 2020; 21:ijms21218314. [PMID: 33167595 PMCID: PMC7664236 DOI: 10.3390/ijms21218314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder caused by pathogenic expansions of the triplet cytosine-adenosine-guanosine (CAG) within the Huntingtin gene. These expansions lead to a prolongation of the poly-glutamine stretch at the N-terminus of Huntingtin causing protein misfolding and aggregation. Huntingtin and its pathological variants are widely expressed, but the central nervous system is mainly affected, as proved by the wide spectrum of neurological symptoms, including behavioral anomalies, cognitive decline and motor disorders. Other hallmarks of HD are loss of body weight and muscle atrophy. This review highlights some key elements that likely provide a major contribution to muscle atrophy, namely, alteration of the transcriptional processes, mitochondrial dysfunction, which is strictly correlated to loss of energy homeostasis, inflammation, apoptosis and defects in the processes responsible for the protein quality control. The improvement of muscular symptoms has proven to slow the disease progression and extend the life span of animal models of HD, underlining the importance of a deep comprehension of the molecular mechanisms driving deterioration of muscular tissue.
Collapse
Affiliation(s)
- Manuela Bozzi
- Dipartimento Universitario di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Sezione di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore di Roma, Largo F. Vito 1, 00168 Roma, Italy
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
- Correspondence:
| | - Francesca Sciandra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”– SCITEC Sede di Roma, Largo F. Vito 1, 00168 Roma, Italy;
| |
Collapse
|
18
|
Iqubal A, Iqubal MK, Khan A, Ali J, Baboota S, Haque SE. Gene Therapy, A Novel Therapeutic Tool for Neurological Disorders: Current Progress, Challenges and Future Prospective. Curr Gene Ther 2020; 20:184-194. [DOI: 10.2174/1566523220999200716111502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
:
Neurological disorders are one of the major threat for health care system as they put enormous
socioeconomic burden. All aged populations are susceptible to one or other neurological problems
with symptoms of neuroinflammation, neurodegeneration and cognitive dysfunction. At present,
available pharmacotherapeutics are insufficient to treat these diseased conditions and in most cases,
they provide only palliative effect. It was also found that the molecular etiology of neurological disorders
is directly linked with the alteration in genetic makeup, which can be inherited or triggered by the
injury, environmental toxins and by some existing disease. Therefore, to take care of this situation,
gene therapy has emerged as an advanced modality that claims to permanently cure the disease by deletion,
silencing or edition of faulty genes and by insertion of healthier genes. In this modality, vectors
(viral and non-viral) are used to deliver targeted gene into a specific region of the brain via various
routes. At present, gene therapy has shown positive outcomes in complex neurological disorders, such
as Parkinson's disease, Alzheimer's disease, Huntington disease, Multiple sclerosis, Amyotrophic lateral
sclerosis and in lysosomal storage disease. However, there are some limitations such as immunogenic
reactions non-specificity of viral vectors and a lack of effective biomarkers to understand the efficacy
of therapy. Considerable progress has been made to improve vector design, gene selection and
targeted delivery. This review article deals with the current status of gene therapy in neurological disorders
along with its clinical relevance, challenges and future prospective.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Aamir Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
19
|
Casella C, Bourbon-Teles J, Bells S, Coulthard E, Parker GD, Rosser A, Jones DK, Metzler-Baddeley C. Drumming Motor Sequence Training Induces Apparent Myelin Remodelling in Huntington's Disease: A Longitudinal Diffusion MRI and Quantitative Magnetization Transfer Study. J Huntingtons Dis 2020; 9:303-320. [PMID: 32894249 PMCID: PMC7836062 DOI: 10.3233/jhd-200424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background: Impaired myelination may contribute to Huntington’s disease (HD) pathogenesis. Objective: This study assessed differences in white matter (WM) microstructure between HD patients and controls, and tested whether drumming training stimulates WM remodelling in HD. Furthermore, it examined whether training-induced microstructural changes are related to improvements in motor and cognitive function. Methods: Participants undertook two months of drumming exercises. Working memory and executive function were assessed before and post-training. Changes in WM microstructure were investigated with diffusion tensor magnetic resonance imaging (DT-MRI)-based metrics, the restricted diffusion signal fraction (Fr) from the composite hindered and restricted model of diffusion (CHARMED) and the macromolecular proton fraction (MPF) from quantitative magnetization transfer (qMT) imaging. WM pathways linking putamen and supplementary motor areas (SMA-Putamen), and three segments of the corpus callosum (CCI, CCII, CCIII) were studied using deterministic tractography. Baseline MPF differences between patients and controls were assessed with tract-based spatial statistics. Results: MPF was reduced in the mid-section of the CC in HD subjects at baseline, while a significantly greater change in MPF was detected in HD patients relative to controls in the CCII, CCIII, and the right SMA-putamen post-training. Further, although patients improved their drumming and executive function performance, such improvements did not correlate with microstructural changes. Increased MPF suggests training-induced myelin changes in HD. Conclusion: Though only preliminary and based on a small sample size, these results suggest that tailored behavioural stimulation may lead to neural benefits in early HD, that could be exploited for delaying disease progression.
Collapse
Affiliation(s)
- Chiara Casella
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Jose Bourbon-Teles
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Sonya Bells
- The Hospital for Sick Children, Neurosciences and Mental Health, Toronto, Canada
| | | | - Greg D Parker
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| | - Anne Rosser
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, UK.,Department of Neurology and Psychological Medicine, Hayden Ellis Building, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Claudia Metzler-Baddeley
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, UK
| |
Collapse
|
20
|
Jamwal S, Elsworth JD, Rahi V, Kumar P. Gene therapy and immunotherapy as promising strategies to combat Huntington's disease-associated neurodegeneration: emphasis on recent updates and future perspectives. Expert Rev Neurother 2020; 20:1123-1141. [PMID: 32720531 DOI: 10.1080/14737175.2020.1801424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Modulation of gene expression using gene therapy as well as modulation of immune activation using immunotherapy has attracted considerable attention as rapidly emerging potential therapeutic intervention for the treatment of HD. Several preclinical and clinical trials for gene-based therapy and immunotherapy/antibody-based have been conducted. AREAS COVERED This review focused on the potential use of gene therapy and immuno-based therapies to treat HD, including the current status, the rationale for these approaches as well as preclinical and clinical data supporting it. Growing knowledge of HD pathogenesis has resulted in the discovery of new therapeutic targets, some of which are now in clinical trials. Focus has been allocated to RNA and DNA-based gene therapies for the reduction of mutant huntingtin (mHTT), using Immuno/antibody-based therapies. EXPERT OPINION While safety and efficacy of gene therapy and immunotherapy has been well demonstrated for HD, therefore much focus has now been shifted to disease-modifying therapies. This review defines the current status and future directions of gene therapy and immunotherapies. The review summarizes by what means HD genetic root cause modification and functional restoration of mHtt protein could be achieved by using targeted multimodality gene therapy and immunotherapy to target intracellular and extracellular mHtt.
Collapse
Affiliation(s)
- Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT, USA
| | - John D Elsworth
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT, USA
| | - Vikrant Rahi
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University , Bathinda, India
| | - Puneet Kumar
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, India
| |
Collapse
|