1
|
Pigliasco F, Cafaro A, Barco S, Stella M, Mattioli F, Riva A, Mancardi MM, Lattanzi S, Bandettini R, Striano P, Cangemi G. Innovative LC-MS/MS method for therapeutic drug monitoring of fenfluramine and cannabidiol in the plasma of pediatric patients with epilepsy. J Pharm Biomed Anal 2024; 245:116174. [PMID: 38703746 DOI: 10.1016/j.jpba.2024.116174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
We present a novel liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying fenfluramine (FFA), its active metabolite norfenfluramine (norFFA), and Epidyolex®, a pure cannabidiol (CBD) oral solution in plasma. Recently approved by the EMA for the adjunctive treatment of refractory seizures in patients with Dravet and Lennox-Gastaut syndromes aged above 2 years, FFA and CBD still do not have established therapeutic blood ranges, and thus need careful drug monitoring to manage potential pharmacokinetic and pharmacodynamic interactions. Our method, validated by ICH guidelines M10, utilizes a rapid extraction protocol from 100 µL of human plasma and a reversed-phase C-18 HPLC column, with deuterated internal standards. The Thermofisher Quantiva triple-quadrupole MS coupled with an Ultimate 3000 UHPLC allowed multiple reaction monitoring detection, ensuring precise analyte quantification. The assay exhibited linear responses across a broad spectrum of concentrations: ranging from 1.64 to 1000 ng/mL for both FFA and CBD, and from 0.82 to 500 ng/mL for norFFA. The method proves accurate and reproducible, free from matrix effect. Additionally, FFA stability in plasma at 4 °C and -20 °C for up to 7 days bolsters its clinical applicability. Plasma concentrations detected in patients samples, expressed as mean ± standard deviation, were 0.36 ± 0.09 ng/mL for FFA, 19.67 ± 1.22 ng/mL for norFFA. This method stands as a robust tool for therapeutic drug monitoring (TDM) of FFA and CBD, offering significant utility in assessing drug-drug interactions in co-treated patients, thus contributing to optimized patient care in complex therapeutic scenarios.
Collapse
Affiliation(s)
- Federica Pigliasco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessia Cafaro
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sebastiano Barco
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - Manuela Stella
- Gaslini Trial Centre, IRCCS Istituto Giannina Gaslini, Genoa, Italy; Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Francesca Mattioli
- Pharmacology and Toxicology Unit, Department of Internal Medicine, University of Genoa, Genoa, Italy; Clinical Pharmacology Unit, Ente Ospedaliero Ospedali Galliera, Genoa, Italy
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Roberto Bandettini
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Paediatric Neurology and Muscular Disease Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuliana Cangemi
- Chromatography and Mass Spectrometry Section, Central Laboratory of Analysis, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
2
|
Okanari K, Teranishi H, Umeda R, Shikano K, Inoue M, Hanada T, Ihara K, Hanada R. Behavioral and neurotransmitter changes on antiepileptic drugs treatment in the zebrafish pentylenetetrazol-induced seizure model. Behav Brain Res 2024; 464:114920. [PMID: 38403178 DOI: 10.1016/j.bbr.2024.114920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Epilepsy, a recurrent neurological disorder involving abnormal neurotransmitter kinetics in the brain, has emerged as a global health concern. The mechanism of epileptic seizures is thought to involve a relative imbalance between excitatory and inhibitory neurotransmitters. Despite the recent advances in clinical and basic research on the pathogenesis of epilepsy, the complex relationship between the neurotransmitter changes and behavior with and without antiepileptic drugs (AEDs) during seizures remains unclear. To investigate the effects of AEDs such as levetiracetam (LEV), carbamazepine (CBZ), and fenfluramine (FFR) on key neurotransmitters in the pentylenetetrazol (PTZ)-induced seizures in adult zebrafish, we examined the changes in glutamic acid, gamma-aminobutyric acid (GABA), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), choline, acetylcholine, norepinephrine, dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and adenosine. In this study, we observed that 5-HT and DA levels in the brain increased immediately after PTZ-induced seizures. Behavioral tests clearly showed that all of these AEDs suppressed the PTZ-induced seizures. Upon treatment of PTZ-induced seizures with these AEDs, CBZ decreased the glutamic acid and FFR increased the GABA levels; however, no neurotransmitter changes were observed in the brain after LEV administration. Thus, we demonstrated a series of neurotransmitter changes linked to behavioral changes during PTZ-induced epileptic seizures when LEV, CBZ, or FFR were administered. These findings will lead to a more detailed understanding of the pathogenesis of epilepsy associated with behavioral and neurotransmitter changes under AED treatment.
Collapse
Affiliation(s)
- Kazuo Okanari
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Ryohei Umeda
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenshiro Shikano
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan
| | - Masanori Inoue
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty and Medicine, Oita University, Oita, Japan
| | - Kenji Ihara
- Department of Pediatrics, Faculty and Medicine, Oita University, Oita, Japan
| | - Reiko Hanada
- Department of Neurophysiology, Faculty and Medicine, Oita University, Oita, Japan.
| |
Collapse
|
3
|
Whyte-Fagundes PA, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Testing of putative antiseizure medications in a preclinical Dravet syndrome zebrafish model. Brain Commun 2024; 6:fcae135. [PMID: 38707709 PMCID: PMC11069116 DOI: 10.1093/braincomms/fcae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Dravet syndrome is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications. Preclinical Dravet syndrome animal models are a valuable tool to identify candidate anti-seizure medications for these patients. Among these, scn1lab mutant zebrafish, exhibiting spontaneous seizure-like activity, are particularly amenable to large-scale drug screening. Thus far, we have screened more than 3000 drug candidates in scn1lab zebrafish mutants, identifying valproate, stiripentol, and fenfluramine e.g. Food and Drug Administration-approved drugs, with clinical application in the Dravet syndrome population. Successful phenotypic screening in scn1lab mutant zebrafish is rigorous and consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behaviour and (ii) an electrophysiology-based assay, using in vivo local field potential recordings, to quantify electrographic seizure-like events. Historically, nearly 90% of drug candidates fail during translation from preclinical models to the clinic. With such a high failure rate, it becomes necessary to address issues of replication and false positive identification. Leveraging our scn1lab zebrafish assays is one approach to address these problems. Here, we curated a list of nine anti-seizure drug candidates recently identified by other groups using preclinical Dravet syndrome models: 1-Ethyl-2-benzimidazolinone, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-Ethyl-2-benzimidazolinone, chlorzoxazone and lisuride. However, second-stage local field potential recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of anti-seizure medications.
Collapse
Affiliation(s)
- Paige A Whyte-Fagundes
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anjelica Vance
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Aloe Carroll
- Behavioral Neurosciences, Northeastern University, Boston, MA 02115, USA
| | - Francisco Figueroa
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Manukyan
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Scott C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Besag FMC, Vasey MJ, Chin RFM. Evaluating fenfluramine hydrochloride as an oral solution for the treatment of seizures associated with Lennox-Gastaut syndrome. Expert Rev Neurother 2024; 24:235-249. [PMID: 38315124 DOI: 10.1080/14737175.2024.2313548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Lennox-Gastaut syndrome (LGS) is a severe childhood-onset developmental and epileptic encephalopathy characterized by treatment-refractory seizures, including tonic/atonic 'drop' seizures, and intellectual impairment and slow spike-wave discharges on the electroencephalogram. Fenfluramine, previously prescribed as a weight-loss drug but then withdrawn, has recently been approved in the US, EU, and UK for the adjunct treatment of seizures associated with LGS. AREAS COVERED The authors review the efficacy and safety findings from clinical trials of fenfluramine in LGS. The authors then discuss the evidence for adverse effects that may be of particular concern to fenfluramine, namely cardiac abnormalities, and weight loss, in the context of the use of fenfluramine for the treatment of the refractory seizures in LGS. EXPERT OPINION Fenfluramine has demonstrated efficacy in reducing the frequency of seizures in LGS, notably drop seizures, in short-term and long-term clinical trials. Valvular heart disease and pulmonary hypertension have not been reported at the low doses (≤26 mg/day) used in these studies, however, data are limited. Due to its novel mechanism of action, fenfluramine may be of benefit in LGS which has not responded adequately to other antiseizure medications. However, none of these medications, including fenfluramine, achieves the ultimate goal of seizure freedom in most cases.
Collapse
Affiliation(s)
- Frank M C Besag
- Child and Adolescent Mental Health Services (CAMHS), East London NHS Foundation Trust, Bedford, UK
- School of Pharmacy, University College London, London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michael J Vasey
- Child and Adolescent Mental Health Services (CAMHS), East London NHS Foundation Trust, Bedford, UK
| | - Richard F M Chin
- Muir Maxwell Epilepsy Centre, The University of Edinburgh, Edinburgh, UK
- Department of Paediatric Neurosciences, Royal Hospital for Children and Young People, Edinburgh, UK
| |
Collapse
|
5
|
Dell’Isola GB, Portwood KE, Consing K, Fattorusso A, Bartocci A, Ferrara P, Di Cara G, Verrotti A, Lodolo M. Current Overview of CDKL-5 Deficiency Disorder Treatment. Pediatr Rep 2024; 16:21-25. [PMID: 38251311 PMCID: PMC10801578 DOI: 10.3390/pediatric16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is a complex of clinical symptoms resulting from the presence of non-functional or absent CDKL5 protein, a serine-threonine kinase involved in neural maturation and synaptogenesis [...].
Collapse
Affiliation(s)
| | - Katherin Elizabeth Portwood
- Shands Children’s Hospital, Department of Child Neurology, University of Florida, Gainesville, FL 32608, USA; (K.E.P.); (K.C.); (M.L.)
| | - Kirsten Consing
- Shands Children’s Hospital, Department of Child Neurology, University of Florida, Gainesville, FL 32608, USA; (K.E.P.); (K.C.); (M.L.)
| | - Antonella Fattorusso
- Department of Pediatrics, University of Perugia, 06129 Perugia, Italy; (A.F.); (G.D.C.); (A.V.)
| | - Arnaldo Bartocci
- Neurophysipathology Service, Villa Margherita, 01027 Montefiascone, Italy;
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Giuseppe Di Cara
- Department of Pediatrics, University of Perugia, 06129 Perugia, Italy; (A.F.); (G.D.C.); (A.V.)
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, 06129 Perugia, Italy; (A.F.); (G.D.C.); (A.V.)
| | - Mauro Lodolo
- Shands Children’s Hospital, Department of Child Neurology, University of Florida, Gainesville, FL 32608, USA; (K.E.P.); (K.C.); (M.L.)
| |
Collapse
|
6
|
Whyte-Fagundes P, Vance A, Carroll A, Figueroa F, Manukyan C, Baraban SC. Testing of putative antiseizure drugs in a preclinical Dravet syndrome zebrafish model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566723. [PMID: 38014342 PMCID: PMC10680609 DOI: 10.1101/2023.11.11.566723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Dravet syndrome (DS) is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications (ASM). Preclinical DS animal models are a valuable tool to identify candidate ASMs for these patients. Among these, scn1lab mutant zebrafish exhibiting spontaneous seizure-like activity are particularly amenable to large-scale drug screening. Prior screening in a scn1lab mutant zebrafish line generated using N-ethyl-Nnitrosourea (ENU) identified valproate, stiripentol, and fenfluramine e.g., Federal Drug Administration (FDA) approved drugs with clinical application in the DS population. Successful phenotypic screening in scn1lab mutant zebrafish consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behavior and (ii) an electrophysiology-based assay, using in vivo local field potential (LFP) recordings, to quantify electrographic seizure-like events. Using this strategy more than 3000 drug candidates have been screened in scn1lab zebrafish mutants. Here, we curated a list of nine additional anti-seizure drug candidates recently identified in preclinical models: 1-EBIO, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-EBIO, chlorzoxazone and lisuride. However, second-stage LFP recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of ASMs.
Collapse
Affiliation(s)
- P Whyte-Fagundes
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - A Vance
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - A Carroll
- Behavioral Neurosciences, Northeastern University, Boston, MA, USA
| | - F Figueroa
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - C Manukyan
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - S C Baraban
- Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Dini G, Di Cara G, Ferrara P, Striano P, Verrotti A. Reintroducing Fenfluramine as a Treatment for Seizures: Current Knowledge, Recommendations and Gaps in Understanding. Neuropsychiatr Dis Treat 2023; 19:2013-2025. [PMID: 37790801 PMCID: PMC10543412 DOI: 10.2147/ndt.s417676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Despite the introduction of new anti-seizure medications in recent years, approximately one-third of the epileptic population continues to experience seizures. Recently, the anti-obesity medication fenfluramine (FFA) has been successfully repurposed, and it has received approval from various regulatory agencies for the treatment of seizures associated with Dravet syndrome and Lennox-Gastaut syndrome. The potential antiseizure effects of FFA were initially observed in patients with photosensitive epilepsy in the 1980s but it was not rigorously explored as a treatment option until 30 years later. This narrative review aims to provide an overview of the historical progression of FFA's use, starting from initial clinical observations to preclinical studies and, ultimately, successful clinical trials in the field of epilepsy.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Perugia, Italy
| | | | - Pietro Ferrara
- Department of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto “G. Gaslini”, Genoa, Italy
| | | |
Collapse
|
8
|
Ebadi SR, Saleki K, Adl Parvar T, Rahimi N, Aghamollaii V, Ranji S, Tafakhori A. The effect of cannabidiol on seizure features and quality of life in drug-resistant frontal lobe epilepsy patients: a triple-blind controlled trial. Front Neurol 2023; 14:1143783. [PMID: 37470002 PMCID: PMC10352113 DOI: 10.3389/fneur.2023.1143783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/09/2023] [Indexed: 07/21/2023] Open
Abstract
Background Treatment-resistant epileptic seizures are associated with reduced quality of life (QoL). As polypharmacy with routine antiseizure medications has many side effects, novel add-on treatments are necessary. Recent research showed the efficacy of add-on therapy by cannabidiol (CBD) on refractory epilepsy. We attempted to extend data on the efficacy and safety profile of CBD in patients with frontal lobe treatment-resistant epilepsy. Methods A total of 27 patients were recruited into two CBD (n = 12) and placebo (n = 15) groups. The CBD group received a highly purified liposomal preparation of the drug in addition to routine antiseizure medications. The placebo group only received antiseizure medications. This experiment followed a triple-blinding protocol. Outcome measures were seizure frequency, the Chalfont seizure severity scale (CSSS), and the quality of life questionnaire score (QOLIE-31) assessed at baseline, 4 weeks, and 8 weeks. Results At 4 weeks, results indicated that a higher fraction of patients in the CBD group (66.67%) showed improvement in seizure, compared to the placebo group (20.00%). Before-after comparison revealed that CBD, unlike routine ADEs, was effective in reducing the occurrence of seizures at the study's final timepoint [mean difference 45.58, 95% CI (8.987 to 82.18), p = 0.009]. Seizure severity was not affected by study groups or time intervals (repeated-measures ANOVA p > 0.05). Post-hoc tests found that the QoLI-31 score was improved at 8 weeks compared to baseline [mean diff. -5.031, 95% CI (-9.729 to -0.3328), p = 0.032]. The difference in cases who experienced enhanced QoL was meaningful between the CBD and placebo groups at 8 weeks [RR: 2.160, 95% CI (1.148 to 4.741), p = 0.018] but not at 4 weeks (p = 0.653). A positive finding for QoL improvement was associated with a positive finding for seizure frequency reduction [r = 0.638, 95% CI (0.296 to 0.835), p = 0.001]. Interestingly, limiting the correlation analysis to cases receiving CBD indicated that QoL improvement was not linked with seizure parameters such as severity and frequency (p > 0.05). Conclusion The present study suggests the benefit of a purified and highly efficient preparation of CBD for seizure frequency reduction and improvement of QoL in refractory frontal lobe epilepsy. Further study with longer follow-ups and larger sample size is advised. Clinical trial registration https://www.irct.ir/trial/56790, identifier: IRCT20210608051515N1.
Collapse
Affiliation(s)
- Seyyed Reza Ebadi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiarash Saleki
- School of Management and Medical Education, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Tanin Adl Parvar
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Rahimi
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vajiheh Aghamollaii
- Cognitive Neurology and Neuropsychiatry Division, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Roozbeh Psychiatric Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ranji
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Tafakhori
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Sourbron J, Lagae L. Fenfluramine: a plethora of mechanisms? Front Pharmacol 2023; 14:1192022. [PMID: 37251322 PMCID: PMC10213522 DOI: 10.3389/fphar.2023.1192022] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
Developmental and epileptic encephalopathies are rare, treatment-resistant epilepsies with high seizure burden and non-seizure comorbidities. The antiseizure medication (ASM) fenfluramine is an effective treatment for reducing seizure frequency, ameliorating comorbidities, and potentially reducing risk of sudden unexpected death in epilepsy (SUDEP) in patients with Dravet syndrome and Lennox-Gastaut syndrome, among other rare epilepsies. Fenfluramine has a unique mechanism of action (MOA) among ASMs. Its primary MOA is currently described as dual-action sigma-1 receptor and serotonergic activity; however, other mechanisms may be involved. Here, we conduct an extensive review of the literature to identify all previously described mechanisms for fenfluramine. We also consider how these mechanisms may play a role in the reports of clinical benefit in non-seizure outcomes, including SUDEP and everyday executive function. Our review highlights the importance of serotonin and sigma-1 receptor mechanisms in maintaining a balance between excitatory (glutamatergic) and inhibitory (γ-aminobutyric acid [GABA]-ergic) neural networks, and suggests that these mechanisms may represent primary pharmacological MOAs in seizures, non-seizure comorbidities, and SUDEP. We also describe ancillary roles for GABA neurotransmission, noradrenergic neurotransmission, and the endocrine system (especially such progesterone derivatives as neuroactive steroids). Dopaminergic activity underlies appetite reduction, a common side effect with fenfluramine treatment, but any involvement in seizure reduction remains speculative. Further research is underway to evaluate promising new biological pathways for fenfluramine. A better understanding of the pharmacological mechanisms for fenfluramine in reducing seizure burden and non-seizure comorbidities may allow for rational drug design and/or improved clinical decision-making when prescribing multi-ASM regimens.
Collapse
|
10
|
Zhu R, Jiang G, Tang W, Zhao X, Chen F, Zhang X, Ye N. Aporphines: A privileged scaffold in CNS drug discovery. Eur J Med Chem 2023; 256:115414. [PMID: 37172474 DOI: 10.1016/j.ejmech.2023.115414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Aporphine alkaloids embedded in 4H-dibenzo[de,g]quinoline four-ring structures belong to one of the largest subclasses of isoquinoline alkaloids. Aporphine is a privileged scaffold in the field of organic synthesis and medicinal chemistry for the discovery of new therapeutic agents for central nervous system (CNS) diseases, cancer, metabolic syndrome, and other diseases. In the past few decades, aporphine has attracted continuing interest to be widely used to develop selective or multitarget directed ligands (MTDLs) targeting the CNS (e.g., dopamine D1/2/5, serotonin 5-HT1A/2A/2C and 5-HT7, adrenergic α/β receptors, and cholinesterase enzymes), thereby serving as valuable pharmacological probes for mechanism studies or as potential leads for CNS drug discovery. The aims of the present review are to highlight the diverse CNS activities of aporphines, discuss their SAR, and briefly summarize general synthetic routes, which will pave the way for the design and development of new aporphine derivatives as promising CNS active drugs in the future.
Collapse
Affiliation(s)
- Rongfeng Zhu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guangqian Jiang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Tang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaobao Zhao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoya Zhang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
11
|
Vavers E, Zvejniece L, Dambrova M. Sigma-1 receptor and seizures. Pharmacol Res 2023; 191:106771. [PMID: 37068533 PMCID: PMC10176040 DOI: 10.1016/j.phrs.2023.106771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Over the last decade, sigma-1 receptor (Sig1R) has been recognized as a valid target for the treatment of seizure disorders and seizure-related comorbidities. Clinical trials with Sig1R ligands are underway testing therapies for the treatment of drug-resistant seizures, developmental and epileptic encephalopathies, and photosensitive epilepsy. However, the direct molecular mechanism by which Sig1R modulates seizures and the balance between excitatory and inhibitory pathways has not been fully elucidated. This review article aims to summarize existing knowledge of Sig1R and its involvement in seizures by focusing on the evidence obtained from Sig1R knockout animals and the anti-seizure effects of Sig1R ligands. In addition, this review article includes a discussion of the advantages and disadvantages of the use of existing compounds and describes the challenges and future perspectives on the use of Sig1R as a target for the treatment of seizure disorders.
Collapse
Affiliation(s)
- Edijs Vavers
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; University of Tartu, Faculty of Science and Technology, Institute of Chemistry, Ravila 14a, 50411, Tartu, Estonia.
| | - Liga Zvejniece
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Laboratory of Pharmaceutical Pharmacology, Aizkraukles 21, LV-1006, Riga, Latvia; Riga Stradiņš University, Faculty of Pharmacy, Konsula 21, LV-1007, Riga, Latvia
| |
Collapse
|
12
|
D’Acquarica I, Agranat I. The Quest for Secondary Pharmaceuticals: Drug Repurposing/Chiral-Switches Combination Strategy. ACS Pharmacol Transl Sci 2023; 6:201-219. [PMID: 36798472 PMCID: PMC9926527 DOI: 10.1021/acsptsci.2c00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 01/19/2023]
Abstract
Drug repurposing toward new medical uses and chiral switches are elements of secondary pharmaceuticals. The drug repurposing and chiral-switches strategies have mostly been applied independently in drug discovery. Drug repurposing has peaked in the search for therapeutic treatments of the Coronavirus Disease 2019 pandemic, whereas chiral switches have been overlooked. The current Perspective introduces the drug repurposing/chiral-switches combination strategy, overviewing representative cases of chiral drugs that have undergone this combination: ketamine, flurbiprofen, fenfluramine, and milnacipran. The deuterium-enabled chiral switches of racemic thalidomide analogs, a variation of the repurposing/chiral-switch combination strategy, is also included. Patenting and regulatory-exclusivity considerations of the combination strategy in the discovery of new medical uses are considered. The proposed combination creates a new synergy of its two elements, overcoming arguments against chiral switches, with better prospects for validation of patents and regulatory exclusivities. The combination strategy may be applied to chiral switches to paired enantiomers. Repurposing/chiral-switch drugs may be 'obvious-to-try'; however, their inventions may be unexpected and their patents nonobvious. Patenting repurposing/chiral-switch combination drugs is not 'evergreening', 'product hopping', and 'me-too'. The expected benefits and opportunities of the combined repurposing/chiral-switch strategy vis-à-vis its two elements are superior pharmacological properties, overcoming arguments against patent validities, challenges of chiral-switch patents, reduced expenses, shortened approval procedures, and higher expectations of regulatory exclusivities.
Collapse
Affiliation(s)
- Ilaria D’Acquarica
- Dipartimento
di Chimica e Tecnologie del Farmaco, Sapienza
Università di Roma, 00185 Rome, Italy
| | - Israel Agranat
- Organic
Chemistry, Institute of Chemistry, The Hebrew
University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
13
|
Jensen MP, Gammaitoni AR, Salem R, Wilkie D, Lothe A, Amtmann D. Fenfluramine treatment for Dravet syndrome: Caregiver- and clinician-reported benefits on the quality of life of patients, caregivers, and families living in Germany, Spain, Italy, and the United Kingdom. Epilepsy Res 2023; 190:107091. [PMID: 36701932 DOI: 10.1016/j.eplepsyres.2023.107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/30/2022] [Accepted: 01/13/2023] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Clinical trial data and prior preliminary research indicate that fenfluramine (FFA) provides meaningful improvements in seizure-related and quality of life (QOL) outcomes for individuals with Dravet syndrome (DS), their caregivers, and their families. This study sought to replicate and extend these preliminary findings in a new sample of individuals with DS and their families who live in European countries. METHODS Study participants were European clinicians and parents caring for individuals with DS who had participated in an EU FFA Early Access Program. Participants completed one-on-one semi-structured interviews and were asked the extent to which they noticed changes in a number of the child's seizure- and non-seizure-related QOL domains after starting FFA treatment. Participants were also asked about the benefits of FFA treatment to the caregivers' lives and for the family unit. RESULTS 25 parent caregivers and 16 clinicians participated. The caregivers and clinicians reported improvements in both seizure-related (i.e., reductions in seizure activity, improvements in the frequency or type of seizure triggers and post-ictal recovery times, and improved post-seizure function) and non-seizure-related (e.g., cognition, focus, alertness, speech, academic performance, behavior, sleep, motor function) QOL domains after FFA treatment in individuals with DS. Caregivers also reported improved mood and more time for things they enjoyed, felt less overwhelmed, reported better sleep quality, and had less personal and family stress; clinicians corroborated most of these reports. All clinicians (100%) and most (96%) caregivers said they would "very likely" or "quite likely" recommend FFA to others with DS. CONCLUSIONS Real-world experience in Europe with FFA treatment is associated with meaningful improvements in many QOL domains for individuals with DS and their families; replicating findings from a previous study of DS patients and their families from the USA. Caregivers and clinicians provided specific examples of the benefits of FFA for people with DS, caregivers, and their families and are very likely to recommend FFA to others with DS.
Collapse
Affiliation(s)
- Mark P Jensen
- Department of Rehabilitation Medicine, University of Washington, 325 Ninth Avenue, Seattle, WA 98104, USA.
| | - Arnold R Gammaitoni
- Zogenix Limited, now a part of UCB, Medical Affairs, 5858 Horton Street, Suite 455, Emeryville, CA 94608, USA.
| | - Rana Salem
- Department of Rehabilitation Medicine, University of Washington, 12360 Lake City Way, Suite 502, Seattle, WA 98125, USA.
| | - Dana Wilkie
- Department of Rehabilitation Medicine, University of Washington, 12360 Lake City Way, Suite 502, Seattle, WA 98125, USA.
| | | | - Dagmar Amtmann
- Department of Rehabilitation Medicine, University of Washington, 12360 Lake City Way, Suite 502, Seattle, WA 98125, USA.
| |
Collapse
|
14
|
Wu J, Zhang L, Zhou X, Wang J, Zheng X, Hu H, Wu D. Efficacy and safety of adjunctive antiseizure medications for dravet syndrome: A systematic review and network meta-analysis. Front Pharmacol 2022; 13:980937. [PMID: 36120377 PMCID: PMC9471196 DOI: 10.3389/fphar.2022.980937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose: Recently, the U.S. Food and Drug Administration (FDA) approved stiripentol, cannabidiol, and fenfluramine to treat patients with Dravet syndrome (DS). Moreover, soticlestat was determined as a promising new drug for the treatment of DS as it has good efficacy and safety. However, the efficacy and safety of these drugs have not yet been evaluated in "head-to-head" trials. This study aimed to compare and evaluate the efficacy and safety of these adjunctive antiseizure medications in the treatment of DS. Methods: We searched in PubMed, Embase, Cochrane Library, and Web of Science databases for randomized controlled trials (RCTs) and open-label extension (OLE) studies in patients with DS. We performed a random-effect meta-analysis of OLE studies and a network meta-analysis for RCTs to evaluate the efficacy and safety of antiseizure medications in the treatment of DS. Primary efficacy outcomes were defined as a ≥50% reduction in seizure frequency compared with baseline. Furthermore, safety evaluation indicators were defined as the incidence of adverse events (AEs) and serious adverse events (SAEs) during treatment. Relative ranking was assessed using the surface under the cumulative ranking curve (SUCRA) probabilities. Results: Seven RCTs involving four antiseizure medications (stiripentol, cannabidiol, fenfluramine, and soticlestat) and a total of 634 patients were included in the analysis. According to the SUCRA results, all four drugs significantly reduced the frequency of seizures compared with the placebo. Soticlestat was the most likely to reduce seizure frequency by ≥50% compared to the baseline [risk ratio (RR): 19.32; 95% confidence interval (CI): 1.20-311.40], followed by stiripentol and fenfluramine. Stiripentol was ranked highest for the near percentage reduction in the seizure rate from baseline [RR: 12.33; 95% CI: 1.71-89.17] and the occurrence of any treatment-emergent adverse events [RR: 3.73; 95% CI: 1.65-8.43] and serious adverse events [RR: 4.76; 95% CI: 0.61-37.28]. A total of ten OLE studies containing 1,121 patients were included in our study. According to the results of the meta-analysis, the order of probability of reducing seizure frequency by ≥50% was fenfluramine (0.715, 95% CI: 0.621-0.808), stiripentol (0.604, 95% CI: 0.502-0.706), cannabidiol (0.448, 95% CI: 0.403-0.493). And the probability of occurrence of AEs is ranked as fenfluramine(0.832, 95% CI: 0.795-0.869), cannabidiol (0.825, 95% CI:0.701-0.950), stiripentol (0.823, 95% CI: 0.707-0.938), soticlestat (0.688, 95% CI: 0.413-0.890). Conclusion: According to the results of indirect comparison of efficacy and safety, cannabidiol is slightly inferior to the other three antiseizure medications in terms of efficacy and safety. Soticlestat, fenfluramine, and stripentol may have little difference in efficacy, but soticlestat and fenfluramine are safer. Soticlestat is probably the best adjunctive antiseizure medication, followed by fenfluramine. This conclusion is consistent with the comparison of long-term efficacy and safety.
Collapse
Affiliation(s)
| | | | | | | | | | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongfang Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Fenfluramine treatment for dravet syndrome: Real-world benefits on quality of life from the caregiver perspective. Epilepsy Res 2022; 185:106976. [PMID: 35843016 DOI: 10.1016/j.eplepsyres.2022.106976] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Prior research has demonstrated durable and profound reductions in seizure frequency and improvements in executive functions in individuals with Dravet syndrome (DS) who are treated with fenfluramine (FFA). This study aimed to understand the benefits of FFA from the perspective of the patients' caregivers. METHODS Caregivers for a child with DS participated in semi-structured interviews to discuss the benefits of FFA treatment on the child with DS, the caregiver, and the family. RESULTS 65 caregivers participated. Patients were between 2 and 33 years old and had been treated with FFA for an average of 22.7 months. The most commonly reported seizure-related benefits (> 50 % of participants) of FFA treatment included a reduction in seizure activity, fewer seizure triggers, and shorter post-ictal recovery. The most common quality of life (QOL) benefits in patients included improvements in cognitive function, alertness, and academic performance. In addition, the caregivers reported improvements in their sleep quality (74 %) and that they felt less overwhelmed (72 %) and stressed (69 %) after their children began FFA treatment. Many caregivers also reported improved relationships between the child with DS and their siblings (52 %). CONCLUSIONS The study found that FFA treatment is associated with meaningful improvement in a large number of QOL domains both for the people with DS who received FFA and their families.
Collapse
|
16
|
Dini G, Tulli E, Dell’Isola GB, Mencaroni E, Di Cara G, Striano P, Verrotti A. Improving Therapy of Pharmacoresistant Epilepsies: The Role of Fenfluramine. Front Pharmacol 2022; 13:832929. [PMID: 35668937 PMCID: PMC9164301 DOI: 10.3389/fphar.2022.832929] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is among the most common neurological chronic disorders, with a prevalence of 0.5-1%. Despite the introduction of new antiepileptic drugs during recent years, about one third of the epileptic population remain drug-resistant. Hence, especially in the pediatric population limited by different pharmacokinetics and pharmacodynamics and by ethical and regulatory issues it is needed to identify new therapeutic resources. New molecules initially used with other therapeutic indications, such as fenfluramine, are being considered for the treatment of pharmacoresistant epilepsies, including Dravet Syndrome (DS) and Lennox-Gastaut Syndrome (LGS). Drug-refractory seizures are a hallmark of both these conditions and their treatment remains a major challenge. Fenfluramine is an amphetamine derivative that was previously approved as a weight loss drug and later withdrawn when major cardiac adverse events were reported. However, a new role of fenfluramine has emerged in recent years. Indeed, fenfluramine has proved to be a promising antiepileptic drug with a favorable risk-benefit profile for the treatment of DS, LGS and possibly other drug-resistant epileptic syndromes. The mechanism by which fenfluramine provide an antiepileptic action is not fully understood but it seems to go beyond its pro-serotoninergic activity. This review aims to provide a comprehensive analysis of the literature, including ongoing trials, regarding the efficacy and safety of fenfluramine as adjunctive treatment of pharmacoresistant epilepsies.
Collapse
Affiliation(s)
- Gianluca Dini
- Department of Pediatrics, University of Perugia, Genoa, Italy,*Correspondence: Gianluca Dini,
| | - Eleonora Tulli
- Department of Pediatrics, University of Perugia, Genoa, Italy
| | | | | | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genoa, Italy,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | | |
Collapse
|
17
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Riva A, Golda A, Balagura G, Amadori E, Vari MS, Piccolo G, Iacomino M, Lattanzi S, Salpietro V, Minetti C, Striano P. New Trends and Most Promising Therapeutic Strategies for Epilepsy Treatment. Front Neurol 2021; 12:753753. [PMID: 34950099 PMCID: PMC8690245 DOI: 10.3389/fneur.2021.753753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the wide availability of novel anti-seizure medications (ASMs), 30% of patients with epilepsy retain persistent seizures with a significant burden in comorbidity and an increased risk of premature death. This review aims to discuss the therapeutic strategies, both pharmacological and non-, which are currently in the pipeline. Methods: PubMed, Scopus, and EMBASE databases were screened for experimental and clinical studies, meta-analysis, and structured reviews published between January 2018 and September 2021. The terms “epilepsy,” “treatment” or “therapy,” and “novel” were used to filter the results. Conclusions: The common feature linking all the novel therapeutic approaches is the spasmodic rush toward precision medicine, aiming at holistically evaluating patients, and treating them accordingly as a whole. Toward this goal, different forms of intervention may be embraced, starting from the choice of the most suitable drug according to the type of epilepsy of an individual or expected adverse effects, to the outstanding field of gene therapy. Moreover, innovative insights come from in-vitro and in-vivo studies on the role of inflammation and stem cells in the brain. Further studies on both efficacy and safety are needed, with the challenge to mature evidence into reliable assets, ameliorating the symptoms of patients, and answering the challenges of this disease.
Collapse
Affiliation(s)
- Antonella Riva
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alice Golda
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Ganna Balagura
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, Netherlands
| | - Elisabetta Amadori
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Maria Stella Vari
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Simona Lattanzi
- Department of Experimental and Clinical Medicine, Neurological Clinic, Marche Polytechnic University, Ancona, Italy
| | - Vincenzo Salpietro
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Carlo Minetti
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| |
Collapse
|
19
|
Trollmann R, Borggräfe I, Müller-Felber W, Brandl U. Pädiatrische epileptische Enzephalopathien mit Manifestation oberhalb des Neugeborenenalters: ein Up-date. KLIN NEUROPHYSIOL 2021. [DOI: 10.1055/a-1528-3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungEntwicklungs-und epileptische Enzephalopathien manifestieren sich überwiegend bereits im Säuglings-und frühen Kleinkindesalter. Mit der neuen ILAE-Klassifikation der Epilepsien konnten epileptische Enzephalopathien sowohl hinsichtlich des elektroklinischen Phänotyps als auch des ätiologischen Spektrums und assoziierter Komorbiditäten genauer definiert werden. Einige elektroklinischer Entitäten wie das West-Syndrom oder das Dravet-Syndrom können auf der Basis ihres Genotyps inzwischen als spezifische Enzephalopathien klassifiziert werden. Das EEG stellt eine wichtige Zusatzdiagnostik in der Abklärung einer epileptischen Enzephalopathie dar. Es hat einen besonderen Stellenwert für die Diagnose von Komplikationen wie z. B. subklinischer Anfälle oder eines Status epilepticus sowie für ein adäquates Therapiemonitoring. Der Betrag fasst anhand ausgewählter pädiatrischer Epilepsiesyndrome aktuelle Aspekte zur Komplexität der pädiatrischen epileptischen Enzephalopathien und den Stellenwert der EEG-Diagnostik zusammen.
Collapse
Affiliation(s)
- Regina Trollmann
- Abteilung Neuropädiatrie und Sozialpädiatrisches Zentrum, Kinder-und Jugendklinik am Universitätsklinikum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
| | - Ingo Borggräfe
- Abteilung für Pädiatrische Neurologie, Entwicklungsneurologie und Sozialpädiatrie, Dr. von Haunersches Kinderspital, LMU Klinikum München, München
- Interdisziplinäres Epilepsiezentrum, LMU Klinikum München, München
| | - Wolfgang Müller-Felber
- Abteilung für Pädiatrische Neurologie, Entwicklungsneurologie und Sozialpädiatrie, Dr. von Haunersches Kinderspital, LMU Klinikum München, München
| | - Ulrich Brandl
- Klinik für Neuropädiatrie, Universitätsklinikum Jena, Jena
| |
Collapse
|
20
|
Fattorusso A, Matricardi S, Mencaroni E, Dell'Isola GB, Di Cara G, Striano P, Verrotti A. The Pharmacoresistant Epilepsy: An Overview on Existent and New Emerging Therapies. Front Neurol 2021; 12:674483. [PMID: 34239494 PMCID: PMC8258148 DOI: 10.3389/fneur.2021.674483] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy is one of the most common neurological chronic disorders, with an estimated prevalence of 0. 5 - 1%. Currently, treatment options for epilepsy are predominantly based on the administration of symptomatic therapy. Most patients are able to achieve seizure freedom by the first two appropriate drug trials. Thus, patients who cannot reach a satisfactory response after that are defined as pharmacoresistant. However, despite the availability of more than 20 antiseizure medications (ASMs), about one-third of epilepsies remain drug-resistant. The heterogeneity of seizures and epilepsies, the coexistence of comorbidities, and the broad spectrum of efficacy, safety, and tolerability related to the ASMs, make the management of these patients actually challenging. In this review, we analyze the most relevant clinical and pathogenetic issues related to drug-resistant epilepsy, and then we discuss the current evidence about the use of available ASMs and the alternative non-pharmacological approaches.
Collapse
Affiliation(s)
- Antonella Fattorusso
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Sara Matricardi
- Child Neurology and Psychiatry Unit, Children's Hospital “G. Salesi”, Ospedali Riuniti Ancona, Ancona, Italy
| | - Elisabetta Mencaroni
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | | | - Giuseppe Di Cara
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS “G. Gaslini” Institute, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alberto Verrotti
- Department of Medicine and Surgery, Pediatric Clinic, University of Perugia, Perugia, Italy
| |
Collapse
|
21
|
Liu X, Shen Q, Zheng G, Guo H, Lu X, Wang X, Yang X, Cao Z, Chen J. Gene and Phenotype Expansion of Unexplained Early Infantile Epileptic Encephalopathy. Front Neurol 2021; 12:633637. [PMID: 34163418 PMCID: PMC8215605 DOI: 10.3389/fneur.2021.633637] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The genetic aetiology of epileptic encephalopathy (EE) is growing rapidly based on next generation sequencing (NGS) results. In this single-centre study, we aimed to investigate a cohort of Chinese children with early infantile epileptic encephalopathy (EIEE). Methods: NGS was performed on 50 children with unexplained EIEE. The clinical profiles of children with pathogenic variants were characterised and analysed in detail. Conservation analysis and homology modelling were performed to predict the impact of STXBP1 variant on the protein structure. Results: Pathogenic variants were identified in 17 (34%) of 50 children. Sixteen variants including STXBP1 (n = 2), CDKL5 (n = 2), PAFAH1B1, SCN1A (n = 9), SCN2A, and KCNQ2 were de novo, and one (PIGN) was a compound heterozygous variant. The phenotypes of the identified genes were broadened. PIGN phenotypic spectrum may include EIEE. The STXBP1 variants were predicted to affect protein stability. Significance: NGS is a useful diagnostic tool for EIEE and contributes to expanding the EIEE-associated genotypes. Early diagnosis may lead to precise therapeutic interventions and can improve the developmental outcome.
Collapse
Affiliation(s)
- Xianyu Liu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyang Shen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guo Zheng
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hu Guo
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaopeng Lu
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Wang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao Yang
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zixuan Cao
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Chen
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Devinsky O, King L, Schwartz D, Conway E, Price D. Effect of fenfluramine on convulsive seizures in CDKL5 deficiency disorder. Epilepsia 2021; 62:e98-e102. [PMID: 33979451 PMCID: PMC8360137 DOI: 10.1111/epi.16923] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 01/09/2023]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked pharmacoresistant neurogenetic disorder characterized by global developmental delays and uncontrolled seizures. Fenfluramine (FFA), an antiseizure medication (ASM) indicated for treating convulsive seizures in Dravet syndrome, was assessed in six patients (five female; 83%) with CDD whose seizures had failed 5-12 ASMs or therapies. Median age at enrollment was 6.5 years (range: 2-26 years). Mean FFA treatment duration was 5.3 months (range: 2-9 months) at 0.4 mg/kg/day (n = 2) or 0.7 mg/kg/day (n = 4; maximum: 26 mg/day). One patient had valproate added for myoclonic seizures. The ASM regimens of all other patients were stable. Among five patients with tonic-clonic seizures, FFA treatment resulted in a median 90% reduction in frequency (range: 86%-100%). Tonic seizure frequency was reduced by 50%-60% in two patients with this seizure type. One patient experienced fewer myoclonic seizures; one patient first developed myoclonic seizures on FFA, which were controlled with valproate. Adverse events were reported in two patients. The patient with added valproate experienced lethargy; one patient had decreased appetite and flatus. No patient developed valvular heart disease or pulmonary arterial hypertension. Our preliminary results suggest that FFA may be a promising ASM for CDD. Randomized clinical trials are warranted.
Collapse
Affiliation(s)
| | - LaToya King
- NYU Langone Medical Center, New York, NY, USA
| | | | - Erin Conway
- NYU Langone Medical Center, New York, NY, USA
| | - Dana Price
- NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Neurocognitive Effects of Antiseizure Medications in Children and Adolescents with Epilepsy. Paediatr Drugs 2021; 23:253-286. [PMID: 33956338 DOI: 10.1007/s40272-021-00448-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/08/2022]
Abstract
Impairments in cognition are common in epilepsy and may be caused or exacerbated by antiseizure medications (ASMs). Positive effects on cognition may also be seen with some ASMs. Cognitive outcomes are of particular concern in children who may be at an increased risk of cognitive adverse effects of treatment. A comprehensive literature search was conducted in PubMed in order to evaluate the evidence for cognitive changes associated with treatment with ASMs in paediatric epilepsy patients. The ASMs considered were those in the current edition of the British National Formulary (BNF). For most ASMs, remarkably few studies providing robust data on cognitive effects in paediatric patients were identified. The available evidence suggests cognitive impairments may be associated with treatment with phenobarbital. Topiramate and phenytoin are also associated with negative effects on cognition, in particular word-finding difficulties and other language deficits with topiramate, but there are few data available specifically on children. Lamotrigine, levetiracetam and fenfluramine are associated with improvements in some cognitive domains, although it is unclear whether these effects are directly attributable to the medications or are a result of improvements in seizures. Neutral effects on cognition (no substantial evidence of worsening) were suggested for carbamazepine, everolimus, lacosamide, oxcarbazepine, perampanel and valproate. There is limited data for cannabidiol, clobazam, eslicarbazepine acetate, ethosuximide, rufinamide, vigabatrin and zonisamide, although the available evidence suggests these drugs are not associated with severe cognitive impairment. There was too little information to reach conclusions about the effects of brivaracetam, felbamate, gabapentin, pregabalin, retigabine, stiripentol or tiagabine.
Collapse
|
24
|
Odi R, Invernizzi RW, Gallily T, Bialer M, Perucca E. Fenfluramine repurposing from weight loss to epilepsy: What we do and do not know. Pharmacol Ther 2021; 226:107866. [PMID: 33895186 DOI: 10.1016/j.pharmthera.2021.107866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
In 2020, racemic-fenfluramine was approved in the U.S. and Europe for the treatment of seizures associated with Dravet syndrome, through a restricted/controlled access program aimed at minimizing safety risks. Fenfluramine had been used extensively in the past as an appetite suppressant, but it was withdrawn from the market in 1997 when it was found to cause cardiac valvulopathy. Available evidence indicates that appetite suppression and cardiac valvulopathy are mediated by different serotonergic mechanisms. In particular, appetite suppression can be ascribed mainly to the enantiomers d-fenfluramine and d-norfenfluramine, the primary metabolite of d-fenfluramine, whereas cardiac valvulopathy can be ascribed mainly to d-norfenfluramine. Because of early observations of markedly improved seizure control in some forms of epilepsy, fenfluramine remained available in Belgium through a Royal Decree after 1997 for use in a clinical trial in patients with Dravet syndrome at average dosages lower than those generally prescribed for appetite suppression. More recently, double-blind placebo-controlled trials established its efficacy in the treatment of convulsive seizures associated with Dravet syndrome and of drop seizures associated with Lennox-Gastaut syndrome, at doses up to 0.7 mg/kg/day (maximum 26 mg/day). Although no cardiovascular toxicity has been associated with the use of fenfluramine in epilepsy, the number of patients exposed to date has been limited and only few patients had duration of exposure longer than 3 years. This article analyzes available evidence on the mechanisms involved in fenfluramine-induced appetite suppression, antiseizure effects and cardiovascular toxicity. Despite evidence that stimulation of 5-HT2B receptors (the main mechanism leading to cardiac valvulopathy) is not required for antiseizure activity, there are many critical gaps in understanding fenfluramine's properties which are relevant to its use in epilepsy. Particular emphasis is placed on the remarkable lack of publicly accessible information about the comparative activity of the individual enantiomers of fenfluramine and norfenfluramine in experimental models of seizures and epilepsy, and on receptors systems considered to be involved in antiseizure effects. Preliminary data suggest that l-fenfluramine retains prominent antiseizure effects in a genetic zebrafish model of Dravet syndrome. If these findings are confirmed and extended to other seizure/epilepsy models, there would be an incentive for a chiral switch from racemic-fenfluramine to l-fenfluramine, which could minimize the risk of cardiovascular toxicity and reduce the incidence of adverse effects such as loss of appetite and weight loss.
Collapse
Affiliation(s)
- Reem Odi
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Tamar Gallily
- Yissum Technology Transfer Company of the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Emilio Perucca
- Division of Clinical and Experimental Pharmacology, Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Sharawat IK, Panda PK, Kasinathan A, Panda P, Dawman L, Joshi K. Efficacy and tolerability of fenfluramine in patients with Dravet syndrome: A systematic review and meta-analysis. Seizure 2021; 85:119-126. [DOI: 10.1016/j.seizure.2020.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/27/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
|
26
|
Verrotti A, Striano P. Novel therapeutic options for Dravet and Lennox-Gastaut syndrome. Expert Rev Neurother 2021; 21:1191-1194. [PMID: 33297778 DOI: 10.1080/14737175.2020.1862651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRRCS Istituto Giannina Gaslini, Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genova, Italy
| |
Collapse
|
27
|
Miziak B, Czuczwar S. Advances in the design and discovery of novel small molecule drugs for the treatment of Dravet Syndrome. Expert Opin Drug Discov 2020; 16:579-593. [PMID: 33275464 DOI: 10.1080/17460441.2021.1857722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Dravet syndrome (severe myoclonic epilepsy in infancy) begins in the first year of life characterized by generalized or unilateral clonic seizures that are frequently triggered by high fever. A subsequent worsening stage occurs (in years 1-4 of life) and seizure activity is accompanied by disturbed psychomotor development. The third stage of the disease, known as the 'stabilization phase,' is associated with seizures and intellectual impairment. Of note, a mutation in the voltage-gated sodium-channel gene α 1 subunit (SCN1A) has been found in around 85% of patients with Dravet syndrome.Areas covered: The authors review the current treatment strategies as well as potential drugs in the initial stages of clinical evaluation. The authors also review drugs with protective activity in mice models of Dravet syndrome.Expert opinion: Experimental data and results from initial clinical studies have brought attention to several drugs with various mechanisms of action including: ataluren (a suppressant of premature stop codons; under clinical evaluation), EPX-100, EPX-200, fenfluramine (serotonin modulators), soticlestat (an 24-hydroxylase cholesterol enzyme inhibitor), SPN-817 (an inhibitor of acetylcholinesterase), verapamil (a voltage-dependent calcium channel inhibitor) and STK-001 (an antisense oligonucleotide). The latter is scheduled for clinical evaluation.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Stanisław Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|