1
|
Correale J, Marrodan M. Live-attenuated vaccines for multiple sclerosis patients living in regions with endemic infections: A complex decision. Mult Scler 2024:13524585241305956. [PMID: 39691069 DOI: 10.1177/13524585241305956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Live-attenuated vaccines provide robust immunity against diseases like tuberculosis, measles, mumps, rubella, polio, yellow fever, dengue, typhoid fever, and varicella, with just one or a few doses. However, concerns arise regarding potential pathogen reversion to virulence, which is particularly risky for immunocompromised individuals, contraindicating their administration in multiple sclerosis (MS) patients under modified disease treatments due to the possibility of triggering infections, or stimulating the immune system, precipitating new exacerbations. On the contrary, these vaccines offer enduring immunity that is crucial for protecting MS patients from endemic infectious diseases, leading to severe complications if contracted. These concerns underscore the complex balance between vaccination benefits and the risks of exacerbating MS in patients residing in regions with endemic diseases. This review explores the challenges and considerations associated with their use in MS patients, aiming to maximize benefits while minimizing risks.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Fleni, Buenos Aires, Argentina
- Institute of Biological Chemistry and Physical Chemistry (IQUIFIB), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
2
|
Freeman SA, Zéphir H. Anti-CD20 monoclonal antibodies in multiple sclerosis: Rethinking the current treatment strategy. Rev Neurol (Paris) 2024; 180:1047-1058. [PMID: 38599976 DOI: 10.1016/j.neurol.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 04/12/2024]
Abstract
Anti-CD20 monoclonal antibodies are highly-effective B-cell-depleting therapies in multiple sclerosis (MS). These treatments have expanded the arsenal of highly effective disease-modifying therapies, and have changed the landscape in understanding the pathophysiology of MS and the natural course of the disease. Nevertheless, these treatments come at the cost of immunosuppression and risk of serious infections, diminished vaccination response and treatment-related secondary hypogammaglobulinemia. However, the COVID pandemic has given way to a possibility of readapting these therapies, with most notably extended dosing intervals. While these new strategies show efficacy in maintaining inflammatory MS disease control, and although it is tempting to speculate that tailoring CD20 therapies will reduce the negative outcomes of long-term immunosuppression, it is unknown whether they provide meaningful benefit in reducing the risk of treatment-related secondary hypogammaglobulinemia and serious infections. This review highlights the available anti-CD20 therapies that are available for treating MS patients, and sheds light on encouraging data, which propose that tailoring anti-CD20 monoclonal antibodies is the next step in rethinking the current treatment strategy.
Collapse
Affiliation(s)
- S A Freeman
- Department of Neurology, CRC-SEP, CHU of Toulouse, Toulouse, France; University Toulouse III, Inserm UMR1291, CHU Purpan, Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), 59000 Toulouse, France.
| | - H Zéphir
- Department of Neurology, CRC-SEP, CHU of Lille, Lille, France; University of Lille, Inserm, CHU of Lille, Laboratory of Neuroinflammation and Multiple Sclerosis (NEMESIS), U1172, Lille, France
| |
Collapse
|
3
|
Arneth B. Current Knowledge about CD3 +CD20 + T Cells in Patients with Multiple Sclerosis. Int J Mol Sci 2024; 25:8987. [PMID: 39201672 PMCID: PMC11354236 DOI: 10.3390/ijms25168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by inflammation and autoimmune responses. This review explores the participation of T cells, particularly certain CD3+CD20+ T cells, in the clinical manifestations of MS and highlights their presence in diagnosed patients. These T cells show aberrant expression of CD20, normally considered a B-cell marker. In this review, relevant journal articles available in PubMed and CINAHL were identified by employing diverse search terms, such as MS, CD3+CD20+ T cells, the incidence and significance of CD3+CD20+ T cells in MS patients, and the impact of rituximab treatment. The search was limited to articles published in the ten-year period from 2014 to 2024. The results of this review suggest that most scholars agree on the presence of CD3+CD20+ T cells in cerebrospinal fluid. Emerging concepts relate to the fundamental role of CD20-expressing T cells in determining the target and efficacy of MS therapeutics and the presence of T cells in the cerebrospinal fluid of MS patients. The results clearly show that CD20+ T cells indicate disease chronicity and high disease activity.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany;
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
| |
Collapse
|
4
|
Frankl S, Viaene A, Vossough A, Waldman A, Hopkins S, Banwell B. Solitary Tumefactive Demyelinating Lesions in Children: Clinical and Magnetic Resonance Imaging Features, Pathologic Characteristics, and Outcomes. Pediatr Neurol 2024; 157:141-150. [PMID: 38917518 DOI: 10.1016/j.pediatrneurol.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Isolated tumefactive demyelinating lesions (≥2 cm) may be difficult to distinguish from contrast-enhancing brain tumors, central nervous system infections, and (rarely) tissue dysgenesis, which may all occur with increased signal on T2-weighted images. Establishing an accurate diagnosis is essential for management, and we delineate our single-center experience. METHODS We performed a retrospective review of medical records, imaging, and biopsy specimens for patients under 18 years presenting with isolated tumefactive demyelination over a 10-year period. RESULTS Ten children (eight female) met inclusion criteria, with a median age of 14.1 years. Lesions were most likely to involve the thalamus (six of 10), brainstem (five of 10), basal ganglia (four of 10), or corpus callosum (four of 10). Eighty percent had perilesional edema at presentation, and 60% had midline shift. Biopsies demonstrated demyelination with perivascular lymphocytic infiltration and axonal damage ranging from mild to severe. All patients were initially treated with high-dose corticosteroids, and eight of 10 required additional medical therapies such as intravenous immunoglobulin, plasmapheresis, cyclophosphamide, or rituximab. Increased intracranial pressure was managed aggressively with two of 10 patients requiring decompressive craniectomies. Clinical outcomes varied. CONCLUSIONS Solitary tumefactive demyelinating lesions are rare, and aggressive management of inflammation and increased intracranial pressure is essential. Biopsy is helpful to evaluate for other diagnoses on the differential and maximize therapies. Treatment beyond initial therapy with corticosteroids is often required. Isolated tumefactive demyelinating lesions are uncommon; multicenter natural history studies are needed to better delineate differential diagnoses and optimal therapies.
Collapse
Affiliation(s)
- Sarah Frankl
- Department of Neurology, C.S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Angela Viaene
- Division of Anatomic Pathology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Arastoo Vossough
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Amy Waldman
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sarah Hopkins
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
| | - Brenda Banwell
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Martin SJ, Guenette M, Oh J. Evaluating the Therapeutic Potential of Ublituximab in the Treatment of MS: Design, Development and Place in Therapy. Drug Des Devel Ther 2024; 18:3025-3042. [PMID: 39050801 PMCID: PMC11268567 DOI: 10.2147/dddt.s388410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
B cells are critical to the pathogenesis of multiple sclerosis (MS), an autoimmune disease of the central nervous system. B cell depletion using anti-CD20 monoclonal antibodies (mAbs) has proven to be an extremely successful treatment strategy, with profound suppression of both clinical and radiological evidence of focal inflammatory disease. Several anti-CD20 mAbs are now licensed for use in MS, with ublituximab being the latest to gain regulatory approval. The unique properties of each of the anti-CD20 mAb may result in nuanced differences in timing, duration and depth of B cell depletion, with the potential for such differences to have a clinical relevance to both drug efficacy and adverse effects. In this review, we summarize the design, development, and current place in MS therapy for ublituximab.
Collapse
Affiliation(s)
- Sarah-Jane Martin
- Division of Neurology, Department of Medicine, St Michael’s Hospital, Toronto, Canada
- University of Glasgow, Glasgow, UK
| | - Melanie Guenette
- Division of Neurology, Department of Medicine, St Michael’s Hospital, Toronto, Canada
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael’s Hospital, Toronto, Canada
| |
Collapse
|
6
|
Zanghì A, Borriello G, Bonavita S, Fantozzi R, Signoriello E, Barone S, Abbadessa G, Cellerino M, Ziccone V, Miele G, Lus G, Valentino P, Bucello S, Inglese M, Centonze D, Avolio C, D'Amico E. Ocrelizumab and ofatumumab comparison: an Italian real-world propensity score matched study. J Neurol 2024; 271:4495-4502. [PMID: 38704488 PMCID: PMC11233372 DOI: 10.1007/s00415-024-12360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The management of Multiple Sclerosis (MS) has undergone transformative evolution with the introduction of high-efficacy disease-modifying therapies (DMTs), specifically anti-CD20 monoclonal antibodies, such as ocrelizumab (OCR) and ofatumumab (OFA). MATERIALS AND METHODS This is an independent retrospective cohort study in Relapsing MS (RMS) patients followed at eight Italian MS centers who initiated treatment with OCR or OFA in the participating centers and with at least 12 months on therapy. A generalized linear regression model inverse probability of treatment weight (IPTW) PS-adjusted was performed to evaluate the relationship between annualized relapse rate (ARR) and treatment groups. No evidence of disease activity-NEDA-3 at 12-month score was also collected. Safety profile of the investigated DMTs was recorded. RESULTS A total cohort of 396 RMS patients fulfilled the required criteria and were enrolled in the study. Out of them, 216 had a prescription of OCR and 180 of OFA. The mean follow-up was 13.2 ± 1.9 months. The estimated means for ARR did not show differences between the two groups, 0.059 for patients on OCR and 0.038 for patients on OFA (p = 0.185). The generalized regression model IPTW PS-adjusted did not reveal differences between patients on OCR and OFA (ExpBOFA 0.974, 95%CI 934-1.015, p = 0.207). NEDA-3 at 12 months was experienced by 199(92.1%) patients on OCR and 170(94.4%) patients on OFA (p = 0.368). Generally, both therapies exhibit good tolerability. CONCLUSIONS The treatment with OCR and OFA resulted in comparable control of disease activity with good safety profile. Our results need further validation in larger multicentre studies with long-term follow-up.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/pharmacology
- Male
- Female
- Italy
- Adult
- Propensity Score
- Retrospective Studies
- Immunologic Factors/pharmacology
- Immunologic Factors/administration & dosage
- Immunologic Factors/adverse effects
- Multiple Sclerosis, Relapsing-Remitting/drug therapy
- Middle Aged
- Treatment Outcome
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Follow-Up Studies
Collapse
Affiliation(s)
- Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy
| | | | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Elisabetta Signoriello
- Second Division of Neurology, Department of Clinical and Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Stefania Barone
- Azienda Ospedaliera Universitaria "Mater Domini", Catanzaro, Italy
| | - Gianmarco Abbadessa
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Maria Cellerino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Vanessa Ziccone
- Centro Sclerosi Multipla, UOSD Neurologia, ASP8 SR, P.O. Muscatello, Augusta, Italy
| | - Giuseppina Miele
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giacomo Lus
- Second Division of Neurology, Department of Clinical and Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Paola Valentino
- Azienda Ospedaliera Universitaria "Mater Domini", Catanzaro, Italy
| | - Sebastiano Bucello
- Centro Sclerosi Multipla, UOSD Neurologia, ASP8 SR, P.O. Muscatello, Augusta, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, Italy
- Department of System Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy
| | - Emanuele D'Amico
- Department of Medical and Surgical Sciences, University of Foggia, 71122, Foggia, Italy.
| |
Collapse
|
7
|
Turner TJ, Brun P, Gruber RC, Ofengeim D. Comparative CNS Pharmacology of the Bruton's Tyrosine Kinase (BTK) Inhibitor Tolebrutinib Versus Other BTK Inhibitor Candidates for Treating Multiple Sclerosis. Drugs R D 2024; 24:263-274. [PMID: 38965189 PMCID: PMC11315827 DOI: 10.1007/s40268-024-00468-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Tolebrutinib is a covalent BTK inhibitor designed and selected for potency and CNS exposure to optimize impact on BTK-dependent signaling in CNS-resident cells. We applied a translational approach to evaluate three BTK inhibitors in Phase 3 clinical development in MS with respect to their relative potency to block BTK-dependent signaling and exposure in the CNS METHODS: We used in vitro kinase and cellular activation assays, alongside pharmacokinetic sampling of cerebrospinal fluid (CSF) in the non-human primate cynomolgus to estimate the ability of these candidates (evobrutinib, fenebrutinib, and tolebrutinib) to block BTK-dependent signaling inside the CNS. RESULTS In vitro kinase assays demonstrated that tolebrutinib reacted with BTK 65-times faster than evobrutinib, while fenebrutinib, a classical reversible antagonist with a Ki value of 4.7 nM and slow off-rate (1.54 x 10-5 s-1), also had an association rate 1760-fold slower (0.00245 μM-1 * s-1). Estimates of cellular potency were largely consistent with the in vitro kinase assays, with an estimated IC50 of 0.7 nM for tolebrutinib against 33.5 nM for evobrutinib and 2.9 nM for fenebrutinib. We then observed that evobrutinib, fenebrutinib, and tolebrutinib achieved similar levels of exposure in non-human primate CSF after oral doses of 10 mg/kg. However, tolebrutinib CSF exposure (4.8 ng/mL) (kp,uu CSF=0.40) exceeded the IC90 (the estimated concentration inhibiting 90% of kinase activity) value, while evobrutinib (3.2 ng/mL) (kp,uu CSF=0.13) and fenebrutinib (12.9 ng/mL) (kp,uu CSF=0.15) failed to reach the estimated IC90 values. CONCLUSIONS Tolebrutinib was the only candidate of the three that attained relevant CSF exposure in non-human primates.
Collapse
|
8
|
Al-Hawary SIS, Jasim SA, Hjazi A, Ullah H, Bansal P, Deorari M, Sapaev IB, Ami AA, Mohmmed KH, Abosaoda MK. A new perspective on therapies involving B-cell depletion in autoimmune diseases. Mol Biol Rep 2024; 51:629. [PMID: 38717637 DOI: 10.1007/s11033-024-09575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 06/30/2024]
Abstract
It has been rediscovered in the last fifteen years that B-cells play an active role in autoimmune etiology rather than just being spectators. The clinical success of B-cell depletion therapies (BCDTs) has contributed to this. BCDTs, including those that target CD20, CD19, and BAFF, were first developed to eradicate malignant B-cells. These days, they treat autoimmune conditions like multiple sclerosis and systemic lupus erythematosus. Particular surprises have resulted from the use of BCDTs in autoimmune diseases. For example, even in cases where BCDT is used to treat the condition, its effects on antibody-secreting plasma cells and antibody levels are restricted, even though these cells are regarded to play a detrimental pathogenic role in autoimmune diseases. In this Review, we provide an update on our knowledge of the biology of B-cells, examine the outcomes of clinical studies employing BCDT for autoimmune reasons, talk about potential explanations for the drug's mode of action, and make predictions about future approaches to targeting B-cells other than depletion.
Collapse
Affiliation(s)
| | | | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Himayat Ullah
- College of Medicine, Shaqra University, 15526, Shaqra, Saudi Arabia.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - I B Sapaev
- Tashkent Institute of Irrigation and Agricultural Mechanization Engineers National Research University, Tashkent, Uzbekistan
- Scientific Researcher, Western Caspian University, Baku, Azerbaijan
| | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | | | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Hillah, Iraq
| |
Collapse
|
9
|
Delgado SR, Faissner S, Linker RA, Rammohan K. Key characteristics of anti-CD20 monoclonal antibodies and clinical implications for multiple sclerosis treatment. J Neurol 2024; 271:1515-1535. [PMID: 37906325 PMCID: PMC10973056 DOI: 10.1007/s00415-023-12007-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/02/2023]
Abstract
The recent success of anti-CD20 monoclonal antibody therapies in the treatment of multiple sclerosis (MS) has highlighted the role of B cells in the pathogenesis of MS. In people with MS, the inflammatory characteristics of B-cell activity are elevated, leading to increased pro-inflammatory cytokine release, diminished anti-inflammatory cytokine production and an accumulation of pathogenic B cells in the cerebrospinal fluid. Rituximab, ocrelizumab, ofatumumab, ublituximab and BCD-132 are anti-CD20 therapies that are either undergoing clinical development, or have been approved, for the treatment of MS. Despite CD20 being a common target for these therapies, differences have been reported in their mechanistic, pharmacological and clinical characteristics, which may have substantial clinical implications. This narrative review explores key characteristics of these therapies. By using clinical trial data and real-world evidence, we discuss their mechanisms of action, routes of administration, efficacy (in relation to B-cell kinetics), safety, tolerability and convenience of use. Clinicians, alongside patients and their families, should consider the aspects discussed in this review as part of shared decision-making discussions to improve outcomes and health-related quality of life for people living with MS.
Collapse
Affiliation(s)
- Silvia R Delgado
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St Josef-Hospital, Bochum, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Kottil Rammohan
- Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
10
|
Carlson AK, Amin M, Cohen JA. Drugs Targeting CD20 in Multiple Sclerosis: Pharmacology, Efficacy, Safety, and Tolerability. Drugs 2024; 84:285-304. [PMID: 38480630 PMCID: PMC10982103 DOI: 10.1007/s40265-024-02011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
Currently, there are four monoclonal antibodies (mAbs) that target the cluster of differentiation (CD) 20 receptor available to treat multiple sclerosis (MS): rituximab, ocrelizumab, ofatumumab, and ublituximab. B-cell depletion therapy has changed the therapeutic landscape of MS through robust efficacy on clinical manifestations and MRI lesion activity, and the currently available anti-CD20 mAb therapies for use in MS are a cornerstone of highly effective disease-modifying treatment. Ocrelizumab is currently the only therapy with regulatory approval for primary progressive MS. There are currently few data regarding the relative efficacy of these therapies, though several clinical trials are ongoing. Safety concerns applicable to this class of therapeutics relate primarily to immunogenicity and mechanism of action, and include infusion-related or injection-related reactions, development of hypogammaglobulinemia (leading to increased infection and malignancy risk), and decreased vaccine response. Exploration of alternative dose/dosing schedules might be an effective strategy for mitigating these risks. Future development of biosimilar medications might make these therapies more readily available. Although anti-CD20 mAb therapies have led to significant improvements in disease outcomes, CNS-penetrant therapies are still needed to more effectively address the compartmentalized inflammation thought to play an important role in disability progression.
Collapse
Affiliation(s)
- Alise K Carlson
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA
| | - Moein Amin
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA
| | - Jeffrey A Cohen
- Mellen Center, Neurologic Institute, Cleveland Clinic, 9500 Euclid Ave U10, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Alvarez E, Longbrake EE, Rammohan KW, Stankiewicz J, Hersh CM. Secondary hypogammaglobulinemia in patients with multiple sclerosis on anti-CD20 therapy: Pathogenesis, risk of infection, and disease management. Mult Scler Relat Disord 2023; 79:105009. [PMID: 37783194 DOI: 10.1016/j.msard.2023.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023]
Abstract
Hypogammaglobulinemia is characterized by reduced serum immunoglobulin levels. Secondary hypogammaglobulinemia is of considerable interest to the practicing physician because it is a potential complication of some medications and may predispose patients to serious infections. Patients with multiple sclerosis (MS) treated with B-cell-depleting anti-CD20 therapies are particularly at risk of developing hypogammaglobulinemia. Among these patients, hypogammaglobulinemia has been associated with an increased risk of infections. The mechanism by which hypogammaglobulinemia arises with anti-CD20 therapies (ocrelizumab, ofatumumab, ublituximab, rituximab) remains unclear and does not appear to be simply due to the reduction in circulating B-cell levels. Further, despite the association between anti-CD20 therapies, hypogammaglobulinemia, and infections, there is currently no generally accepted monitoring and treatment approach among clinicians treating patients with MS. Here, we review the literature and discuss possible mechanisms of secondary hypogammaglobulinemia in patients with MS, hypogammaglobulinemia results in MS anti-CD20 therapy clinical trials, the risk of infection for patients with hypogammaglobulinemia, and possible strategies for disease management. We also include a suggested best-practice approach to specifically address secondary hypogammaglobulinemia in patients with MS treated with anti-CD20 therapies.
Collapse
Affiliation(s)
- Enrique Alvarez
- The Rocky Mountain MS Center at the University of Colorado Anschutz Medical Campus, Academic Office 1 Building, Room 5512, 12631 East 17th Avenue, B185, Aurora, CO 80045, United States
| | - Erin E Longbrake
- Department of Neurology, Yale School of Medicine, 6 Devine Street, Suite 2B, New Haven, CT 06473, United States
| | - Kottil W Rammohan
- Multiple Sclerosis Division, University of Miami Miller School of Medicine, 1120 NW 14th street, Suite 1322, Miami, FL 33136, United States
| | - James Stankiewicz
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, United States
| | - Carrie M Hersh
- Cleveland Clinic Lou Ruvo Center for Brain Health, 888 W Bonneville Road, Las Vegas, NV 89106, United States.
| |
Collapse
|
12
|
Kramer J, Linker R, Paling D, Czaplinski A, Hoffmann O, Yong VW, Barker N, Ross AP, Lucassen E, Gufran M, Hu X. Tolerability of subcutaneous ofatumumab with long-term exposure in relapsing multiple sclerosis. Mult Scler J Exp Transl Clin 2023; 9:20552173231203816. [PMID: 37829441 PMCID: PMC10566276 DOI: 10.1177/20552173231203816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
Background Ofatumumab is approved for treating relapsing multiple sclerosis (RMS). Examining tolerability will enable understanding of its risk-benefit profile. Objective Report the tolerability profile of ofatumumab in RMS during treatment of up to 4 years and the effect of pre-medication. Methods Cumulative data from the overall safety population included patients taking continuous ofatumumab or being newly switched from teriflunomide. Injection-related reactions (IRRs) by incidence and severity, and post-marketing surveillance data, with an exposure of 18,530 patient-years, were analyzed. Results Systemic IRRs affected 24.7% of patients (487/1969) in the overall safety population; most (99.2% [483/487]) were mild (333/487) to moderate (150/487) in Common Terminology Criteria for Adverse Events severity; most systemic IRRs occurred after first injection. Local-site IRRs affected 11.8% (233/1969) and most (99.6% [232/233]) were mild/moderate. Incidence and severity of systemic and localized IRRs were similar between continuous and newly switched patients across repeated injections. Systemic IRR incidence and severity were not substantially affected by steroidal or non-steroidal pre-medication. Post-marketing surveillance identified no new tolerability issues. Conclusion Ofatumumab is well tolerated, displays a consistent safety profile during continuous use or after switching from teriflunomide and does not require pre-medication. This enables home management of RMS with a high-efficacy treatment.
Collapse
Affiliation(s)
| | - Ralf Linker
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - David Paling
- Academic Department of Neuroscience, Sheffield NIHR Neuroscience BRC, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | | | - Olaf Hoffmann
- Klinik für Neurologie, Alexianer St. Josefs–Krankenhaus Potsdam, Potsdam, Germany
- NeuroCure, Charite-Universitätsmedizin Berlin, Berlin, Germany
- Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
| | - V Wee Yong
- Clinical Neurosciences and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Noreen Barker
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Amy Perrin Ross
- Neuroscience Program, Loyola University Medical Center, Maywood, IL, USA
| | | | | | - Xixi Hu
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| |
Collapse
|
13
|
Hauser SL, Kappos L, Bar-Or A, Wiendl H, Paling D, Williams M, Gold R, Chan A, Milo R, Das Gupta A, Karlsson G, Sullivan R, Graham G, Merschhemke M, Häring DA, Vermersch P. The Development of Ofatumumab, a Fully Human Anti-CD20 Monoclonal Antibody for Practical Use in Relapsing Multiple Sclerosis Treatment. Neurol Ther 2023; 12:1491-1515. [PMID: 37450172 PMCID: PMC10444716 DOI: 10.1007/s40120-023-00518-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
The importance of B cells in multiple sclerosis (MS) has been demonstrated through the advent of B-cell-depleting anti-CD20 antibody therapies. Ofatumumab is the first fully human anti-CD20 monoclonal antibody (mAb) developed and tested for subcutaneous (SC) self-administration at monthly doses of 20 mg, and has been approved in the US, UK, EU, and other regions and countries worldwide for the treatment of relapsing MS. The development goal of ofatumumab was to obtain a highly efficacious anti-CD20 therapy, with a safety and tolerability profile that allows for self-administration by MS patients at home and a positive benefit-risk balance for use in the broad relapsing MS population. This development goal was enabled by the unique binding site, higher affinity to B cells, and higher potency of ofatumumab compared to previous anti-CD20 mAbs; these properties of ofatumumab facilitate rapid B-cell depletion and maintenance with a low dose at a low injection volume (20 mg/0.4 ml). The high potency in turn enables the selective targeting of B cells that reside in the lymphatic system via subcutaneous (SC) administration. Through a comprehensive dose-finding program in two phase 2 studies (one intravenous and one SC) and model simulations, it was found that safety and tolerability can be further improved, and the risk of systemic injection-related reactions (IRRs) minimized, by avoiding doses ≥ 30 mg, and by reaching initial and rapid B-cell depletion via stepwise weekly administration of ofatumumab at Weeks 0, 1, and 2 (instead of a single high dose). Once near-complete B-cell depletion is reached, it can be maintained by monthly doses of 20 mg/0.4 ml. Indeed, in phase 3 trials (ASCLEPIOS I/II), rapid and sustained near-complete B-cell depletion (largely independent of body weight, race and other factors) was observed with this dosing regimen, which resulted in superior efficacy of ofatumumab versus teriflunomide on relapse rates, disability worsening, neuronal injury (serum neurofilament light chain), and imaging outcomes. Likely due to its fully human nature, ofatumumab has a low immunogenic risk profile-only 2 of 914 patients receiving ofatumumab in ASCLEPIOS I/II developed anti-drug antibodies-and this may also underlie the infrequent IRRs (20% with ofatumumab vs. 15% with the placebo injection in the teriflunomide arm) that were mostly (99.8%) mild to moderate in severity. The overall rates of infections and serious infections in patients treated with ofatumumab were similar to those in patients treated with teriflunomide (51.6% vs. 52.7% and 2.5% vs. 1.8%, respectively). The benefit-risk profile of ofatumumab was favorable compared to teriflunomide in the broad RMS population, and also in the predefined subgroups of both recently diagnosed and/or treatment-naïve patients, as well as previously disease-modifying therapy-treated patients. Interim data from the ongoing extension study (ALITHIOS) have shown that long-term treatment with ofatumumab up to 4 years is well-tolerated in RMS patients, with no new safety risks identified. In parallel to the phase 3 trials in which SC administration was carried out with a pre-filled syringe, an autoinjector pen for more convenient self-administration of the ofatumumab 20 mg dose was developed and is available for use in clinical practice.
Collapse
Affiliation(s)
- Stephen L Hauser
- UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and MS Center, and Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - David Paling
- Sheffield Institute of Translational Neuroscience, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | - Mitzi Williams
- Joi Life Wellness Multiple Sclerosis Neurology Center, Atlanta, GA, USA
| | - Ralf Gold
- Department of Neurology, St Josef-Hospital/Ruhr-University Bochum, Bochum, Germany
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ron Milo
- Department of Neurology, Barzilai Medical Center, Ashkelon/Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | - Patrick Vermersch
- Univ. Lille, INSERM U1172 LilNCog, CHU Lille, FHU Precise, 59000, Lille, France
| |
Collapse
|
14
|
Kim T, Brinker A, Croteau D, Lee PR, Baldassari LE, Stevens J, Hughes A, Tomaino J, deFonseka A, Altepeter T, Kortepeter CM. Immune-mediated colitis associated with ocrelizumab: A new safety risk. Mult Scler 2023; 29:1275-1281. [PMID: 37706451 DOI: 10.1177/13524585231195854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND An association between certain immunomodulatory therapies (rituximab, ipilimumab, and other immune checkpoint inhibitors) and inflammatory (non-ischemic and non-infectious) colitis in oncologic and non-oncologic patient populations is well documented in the medical literature. OBJECTIVE The purpose of this case series is to describe adverse event reports of new onset, inflammatory colitis in association with ocrelizumab in patients with multiple sclerosis submitted to U.S. Food and Drug Administration (FDA) or published in the medical literature. METHODS The FDA Adverse Event Reporting System (FAERS) and medical literature were searched. RESULTS A review of postmarketing cases from FAERS and published medical literature identified 38 cases consistent with inflammatory, non-ischemic, and non-infectious colitis in association with ocrelizumab. The median time-to-onset was 8 months. Cases were reported using the following diagnostic terms: Crohn's disease (13), unspecified colitis (11), microscopic colitis (5), ulcerative colitis (5), medication-induced colitis (3), and autoimmune colitis (2). CONCLUSIONS This case series highlights ocrelizumab induced immune-mediated colitis that can be clinically severe and potentially life-threatening. Based on the findings of this review, the ocrelizumab Prescribing Information was amended to include immune-mediated colitis in the Warnings and Precautions section.
Collapse
Affiliation(s)
- Tiffany Kim
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Allen Brinker
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David Croteau
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Paul R Lee
- Division of Neurology II, Office of Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Laura E Baldassari
- Division of Neurology II, Office of Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Jessica Stevens
- Division of Neurology II, Office of Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Alice Hughes
- Division of Neurology II, Office of Neuroscience, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Juli Tomaino
- Division of Gastroenterology, Office of Neurology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Arushi deFonseka
- Division of Gastroenterology, Office of Neurology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Tara Altepeter
- Division of Gastroenterology, Office of Neurology, Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Cindy M Kortepeter
- Division of Pharmacovigilance I, Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
15
|
Smets I. Health-economic benefits of anti-CD20 treatments in relapsing multiple sclerosis estimated using a treatment-sequence model. Mult Scler J Exp Transl Clin 2023; 9:20552173231189398. [PMID: 37529628 PMCID: PMC10387699 DOI: 10.1177/20552173231189398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023] Open
Abstract
Background In high-income countries, four anti-CD20 monoclonal antibodies (mAbs) are used or in the pipeline for relapsing MS: ocrelizumab, ofatumumab (both registered), ublituximab (awaiting registration) and rituximab (off-label). List prices differ significantly between registered and off-label drugs. Objective Comparing differences in benefits between anti-CD20 mAbs from a health-economic and societal perspective. Methods To reflect lifetime use of DMTs, we used a treatment-sequence model to compare ocrelizumab/ofatumumab and eight other drug classes in terms of health (lifetime relapses, time to Expanded Disability Status Scale [EDSS] 6, lifetime quality-adjusted life years) and cost-effectiveness (net health benefit). To become cost-effective compared to ocrelizumab, we modelled the list price of ublituximab and desired effect on EDSS progression of rituximab. Results Although drug sequences with ocrelizumab in first- and second-line were more cost-effective than ofatumumab, our probabilistic analysis suggests this outcome was very uncertain. To be more cost-effective than ocrelizumab, ublituximab needs to be about 25% cheaper whilst rituximab needs to equal the effect on disability progression seen with first-line treatments. Conclusions Our model showed no clear difference in cost-effectiveness between ocrelizumab and ofatumumab. Hence, prescribing the least costly anti-CD20 mAb can democratise MS care without a loss in health benefits.
Collapse
Affiliation(s)
- Ide Smets
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
D’Apolito M, Rispoli MG, Ajdinaj P, Digiovanni A, Tomassini V, Gentile L, De Luca G. Progressive multifocal leukoencephalopathy or severe multiple sclerosis relapse following COVID-19 vaccine: a diagnostic challenge. Neurol Sci 2023; 44:1141-1146. [PMID: 36633777 PMCID: PMC9838269 DOI: 10.1007/s10072-023-06609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Affiliation(s)
- Maria D’Apolito
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Marianna G. Rispoli
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paola Ajdinaj
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Anna Digiovanni
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Valentina Tomassini
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy
| | - Luigia Gentile
- grid.412451.70000 0001 2181 4941Department of Radiology, University “G. D’Annunzio” of Chieti, Chieti, Italy
| | - Giovanna De Luca
- grid.412451.70000 0001 2181 4941Department of Neuroscience, Imaging, and Clinical Sciences, “G. D’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy
| |
Collapse
|
17
|
Abstract
Ublituximab (ublituximab-xiiy; BRIUMVI™) is a glycoengineered anti-CD20 monoclonal antibody developed by TG Therapeutics, Inc. for the treatment of multiple sclerosis (MS). The mechanism of action of ublituximab involves the depletion of B cells via antibody-dependent cellular cytotoxicity, as B cells have a key role in the pathogenesis of MS. Ublituximab is the first anti-CD20 treatment that is administered twice-yearly as one hour infusions, following the initial doses. In December 2022, ublituximab received its first global approval in the USA for the treatment of adults with relapsing forms of MS, including clinically isolated syndrome, relapsing-remitting disease, and active secondary progressive disease. This article summarizes the milestones in the development of ublituximab leading to this first approval in this indication.
Collapse
Affiliation(s)
- Arnold Lee
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
18
|
Looney CM, Strauli N, Cascino MD, Garma H, Schroeder AV, Takahashi C, O'Gorman W, Green C, Herman AE. Development of a novel, highly sensitive assay for quantification of minimal residual B cells in autoimmune disease and comparison to traditional methods across B-cell-depleting agents. Clin Immunol 2023; 248:109265. [PMID: 36796471 DOI: 10.1016/j.clim.2023.109265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Targeted B-cell depletion is a useful therapy for many diseases, including autoimmune disorders and certain cancers. We developed a sensitive blood B-cell depletion assay, MRB 1.1, compared its performance with the T-cell/B-cell/NK-cell (TBNK) assay, and assessed B-cell depletion with different therapies. The empirically defined lower limit of quantification (LLOQ) for CD19+ cells in the TBNK assay was 10 cells/μL, and 0.441 cells/μL for the MRB 1.1 assay. The TBNK LLOQ was used to compare differences between B-cell depletion in similar lupus nephritis patient populations who received rituximab (LUNAR), ocrelizumab (BELONG), or obinutuzumab (NOBILITY). After 4 weeks, 10% of patients treated with rituximab retained detectable B cells vs 1.8% with ocrelizumab and 1.7% for obinutuzumab; at 24 weeks 93% of patients who received obinutuzumab remained below LLOQ vs 63% for rituximab. More-sensitive measurements of B cells may reveal differences in potency among anti-CD20 agents, which may associate with clinical outcomes.
Collapse
|
19
|
Katz Sand I, Gnjatic S, Krammer F, Tuballes K, Carreño JM, Satyanarayan S, Filomena S, Staker E, Tcheou J, Miller A, Fabian M, Safi N, Nichols J, Patel J, Krieger S, Tankou S, Horng S, Klineova S, Beck E, Merad M, Lublin F. Evaluation of immunological responses to third COVID-19 vaccine among people treated with sphingosine receptor-1 modulators and anti-CD20 therapy. Mult Scler Relat Disord 2023; 70:104486. [PMID: 36628884 PMCID: PMC9794520 DOI: 10.1016/j.msard.2022.104486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND People living with multiple sclerosis (MS) and other disorders treated with immunomodulatory therapies remain concerned about suboptimal responses to coronavirus disease 2019 (COVID-19) vaccines. Important questions persist regarding immunological response to third vaccines, particularly with respect to newer virus variants. The objective of this study is to evaluate humoral and cellular immune responses to a third COVID-19 vaccine dose in people on anti-CD20 therapy and sphingosine 1-phosphate receptor (S1PR) modulators, including Omicron-specific assays. METHODS This is an observational study evaluating immunological responses to third COVID-19 vaccine dose in participants treated with anti-CD20 agents, S1PR modulators, and healthy controls. Neutralizing antibodies against USA-WA1/2020 (WA1) and B.1.1.529 (BA.1) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were measured before and after third vaccine. Groups were compared by one-way ANOVA with Tukey multiple comparisons. Cellular responses to spike peptide pools generated from WA1 and BA.1 were evaluated. Pre-post comparisons were made by Wilcoxon paired t-tests, inter-cohort comparisons by Mann-Whitney t-test. RESULTS This cohort includes 25 participants on anti-CD20 therapy, 12 on S1PR modulators, and 14 healthy controls. Among those on anti-CD20 therapy, neutralizing antibodies to WA1 were significantly reduced compared to healthy controls (ID50% GM post-vaccination of 8.1 ± 2.8 in anti-CD20 therapy group vs 452.6 ± 8.442 healthy controls, P < 0.0001) and neutralizing antibodies to BA.1 were below the threshold of detection nearly universally. However, cellular responses, including to Omicron-specific peptides, were not significantly different from controls. Among those on S1PR modulators, neutralizing antibodies to WA1 were detected in a minority, and only 3/12 had neutralizing antibodies just at the limit of detection to BA.1. Cellular responses to Spike antigen in those on S1PR modulators were reduced by a factor of 100 compared to controls (median 0.0008% vs. 0.08%, p < 0.001) and were not significantly "boosted" by a third injection. CONCLUSIONS Participants on anti-CD20 and S1PR modulator therapies had impaired antibody neutralization capacity, particularly to BA.1, even after a third vaccine. T cell responses were not affected by anti-CD20 therapies, but were nearly abrogated by S1PR modulators. These results have clinical implications warranting further study.
Collapse
Affiliation(s)
- Ilana Katz Sand
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Sacha Gnjatic
- Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sammita Satyanarayan
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Susan Filomena
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Staker
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron Miller
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Fabian
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neha Safi
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jamie Nichols
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jasmin Patel
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen Krieger
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephanie Tankou
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sam Horng
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sylvia Klineova
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erin Beck
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miriam Merad
- Precision Immunology Institute, Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fred Lublin
- Corinne Goldsmith Dickinson Center for Multiple Sclerosis, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Saidha S, Bell J, Harold S, Belisario JM, Hawe E, Shao Q, Wyse K, Maiese EM. Systematic literature review of immunoglobulin trends for anti-CD20 monoclonal antibodies in multiple sclerosis. Neurol Sci 2023; 44:1515-1532. [PMID: 36648561 PMCID: PMC9843103 DOI: 10.1007/s10072-022-06582-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To exp lore changes in immunoglobulin (Ig) levels for people with relapsing-multiple sclerosis (RMS) treated with ocrelizumab or ofatumumab and the relationship between Ig levels and infections. METHODS A systematic literature review (SLR) was conducted to identify clinical trials and real-world evidence (RWE) studies on Ig levels over time and studies on associations with infections for ocrelizumab and ofatumumab for people with RMS through 10 September 2021. Searches were conducted in Embase, MEDLINE, Cochrane Library, trial registries, and recent conference abstracts. RESULTS Of 1,580 articles identified, 30 reporting on 11 trials and 5 RWE studies were included. Ocrelizumab trials (n = 4) had 24-336 weeks of follow-up and reported decreasing Ig G (IgG) levels, while RWE (n = 5) had 52-78 weeks of follow-up and reported IgG to be stable or decrease only slightly. IgG levels were stable in ofatumumab trials (n = 5; 104-168 weeks of follow-up), but no RWE or longer-term studies were identified. No apparent association between decreased Ig levels and infections was observed during ofatumumab treatment (ASCLEPIOS I/II), while for ocrelizumab, the only data on apparent associations between decreased IgG levels and serious infection rates were for a pooled population of people with RMS or primary progressive MS. CONCLUSION Decreasing IgG levels have been correlated with increased infection risk over time. IgG levels appeared to decrease over time in ocrelizumab trials but remained relatively stable over time in ofatumumab trials. Additional research is needed to understand differences between ocrelizumab and ofatumumab and identify people at risk of decreasing IgG levels and infection.
Collapse
Affiliation(s)
- Shiv Saidha
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | | | | | | | - Emma Hawe
- RTI Health Solutions, Manchester, UK
| | - Qiujun Shao
- Novartis Pharmaceuticals Corporation, East Hanover, NJ USA
| | - Kerri Wyse
- Novartis Pharmaceuticals Corporation, East Hanover, NJ USA
| | - Eric M. Maiese
- Novartis Pharmaceuticals Corporation, East Hanover, NJ USA
| |
Collapse
|
21
|
Specific Aspects of Immunotherapy for Multiple Sclerosis in Switzerland—A Structured Commentary, Update 2022. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn7010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS), particularly relapsing MS (RMS), has become a treatable disease in recent decades, and immunotherapies are now able to influence long-term disease course. A wide range of disease-modifying drugs are available, which makes the choice of therapy in individual cases considerably more complex. Due to specific regulatory aspects (partly diverging approvals by Swissmedic compared to the European Medicines Agency (EMA), and an independent evaluation process for the Federal Office of Public Health (FOPH) specialities list (SL)), we issued a consensus recommendation regarding specific aspects of immunotherapy for MS in Switzerland in 2019. Here, we present revised recommendations with an update on newly approved drugs and new safety aspects, also in reference to the risk of COVID-19 infection and vaccination.
Collapse
|
22
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
23
|
Hallin EI, Trætteberg Serkland T, Myhr KM, Torkildsen Ø, Skrede S. Ocrelizumab quantitation by liquid chromatography-tandem mass spectrometry. J Mass Spectrom Adv Clin Lab 2022; 25:53-60. [PMID: 35910410 PMCID: PMC9334332 DOI: 10.1016/j.jmsacl.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Ocrelizumab is a monoclonal anti-CD20 antibody approved for the treatment of multiple sclerosis (MS). The clinical value of therapeutic drug monitoring (TDM) for this antibody in treatment of MS is unknown, and an adequately specific and precise quantitation method for ocrelizumab in patient serum could facilitate investigation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantitation methods have been shown to have higher analytic specificity and precision than enzyme-linked immunosorbent assays. Objectives To establish and validate an LC-MS/MS-based quantitation method for ocrelizumab. Methods We present an LC-MS/MS-based quantitation method using immunocapture purification followed by trypsinization and analysis by a triple quadrupole mass analyzer obtaining results within the same day. Results We found that the ocrelizumab peptide GLEWVGAIYPGNGDTSYNQK (Q1/Q3 Quantifier ion: 723.683+/590.77 y112+ Qualifier ion: 723.683+/672.30 y122+) can be used for quantitation and thereby developed a method for quantifying ocrelizumab in human serum with a quantitation range of 1.56 to 200 µg/mL. The method was validated in accordance with EMA requirements in terms of selectivity, carry-over, lower limit of quantitation, calibration curve, accuracy, precision and matrix effect. Ocrelizumab serum concentrations were measured in three MS patients treated with ocrelizumab, immediately before and after ocrelizumab infusion, with additional sampling after 2, 4, 8 and 12 weeks. Measured serum concentrations of ocrelizumab showed expected values for both Cmax and drug half-life over the sampled time period. Conclusion We have established a reliable quantitation method for serum ocrelizumab that can be applied in clinical studies, facilitating the evaluation of ocrelizumab TDM in MS.
Collapse
Affiliation(s)
- Erik I. Hallin
- Section of Clinical Pharmacology, Department of Medical Biochemistry and
Pharmacology, Haukeland University Hospital, Jonas Lies Vei 87, N-5021 Bergen,
Norway
| | - Trond Trætteberg Serkland
- Section of Clinical Pharmacology, Department of Medical Biochemistry and
Pharmacology, Haukeland University Hospital, Jonas Lies Vei 87, N-5021 Bergen,
Norway
- Department of Clinical Science, University of Bergen, Jonas Lies Vei 87,
N-5021 Bergen, Norway
| | - Kjell-Morten Myhr
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87,
N-5021 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital,
Jonas Lies Vei 71, N-5053 Bergen, Norway
| | - Øivind Torkildsen
- Department of Clinical Medicine, University of Bergen, Jonas Lies Vei 87,
N-5021 Bergen, Norway
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital,
Jonas Lies Vei 71, N-5053 Bergen, Norway
| | - Silje Skrede
- Section of Clinical Pharmacology, Department of Medical Biochemistry and
Pharmacology, Haukeland University Hospital, Jonas Lies Vei 87, N-5021 Bergen,
Norway
- Department of Clinical Science, University of Bergen, Jonas Lies Vei 87,
N-5021 Bergen, Norway
| |
Collapse
|
24
|
Asplund Högelin K, Ruffin N, Pin E, Hober S, Nilsson P, Starvaggi Cucuzza C, Khademi M, Olsson T, Piehl F, Al Nimer F. B cell repopulation dynamics and drug pharmacokinetics impact SARS-CoV-2 vaccine efficacy in anti-CD20-treated multiple sclerosis patients. Eur J Neurol 2022; 29:3317-3328. [PMID: 35808856 PMCID: PMC9349816 DOI: 10.1111/ene.15492] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent findings document a blunted humoral response to SARS-CoV-2 vaccination in patients on anti-CD20 treatment. Although most patients develop a cellular response, it is still important to identify predictors of seroconversion in order to optimize vaccine responses. METHODS We determined antibody responses after SARS-CoV-2 vaccination in a real-world cohort of multiple sclerosis patients (n = 94) treated with anti-CD20, mainly rituximab, with variable treatment duration (median 2.9; range 0.4-9.6 years) and time from last anti-CD20 infusion to vaccination (median 190; range 60-1032 days). RESULTS We find that presence of B cells and/or rituximab in blood predict seroconversion better than time since last infusion. Using multiple logistic regression, presence of >0.5% B cells increased probability for seroconversion with an odds ratio (OR) of 5.0 (CI 1.0-28.1, p = 0.055), while the corresponding OR for ≥ 6 months since last infusion was 1.45 (CI 0.20-10.15, p = 0.705). In contrast, detectable rituximab levels were negatively associated with seroconversion (OR 0.05; CI 0.002-0.392, p = 0.012). Furthermore, naïve and memory IgG+ B cells correlated with antibody levels. Although re-treatment with rituximab at four weeks or more after booster depleted spike-specific B cells, it did not noticeably affect the rate of decline in antibody titers. Interferon-γ and/or interleukin-13 T cell responses to the spike S1 domain were observed in most patients, but with no correlation to spike antibody levels. CONCLUSIONS These findings are relevant for providing individualized guidance to patients and planning of vaccination schemes, in turn optimizing benefit-risk with anti-CD20.
Collapse
Affiliation(s)
- Klara Asplund Högelin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| | - Nicolas Ruffin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| | - Elisa Pin
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Chiara Starvaggi Cucuzza
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| | - Fredrik Piehl
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| | - Faiez Al Nimer
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden
| |
Collapse
|
25
|
Sand IK, Gnjatic S, Krammer F, Tuballes K, Carreño JM, Satyanarayan S, Filomena S, Staker E, Tcheou J, Miller A, Fabian M, Safi N, Nichols J, Patel J, Krieger S, Tankou S, Horng S, Klineova S, Beck E, Merad M, Lublin F. Evaluation of immunological responses to third COVID-19 vaccine among people treated with sphingosine receptor-1 modulators and anti-CD20 therapy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.06.10.22276253. [PMID: 35734083 PMCID: PMC9216728 DOI: 10.1101/2022.06.10.22276253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Importance People living with multiple sclerosis (MS) and other disorders treated with immunomodulatory therapies remain concerned about suboptimal responses to coronavirus disease 2019 (COVID-19) vaccines. Important questions persist regarding immunological response to third vaccines, particularly with respect to newer virus variants. Objective Evaluate humoral and cellular immune responses to third COVID-19 vaccine dose in people on anti-CD20 therapy and sphingosine 1-phosphate receptor (S1PR) modulators, including Omicron-specific assays. Design Observational study evaluating immunological response to third COVID-19 vaccine dose in volunteers treated with anti-CD20 agents, S1PR modulators, and healthy controls. Neutralizing antibodies against USA-WA1/2020 (WA1) and B.1.1.529 (BA.1) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were measured before and after third vaccine. Cellular responses to spike peptide pools generated from WA1 and BA.1 were evaluated. Setting Mount Sinai Hospital. Participants People treated with anti-CD20 therapy or S1PR modulators and healthy volunteers. Exposure Treatment with anti-CD20 therapy, S1PR modulator, or neither. Main outcomes and measures Serum neutralizing antibodies and ex vivo T cell responses against SARS-CoV-2 antigens. Results This cohort includes 25 participants on anti-CD20 therapy, 12 on S1PR modulators, and 14 healthy controls. Among those on anti-CD20 therapy, neutralizing antibodies to WA1 were significantly reduced compared to healthy controls (ID50% GM post-vaccination of 8.1 ± 2.8 in anti-CD20 therapy group vs 452.6 ± 8.442 healthy controls, P<0.0001) and neutralizing antibodies to BA.1 were below the threshold of detection nearly universally. However, cellular responses, including to Omicron-specific peptides, were not significantly different from controls. Among those on S1PR modulators, neutralizing antibodies to WA1 were detected in a minority, and only 3/12 had neutralizing antibodies just at the limit of detection to BA.1. Cellular responses to Spike antigen in those on S1PR modulators were reduced by a factor of 100 compared to controls (median 0.0008% vs. 0.08%, p<0.001) and were not significantly "boosted" by a third injection. Conclusions and Relevance Participants on immunomodulators had impaired antibody neutralization capacity, particularly to BA.1, even after a third vaccine. T cell responses were not affected by anti-CD20 therapies, but were nearly abrogated by S1PR modulators. These results have clinical implications warranting further study.
Collapse
|
26
|
Havla J, Hohlfeld R. Antibody Therapies for Progressive Multiple Sclerosis and for Promoting Repair. Neurotherapeutics 2022; 19:774-784. [PMID: 35289375 PMCID: PMC9294105 DOI: 10.1007/s13311-022-01214-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
Progressive multiple sclerosis (PMS) is clinically distinct from relapsing-remitting MS (RRMS). In PMS, clinical disability progression occurs independently of relapse activity. Furthermore, there is increasing evidence that the pathological mechanisms of PMS and RRMS are different. Current therapeutic options for the treatment of PMS remain inadequate, although ocrelizumab, a B-cell-depleting antibody, is now available as the first approved therapeutic option for primary progressive MS. Recent advances in understanding the pathophysiology of PMS provide hope for new innovative therapeutic options: these include antibody therapies with anti-inflammatory, neuroprotective, and/or remyelination-fostering effects. In this review, we summarize the relevant trial data relating to antibody therapy and consider future antibody options for treating PMS.
Collapse
Affiliation(s)
- Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany.
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
27
|
Kornek B, Leutmezer F, Rommer PS, Koblischke M, Schneider L, Haslacher H, Thalhammer R, Zimprich F, Zulehner G, Bsteh G, Dal-Bianco A, Rinner W, Zebenholzer K, Wimmer I, Steinmaurer A, Graninger M, Mayer M, Roedl K, Berger T, Winkler S, Aberle JH, Tobudic S. B Cell Depletion and SARS-CoV-2 Vaccine Responses in Neuroimmunologic Patients. Ann Neurol 2022; 91:342-352. [PMID: 35067959 PMCID: PMC9011809 DOI: 10.1002/ana.26309] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The study was undertaken to assess the impact of B cell depletion on humoral and cellular immune responses to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccination in patients with various neuroimmunologic disorders on anti-CD20 therapy. This included an analysis of the T cell vaccine response to the SARS-CoV-2 Delta variant. METHODS We investigated prospectively humoral and cellular responses to SARS-CoV-2 mRNA vaccination in 82 patients with neuroimmunologic disorders on anti-CD20 therapy and 82 age- and sex-matched healthy controls. For quantification of antibodies, the Elecsys anti-SARS-CoV-2 viral spike (S) immunoassay against the receptor-binding domain (RBD) was used. IFN-gamma enzyme-linked immunosorbent spot assays were performed to assess T cell responses against the SARS-CoV-2 Wuhan strain and the Delta variant. RESULTS SARS-CoV-2-specific antibodies were found less frequently in patients (70% [57/82]) compared with controls (82/82 [100%], p < 0.001). In patients without detectable B cells (<1 B cell/mcl), seroconversion rates and antibody levels were lower compared to nondepleted (≥1 B cell/mcl) patients (p < 0.001). B cell levels ≥1 cell/mcl were sufficient to induce seroconversion in our cohort of anti-CD20 treated patients. In contrast to the antibody response, the T-cell response against the Wuhan strain and the Delta variant was more pronounced in frequency (p < 0.05) and magnitude (p < 0.01) in B-cell depleted compared to nondepleted patients. INTERPRETATION Antibody responses to SARS-CoV-2 mRNA vaccinnation can be attained in patients on anti-CD20 therapy by the onset of B cell repopulation. In the absence of B cells, a strong T cell response is generated which may help to protect against severe coronavirus disease 2019 (COVID-19) in this high-risk population. ANN NEUROL 2022;91:342-352.
Collapse
Affiliation(s)
- Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Lisa Schneider
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Walter Rinner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Margareta Mayer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Kilian Roedl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Winkler
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Selma Tobudic
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Alenazy RH, Abualshamat MMS, Alqahs FSSD, Almutairi AFN, Alharbi MKM, Alkhuraimi BM, Dhamiri YA, Alshahrani MMA, Alshahrani KM, Alghamdi MA. The Role of Ocrelizumab in Multiple Sclerosis Treatment. ARCHIVES OF PHARMACY PRACTICE 2021. [DOI: 10.51847/y9pzjhl1gk] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|