1
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. The need for inhaled phosphodiesterase inhibitors in chronic obstructive pulmonary disease. Expert Rev Clin Pharmacol 2024:1-13. [PMID: 39625645 DOI: 10.1080/17512433.2024.2438187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
INTRODUCTION The therapeutic implications of phosphodiesterase (PDE) inhibitors have attracted interest because PDEs are regarded as an intracellular target to be exploited for therapeutic advancements in the treatment of COPD. At present, the only approved approach for the treatment of COPD with PDE inhibitors is the use of an oral PDE4 inhibitor. However, this treatment is not widely employed, primarily due to the narrow therapeutic index associated with oral PDE4 inhibitors, which significantly limits the tolerable dose. The inhalation route represents a viable alternative to the oral route for improving the therapeutic index of PDE4 inhibitors. AREAS COVERED The development of inhaled PDE4 inhibitors, with a focus on tanimilast and ensifentrine, the latter of which is a dual PDE3/PDE4 inhibitor. EXPERT OPINION The inhalation route offers several advantages regarding the delivery of PDE inhibitors for the management of COPD. Tanimilast and ensifentrine have been shown to improve lung function, reduce exacerbations and enhance quality of life in COPD patients. However, it has not yet been determined which type of COPD patient might benefit more from inhaled PDE4 inhibitors, and it remains unclear whether concomitant inhibition of PDE3 and PDE4 confers a significant benefit compared to blocking PDE4 alone in COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| |
Collapse
|
2
|
Mukherjee S, Roy S, Mukherjee S, Harikishore A, Bhunia A, Mandal AK. 14-3-3 interaction with phosphodiesterase 8A sustains PKA signaling and downregulates the MAPK pathway. J Biol Chem 2024; 300:105725. [PMID: 38325743 PMCID: PMC10926215 DOI: 10.1016/j.jbc.2024.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.
Collapse
Affiliation(s)
| | - Somesh Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | - Atin K Mandal
- Department of Biological Sciences, Bose Institute, Kolkata, India.
| |
Collapse
|
3
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
4
|
Nourian YH, Salimian J, Ahmadi A, Salehi Z, Karimi M, Emamvirdizadeh A, Azimzadeh Jamalkandi S, Ghanei M. cAMP-PDE signaling in COPD: Review of cellular, molecular and clinical features. Biochem Biophys Rep 2023; 34:101438. [PMID: 36865738 PMCID: PMC9971187 DOI: 10.1016/j.bbrep.2023.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death among non-contagious diseases in the world. PDE inhibitors are among current medicines prescribed for COPD treatment of which, PDE-4 family is the predominant PDE isoform involved in hydrolyzing cyclic adenosine monophosphate (cAMP) that regulates the inflammatory responses in neutrophils, lymphocytes, macrophages and epithelial cells The aim of this study is to investigate the cellular and molecular mechanisms of cAMP-PDE signaling, as an important pathway in the treatment management of patients with COPD. In this review, a comprehensive literature review was performed about the effect of PDEs in COPD. Generally, PDEs are overexpressed in COPD patients, resulting in cAMP inactivation and decreased cAMP hydrolysis from AMP. At normal amounts, cAMP is one of the essential agents in regulating metabolism and suppressing inflammatory responses. Low amount of cAMP lead to activation of downstream inflammatory signaling pathways. PDE4 and PDE7 mRNA transcript levels were not altered in polymorphonuclear leukocytes and CD8 lymphocytes originating from the peripheral venous blood of stable COPD subjects compared to healthy controls. Therefore, cAMP-PDE signaling pathway is one of the most important signaling pathways involved in COPD. By examining the effects of different drugs in this signaling pathway critical steps can be taken in the treatment of this disease.
Collapse
Affiliation(s)
- Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Karimi
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Emamvirdizadeh
- Department of Molecular Genetics, Faculty of Bio Sciences, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding author.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Cazzola M, Ora J, Calzetta L, Rogliani P, Matera MG. The future of inhalation therapy in chronic obstructive pulmonary disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100092. [PMID: 35243334 PMCID: PMC8866667 DOI: 10.1016/j.crphar.2022.100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
The inhaled route is critical for the administration of drugs to treat patients suffering from COPD, but there is still an unmet need for new and innovative inhalers to address some limitations of existing products that do not make them suitable for many COPD patients. The treatment of COPD, currently limited to the use of bronchodilators, corticosteroids, and antibiotics, requires a significant expansion of the therapeutic armamentarium that is closely linked to the widening of knowledge on the pathogenesis and evolution of COPD. The great interest in the development of new drugs that may be able to interfere in the natural history of the disease is leading to the synthesis of numerous new molecules, of which however only a few have entered the stages of clinical development. On the other hand, further improvement of inhaled drug delivery could be an interesting possibility because it targets the organ of interest directly, requires significantly less drug to exert the pharmacological effect and, by lowering the amount of drug needed, reduces the cost of therapy. Unfortunately, however, the development of new inhaled drugs for use in COPD is currently too slow.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Josuel Ora
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Respiratory Diseases Unit, “Tor Vergata” University Hospital, Rome, Italy
| | - Maria Gabriella Matera
- Pharmacology Unit, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
6
|
Martin C, Burgel PR, Roche N. Inhaled Dual Phosphodiesterase 3/4 Inhibitors for the Treatment of Patients with COPD: A Short Review. Int J Chron Obstruct Pulmon Dis 2021; 16:2363-2373. [PMID: 34429594 PMCID: PMC8378910 DOI: 10.2147/copd.s226688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Current pharmacological treatments for chronic obstructive pulmonary disease (COPD) are mostly limited to inhaled bronchodilators and corticosteroids. Azithromycin can contribute to exacerbation prevention. Roflumilast, a phosphodiesterase (PDE) 4 inhibitor administered orally, also prevents exacerbations in selected patients with chronic bronchitis, recurrent exacerbations, severe airflow limitation and concomitant therapy with long-acting inhaled bronchodilators. This outcome likely results from anti-inflammatory effects since PDE4 is expressed by all inflammatory cell types involved in COPD. The use of this agent is, however, limited by side-effects, particularly nausea and diarrhea. To address remaining unmet needs and enrich therapeutic options for patients with COPD, inhaled dual PDE3/4 inhibitors have been developed, with the aim of enhancing bronchodilation through PDE3 inhibition and modulating inflammation and mucus production though PDE4 inhibition, thus producing a potentially synergistic effect on airway calibre. Experimental preclinical data confirmed these effects in vitro and in animal models. At present, RPL554/ensifentrine is the only agent of this family in clinical development. It decreases sputum markers of both neutrophilic and eosinophilic inflammation in patients with COPD. Clinical Phase II trials confirmed its bronchodilator effect and demonstrated clinically meaningful symptom relief and quality of life improvements in these patients. The safety profile appears satisfactory, with less effects on heart rate and blood pressure than salbutamol and no other side effect. Altogether, these data suggest that ensifentrine could have a role in COPD management, especially in addition to inhaled long-acting bronchodilators with or without corticosteroids since experimental studies suggest potentiation of ensifentrine effects by these agents. However, results from ongoing and future Phase III studies are needed to confirm both beneficial effects and favourable safety profile on a larger scale and assess other outcomes including exacerbations, lung function decline, comorbidities and mortality.
Collapse
Affiliation(s)
- Clémence Martin
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Pierre-Régis Burgel
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| | - Nicolas Roche
- AP-HP Centre, Hôpital Cochin, Service de Pneumologie, Paris, France.,Université de Paris, Institut Cochin, INSERM UMR 1016, Paris, France
| |
Collapse
|
7
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Saroj P, Bansal Y, Singh R, Akhtar A, Sodhi RK, Bishnoi M, Sah SP, Kuhad A. Neuroprotective effects of roflumilast against quinolinic acid-induced rat model of Huntington's disease through inhibition of NF-κB mediated neuroinflammatory markers and activation of cAMP/CREB/BDNF signaling pathway. Inflammopharmacology 2021; 29:499-511. [PMID: 33517508 DOI: 10.1007/s10787-020-00787-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 01/23/2023]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative and hyperkinetic movement disorder. Decreased activity of cAMP-responsive element-binding protein (CREB) is thought to contribute to the death of striatal medium spiny neurons in HD. The present study has been designed to explore the possible role of roflumilast against qunilonic acid (QA) induced neurotoxicity in rats intending to investigate whether it inhibits the neuroinflammatory response through activation of the cAMP/CREB/BDNF signaling pathway. QA was microinjected (200 nmol/2 µl, bilaterally) through the intrastriatal route in the stereotaxic apparatus. Roflumilast (0.5, 1, and 2 mg/kg, orally) once-daily treatment for 21 days significantly improved locomotor activity in actophotometer, motor coordination in rotarod, and impaired gait performance in narrow beam walk test. Moreover, roflumilast treatment significantly attenuated oxidative and nitrosative stress (p < 0.05) through attenuating lipid peroxidation nitrite concentration and enhancing reduced glutathione, superoxide dismutase, and catalase levels. Furthermore, roflumilast also significantly decreased elevated pro-inflammatory cytokines like TNF-α (p < 0.01), IL-6 (p < 0.01), IFN-γ (p < 0.05), NF-κB (p < 0.05) and significantly increased BDNF(p < 0.05) in the striatum and cortex of rat brain. The results further demonstrated that roflumilast effectively increased the gene expression of cAMP(p < 0.05), CREB(p < 0.05) and decreased the gene expression of PDE4 (p < 0.05) in qRT-PCR. These results conclusively depicted that roflumilast could be a potential candidate as an effective therapeutic agent in the management of HD through the cAMP/CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Priyanka Saroj
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Yashika Bansal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Raghunath Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Ansab Akhtar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Rupinder Kaur Sodhi
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institue (NABI), Sector 81, SAS Nagar, Mohali, Punjab, 140306, India
| | - Sangeeta Pilkhwal Sah
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
- Department of Physiology, University Institute of Pharmaceutical Science (UIPS), UGC Center of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| | - Anurag Kuhad
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
9
|
Matera MG, Cazzola M, Page C. Prospects for COPD treatment. Curr Opin Pharmacol 2020; 56:74-84. [PMID: 33333428 DOI: 10.1016/j.coph.2020.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/10/2020] [Indexed: 02/09/2023]
Abstract
The management of chronic obstructive pulmonary disease (COPD) is fundamentally still heavily dependent on the use of bronchodilators and corticosteroids. Therefore, there is a need for alternative, more effective and safer therapeutic approaches. In particular, since inflammation in COPD lungs is often poorly responsive to corticosteroid treatment, novel pharmacological anti-inflammatory approaches are needed to optimally treat COPD patients. There have been multiple attempts to develop drugs that inhibit recruitment and activation of inflammatory cells, such as macrophages, neutrophils and T-lymphocytes, in the lungs of patients with COPD or target inflammatory mediators that are important in the recruitment or activation of these inflammatory cells or released by such cells. This review article focuses on novel classes of anti-inflammatory drugs that have already been tested in humans as possible treatments for patients with COPD.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
10
|
Matera MG, Page CP, Calzetta L, Rogliani P, Cazzola M. Pharmacology and Therapeutics of Bronchodilators Revisited. Pharmacol Rev 2020; 72:218-252. [PMID: 31848208 DOI: 10.1124/pr.119.018150] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bronchodilators remain the cornerstone of the treatment of airway disorders such as asthma and chronic obstructive pulmonary disease (COPD). There is therefore considerable interest in understanding how to optimize the use of our existing classes of bronchodilator and in identifying novel classes of bronchodilator drugs. However, new classes of bronchodilator have proved challenging to develop because many of these have no better efficacy than existing classes of bronchodilator and often have unacceptable safety profiles. Recent research has shown that optimization of bronchodilation occurs when both arms of the autonomic nervous system are affected through antagonism of muscarinic receptors to reduce the influence of parasympathetic innervation of the lung and through stimulation of β 2-adrenoceptors (β 2-ARs) on airway smooth muscle with β 2-AR-selective agonists to mimic the sympathetic influence on the lung. This is currently achieved by use of fixed-dose combinations of inhaled long-acting β 2-adrenoceptor agonists (LABAs) and long-acting muscarinic acetylcholine receptor antagonists (LAMAs). Due to the distinct mechanisms of action of LAMAs and LABAs, the additive/synergistic effects of using these drug classes together has been extensively investigated. More recently, so-called "triple inhalers" containing fixed-dose combinations of both classes of bronchodilator (dual bronchodilation) and an inhaled corticosteroid in the same inhaler have been developed. Furthermore, a number of so-called "bifunctional drugs" having two different primary pharmacological actions in the same molecule are under development. This review discusses recent advancements in knowledge on bronchodilators and bifunctional drugs for the treatment of asthma and COPD. SIGNIFICANCE STATEMENT: Since our last review in 2012, there has been considerable research to identify novel classes of bronchodilator drugs, to further understand how to optimize the use of the existing classes of bronchodilator, and to better understand the role of bifunctional drugs in the treatment of asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- M G Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - C P Page
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - L Calzetta
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - P Rogliani
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| | - M Cazzola
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy (M.G.M.); Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, United Kingdom (C.P.P.); and Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata," Rome, Italy (L.C., P.R., M.C.)
| |
Collapse
|
11
|
Yu HP, Liu FC, Lin CY, Umoro A, Trousil J, Hwang TL, Fang JY. Suppression of neutrophilic inflammation can be modulated by the droplet size of anti-inflammatory nanoemulsions. Nanomedicine (Lond) 2020; 15:773-791. [PMID: 32193978 DOI: 10.2217/nnm-2019-0407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: We aimed to develop nanoemulsions containing phosphodiesterase 4 inhibitor rolipram with different droplet sizes, to evaluate the anti-inflammatory effect against activated neutrophils and a related lung injury. Materials & methods: We prepared nanoemulsions of three different sizes, 68, 133 and 188 nm. Results: The nanoemulsion inhibited the superoxide anion but not elastase release in primary human neutrophils. The large-sized nanoemulsions were mostly internalized by neutrophils, resulting in the reduction of intracellular Ca2+ half-life. The peripheral organ distribution of near-infrared dye-tagged nanoemulsions increased, following the decrease in droplet diameter. Rolipram entrapment into intravenous nanoemulsions ameliorated pulmonary inflammation. The smallest droplet size showed improvement, compared with the largest size. Conclusion: We established a foundation for the development of nanoemulsions against inflamed lung disease.
Collapse
Affiliation(s)
- Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Cheng-Yu Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Ani Umoro
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan
| | - Jiří Trousil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, 11720, Czech Republic
| | - Tsong-Long Hwang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan, 333, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, 333, Taiwan.,Research Center for Food & Cosmetic Safety & Research Center for Chinese Herbal Medicine, Chang Gung University of Science & Technology, Kweishan, Taoyuan, 333, Taiwan
| |
Collapse
|
12
|
Phillips JE. Inhaled Phosphodiesterase 4 (PDE4) Inhibitors for Inflammatory Respiratory Diseases. Front Pharmacol 2020; 11:259. [PMID: 32226383 PMCID: PMC7080983 DOI: 10.3389/fphar.2020.00259] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/24/2020] [Indexed: 01/09/2023] Open
Abstract
PDE4 inhibitors can suppress a variety of inflammatory cell functions that contribute to their anti-inflammatory actions in respiratory diseases like chronic obstructive pulmonary disease (COPD) and asthma. The systemically delivered PDE4 inhibitor roflumilast has been approved for use in a subset of patients with severe COPD with chronic bronchitis and a history of exacerbations. Use of systemically delivered PDE4 inhibitors has been limited by systemic side effects. Inhaled PDE4 inhibitors have been considered as a viable alternative to increase tolerability and determine the maximum therapeutic potential of PDE4 inhibition in respiratory diseases.
Collapse
Affiliation(s)
- Jonathan E. Phillips
- Department of Inflammation Research, Amgen Research, Thousand Oaks, CA, United States
| |
Collapse
|
13
|
Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28:28/154/190095. [PMID: 31871127 DOI: 10.1183/16000617.0095-2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes.At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.It is likely that if developed, these new classes may be a useful addition to, rather than a substitution of, the bronchodilator therapy currently used, in order to achieve further optimisation of bronchodilation.
Collapse
Affiliation(s)
- Mario Cazzola
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
14
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. Ensifentrine (RPL554): an investigational PDE3/4 inhibitor for the treatment of COPD. Expert Opin Investig Drugs 2019; 28:827-833. [PMID: 31474120 DOI: 10.1080/13543784.2019.1661990] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: A compound that simultaneously inhibits PDE3 and PDE4 should increase airway caliber by relaxing the smooth muscle and, simultaneously, suppress airway inflammatory responses. Ensifentrine (RPL554) is considered a PDE3/4 inhibitor, although its affinity for PDE3 is 3,440 times higher than that for PDE4, that is under clinical development for the treatment of asthma and COPD and, potentially, cystic fibrosis. Areas covered: We analyze the development of this molecule from its basic pharmacology to the present clinical Phase II studies. Expert opinion: Ensifentrine is an interesting drug but there is a lack of solid studies that still does not allow us to correctly allocate this molecule in the current COPD and even asthma therapeutic armamentarium. Furthermore, apparently ensifentrine has not yet entered Phase III clinical development and, in any case, there is no reliable evidence of its ability to elicit an anti-inflammatory activity in patients with COPD or asthma. Therefore, the real anti-inflammatory profile of ensifentrine must be clarified with new studies of basic pharmacology and adequate clinical studies specifically designed. However, at present the most intriguing perspective is linked to its possible use in the treatment of cystic fibrosis, also considering the lack of valid therapeutic options for this disease.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Luigino Calzetta
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata" , Rome , Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli" , Naples , Italy
| |
Collapse
|
15
|
Rogliani P, Ora J, Puxeddu E, Calzetta L, Cavalli F, Matera MG, Cazzola M. Effect of adding roflumilast or ciclesonide to glycopyrronium on lung volumes and exercise tolerance in patients with severe COPD: A pilot study. Pulm Pharmacol Ther 2018; 49:20-26. [DOI: 10.1016/j.pupt.2017.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/23/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
|
16
|
Carzaniga L, Amari G, Rizzi A, Capaldi C, De Fanti R, Ghidini E, Villetti G, Carnini C, Moretto N, Facchinetti F, Caruso P, Marchini G, Battipaglia L, Patacchini R, Cenacchi V, Volta R, Amadei F, Pappani A, Capacchi S, Bagnacani V, Delcanale M, Puccini P, Catinella S, Civelli M, Armani E. Discovery and Optimization of Thiazolidinyl and Pyrrolidinyl Derivatives as Inhaled PDE4 Inhibitors for Respiratory Diseases. J Med Chem 2017; 60:10026-10046. [PMID: 29200281 DOI: 10.1021/acs.jmedchem.7b01044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Phosphodiesterase 4 (PDE4) is a key cAMP-metabolizing enzyme involved in the pathogenesis of inflammatory disease, and its pharmacological inhibition has been shown to exert therapeutic efficacy in chronic obstructive pulmonary disease (COPD). Herein, we describe a drug discovery program aiming at the identification of novel classes of potent PDE4 inhibitors suitable for pulmonary administration. Starting from a previous series of benzoic acid esters, we explored the chemical space in the solvent-exposed region of the enzyme catalytic binding pocket. Extensive structural modifications led to the discovery of a number of heterocycloalkyl esters as potent in vitro PDE4 inhibitors. (S*,S**)-18e and (S*,S**)-22e, in particular, exhibited optimal in vitro ADME and pharmacokinetics properties and dose-dependently counteracted acute lung eosinophilia in an experimental animal model. The optimal biological profile as well as the excellent solid-state properties suggest that both compounds have the potential to be effective topical agents for treating respiratory inflammatory diseases.
Collapse
Affiliation(s)
- Laura Carzaniga
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gabriele Amari
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Andrea Rizzi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Carmelida Capaldi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Renato De Fanti
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Eleonora Ghidini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Chiara Carnini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Nadia Moretto
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fabrizio Facchinetti
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Caruso
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gessica Marchini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Loredana Battipaglia
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Riccardo Patacchini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Cenacchi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Roberta Volta
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Francesco Amadei
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alice Pappani
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Capacchi
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Bagnacani
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Delcanale
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Silvia Catinella
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Elisabetta Armani
- Chemistry Research and Drug Design, ∥Pharmacology and Toxicology, ‡Pharmacokinetics Biochemistry and Metabolism, †Analytics and Early Formulations, #Project Leader Corporate Drug Development, and ⊥Corporate Pre-Clinical R&D Director, Chiesi Farmaceutici S.p.A , Nuovo Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
17
|
Gong S, Chen Y, Meng F, Zhang Y, Wu H, Wu F. Roflumilast restores cAMP/PKA/CREB signaling axis for FtMt-mediated tumor inhibition of ovarian cancer. Oncotarget 2017; 8:112341-112353. [PMID: 29348829 PMCID: PMC5762514 DOI: 10.18632/oncotarget.22866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023] Open
Abstract
The abrogation of cAMP generation by overexpression of PDE isoforms promotes the inflammatory pathology, and the PDE inhibitors have showed the potential anti-inflammation effects in clinical. However, the function of PDE inhibitors in cancer treatment remains unclear. We here investigated the role of PDE4 inhibitor Roflumilast in the treatment of ovarian cancer. We found that Roflumilast could effectively inhibit the proliferation, and induce apoptosis and cell cycle arrest in two ovarian cancer cell lines OVCAR3 and SKOV3. Meanwhile, the cAMP/PKA/CREB signals was activated by Roflumilast, which was accompanied by the up-regulation of mitochondrial ferritin (FtMt) level. Interestingly, forced expression of FtMt in ovarian cancer enhanced the apoptosis and inhibited tumor growth and the PKA inhibitor H89 and knockdown of CREB significantly repressed the expression of FtMt to restore the tumor proliferation and inhibit apoptosis. In addition, we found that Roflumilast-induced phosphorylated CREB directly promoted transcription of FtMt, indicating that Roflumilast up-regulated the expression of FtMt in ovarian cancer via cAMP/PKA/CREB signals. The anti-tumor role of Roflumilast in vivo was also demonstrated, the treatment of roflumilast effectively inhibited tumor proliferation and elevated the FtMt expression to restrict the tumor growth via the activation of cAMP/PKA/CREB signals in ovarian cancer.
Collapse
Affiliation(s)
- Shipeng Gong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongning Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fanliang Meng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yadi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Huan Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital, Chongqing University of Medical Sciences, Chongqing 400010, P.R. China
| | - Fei Wu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
18
|
Umejiego EN, Wang Y, Knepper MA, Chou CL. Roflumilast and aquaporin-2 regulation in rat renal inner medullary collecting duct. Physiol Rep 2017; 5:5/2/e13121. [PMID: 28108651 PMCID: PMC5269416 DOI: 10.14814/phy2.13121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
Roflumilast is a cyclic nucleotide phosphodiesterase inhibitor that is FDA‐approved for treatment of chronic obstructive pulmonary disease. With a view toward possible use for treatment of patients with X‐linked nephrogenic diabetes insipidus (NDI) due to hemizygous mutations in the V2 vasopressin receptor, this study sought to determine the effect of roflumilast on aquaporin‐2 (AQP2) phosphorylation, AQP2 trafficking, and water permeability in the rat inner medullary collecting duct (IMCD). In the presence of the vasopressin analog dDAVP (0.1 nmol/L), both roflumilast and its active metabolite roflumilast N‐oxide (RNO) significantly increased phosphorylation at S256, S264, and S269, and decreased phosphorylation at S261 (immunoblotting) in IMCD suspensions in a dose‐dependent manner (3–3000 nmol/L). Another commonly used phosphodiesterase inhibitor, IBMX, affected phosphorylation only at the highest concentration in this range. However, neither roflumilast nor RNO had an effect on AQP2 phosphorylation in the absence of vasopressin. Furthermore, roflumilast alone did not increase AQP2 trafficking to the plasma membrane (immunofluorescence) or increase water permeability in freshly microdissected perfused IMCD segments. We conclude that roflumilast can be used to enhance vasopressin's action on AQP2 activity in the renal collecting duct, but has no detectable effect in the absence of vasopressin. These findings suggest that roflumilast may not have a beneficial effect in X‐linked NDI, but could find useful application in acquired NDI.
Collapse
Affiliation(s)
- Ezigbobiara N Umejiego
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia, 30322
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center NHLBI National Institutes of Health, Bethesda, Maryland, 20892-1603
| |
Collapse
|
19
|
Cazzola M, Rogliani P, Puxeddu E, Ora J, Matera MG. An overview of the current management of chronic obstructive pulmonary disease: can we go beyond the GOLD recommendations? Expert Rev Respir Med 2017; 12:43-54. [DOI: 10.1080/17476348.2018.1398086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mario Cazzola
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Division of Respiratory Medicine, Department of Internal Medicine, University Hospital “Tor Vergata”, Rome, Italy
| | - Ermanno Puxeddu
- Department of Systems Medicine, Chair of Respiratory Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Division of Respiratory Medicine, Department of Internal Medicine, University Hospital “Tor Vergata”, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, Department of Internal Medicine, University Hospital “Tor Vergata”, Rome, Italy
| | - Maria Gabriella Matera
- Department of Experimental Medicine, Unit of Pharmacology, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
20
|
Page C, Cazzola M. Bifunctional Drugs for the Treatment of Respiratory Diseases. Handb Exp Pharmacol 2017; 237:197-212. [PMID: 27787715 DOI: 10.1007/164_2016_69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the last decade, there has been a steady increase in the use of fixed dose combinations for the treatment of a range of diseases, including cancer, AIDS, tuberculosis and other infectious diseases. It is now evident that patients with asthma or chronic obstructive pulmonary disease (COPD) can also benefit from the use of fixed dose combinations, including combinations of a long-acting β2-agonist (LABA) and an inhaled corticosteroid (ICS), and combinations of LABAs and long-acting muscarinic receptor antagonists (LAMAs). There are now also "triple inhaler" fixed dose combinations (containing a LABA, LAMA and ICS) under development and already being made available in clinical practice, with the first such triple combination having been approved in India. The use of combinations containing drugs with complementary pharmacological actions in the treatment of patients with asthma or COPD has led to the discovery and development of drugs having two different primary pharmacological actions in the same molecule that we have called "bifunctional drugs". In this review we have discussed the state of the art of bifunctional drugs that can be categorized as bifunctional bronchodilators, bifunctional bronchodilator/anti-inflammatory drugs, bifunctional anti-inflammatory drugs and bifunctional mucolytic and anti-inflammatory drugs.
Collapse
Affiliation(s)
- Clive Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Mario Cazzola
- Division of Respiratory Medicine and Research Unit of Respiratory Clinical Pharmacology, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
21
|
Rogliani P, Calzetta L, Capuani B, Facciolo F, Cazzola M, Lauro D, Matera MG. Glucagon-Like Peptide 1 Receptor: A Novel Pharmacological Target for Treating Human Bronchial Hyperresponsiveness. Am J Respir Cell Mol Biol 2017; 55:804-814. [PMID: 27447052 DOI: 10.1165/rcmb.2015-0311oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Asthma is associated with several comorbidities, such as type 2 diabetes mellitus, which may lead to bronchial hyperresponsiveness (BHR). Because glucagon-like peptide (GLP) 1 regulates glucose homeostasis, we pharmacologically investigated the influence of the GLP1 receptor (GLP1-R) agonist, exendin-4, on BHR induced in human isolated airways. The effect of exendin-4 was assessed in human isolated airways undergoing overnight passive sensitization and high-glucose stimulation, two conditions mimicking ex vivo the BHR typical of patients with asthma and diabetes, respectively. GLP1-R activation modulated the bronchial contractile tone induced by transmural stimulation (maximum effect -56.7 ± 3.6%; onset of action, 28.2 ± 4.4 min). Exendin-4 prevented BHR induced by both high-glucose stimulation and passive sensitization (-37.8 ± 7.5% and -74.9 ± 3.9%, P < 0.05 versus control, respectively) through selective activation of GLP1-R and in an epithelium-independent manner. The cAMP-dependent protein kinase A inhibitor, KT5720, reduced the protective role of exendin-4 (P > 0.05 versus passively sensitized tissues). The GLP1-R stimulation by overnight incubation with exendin-4 induced the overexpression of adenylyl cyclase isoform V (+48.4 ± 1.3%, P < 0.05 versus passively sensitized tissues) and restored the cAMP levels depleted by this procedure (+330.8 ± 63.3%, P < 0.05 versus passively sensitized tissues). In conclusion, GLP1-R may represent a novel target for treating BHR by activating the cAMP-dependent protein kinase A pathway in human airways, and GLP1-R agonists could be used as a "new" class to treat patients with asthma and patients with type 2 diabetes mellitus with BHR.
Collapse
Affiliation(s)
- Paola Rogliani
- 1 Department of Systems Medicine, Respiratory Medicine, and
| | | | - Barbara Capuani
- 2 Department of Systems Medicine, Endocrinology and Diabetes, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Facciolo
- 3 Thoracic Surgery Unit, Regina Elena National Cancer Institute, Rome, Italy
| | - Mario Cazzola
- 1 Department of Systems Medicine, Respiratory Medicine, and
| | - Davide Lauro
- 2 Department of Systems Medicine, Endocrinology and Diabetes, University of Rome Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- 4 Department of Experimental Medicine, Unit of Pharmacology, Second University of Naples, Naples, Italy; and
| |
Collapse
|
22
|
Rogliani P, Calzetta L, Cazzola M, Matera MG. Drug safety evaluation of roflumilast for the treatment of COPD: a meta-analysis. Expert Opin Drug Saf 2016; 15:1133-46. [DOI: 10.1080/14740338.2016.1199683] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Paola Rogliani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Cazzola
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
23
|
Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz-Ortega M, Ortiz A, Fernandez-Fernandez B. Targeting inflammation in diabetic kidney disease: early clinical trials. Expert Opin Investig Drugs 2016; 25:1045-58. [PMID: 27268955 DOI: 10.1080/13543784.2016.1196184] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The age-standardized death rate from diabetic kidney disease increased by 106% from 1990 to 2013, indicating that novel therapeutic approaches are needed, in addition to the renin-angiotensin system (RAS) blockers currently in use. Clinical trial results of anti-fibrotic therapy have been disappointing. However, promising anti-inflammatory drugs are currently on phase 1 and 2 randomized controlled trials. AREAS COVERED The authors review the preclinical, phase 1 and 2 clinical trial information of drugs tested for diabetic kidney disease that directly target inflammation as a main or key mode of action. Agents mainly targeting other pathways, such as endothelin receptor or mineralocorticoid receptor blockers and vitamin D receptor activators are not discussed. EXPERT OPINION Agents targeting inflammation have shown promising results in the treatment of diabetic kidney disease when added on top of RAS blockade. The success of pentoxifylline in open label trials supports the concept of targeting inflammation. In early clinical trials, the pentoxifylline derivative CTP-499, the CCR2 inhibitor CCX140-B, the CCL2 inhibitor emapticap pegol and the JAK1/JAK2 inhibitor baricitinib were the most promising drugs for diabetic kidney disease. The termination of trials testing the anti-IL-1β antibody gevokizumab in 2015 will postpone the evaluation of therapies targeting inflammatory cytokines.
Collapse
Affiliation(s)
- Maria Vanessa Perez-Gomez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Maria Dolores Sanchez-Niño
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Ana Belen Sanz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Binbin Zheng
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain
| | - Catalina Martín-Cleary
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Marta Ruiz-Ortega
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Alberto Ortiz
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| | - Beatriz Fernandez-Fernandez
- a Division of Nephrology and Hypertension and FRIAT, IIS-Fundacion Jimenez Diaz, School of Medicine , UAM , Madrid , Spain.,b REDINREN , Madrid , Spain
| |
Collapse
|
24
|
Cazzola M, Calzetta L, Rogliani P, Matera MG. The discovery of roflumilast for the treatment of chronic obstructive pulmonary disease. Expert Opin Drug Discov 2016; 11:733-44. [DOI: 10.1080/17460441.2016.1184642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Fang R, Cui Q, Sun J, Duan X, Ma X, Wang W, Cheng B, Liu Y, Hou Y, Bai G. PDK1/Akt/PDE4D axis identified as a target for asthma remedy synergistic with β2 AR agonists by a natural agent arctigenin. Allergy 2015; 70:1622-32. [PMID: 26335809 DOI: 10.1111/all.12763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Asthma is a heterogenetic disorder characterized by chronic inflammation with variable airflow obstruction and airway hyper-responsiveness. As the most potent and popular bronchodilators, β2 adrenergic receptor (β2 AR) agonists bind to the β2 ARs that are coupled via a stimulatory G protein to adenylyl cyclase, thereby improving cAMP accumulation and resulting in airway smooth muscle relaxation. We previously demonstrated arctigenin had a synergistic function with the β2 AR agonist, but the target for this remained elusive. METHOD Chemical proteomics capturing was used to enrich and uncover the target of arctigenin in human bronchial smooth muscle cells, and reverse docking and molecular dynamic stimulation were performed to evaluate the binding of arctigenin and its target. In vitro enzyme activities and protein levels were demonstrated with special kits and Western blotting. Finally, guinea pig tracheal muscle segregation and ex vivo function were analysed. RESULTS Arctigenin bound to PDK1 with an ideal binding free energy -25.45 kcal/mol and inhibited PDK1 kinase activity without changing its protein level. Additionally, arctigenin reduced PKB/Akt-induced phosphorylation of PDE4D, which was first identified in this study. Attenuation of PDE4D resulted in cAMP accumulation in human bronchial smooth muscle. The inhibition of PDK1 showed a synergistic function with β2 AR agonists and relaxed the constriction of segregated guinea pig tracheal muscle. CONCLUSIONS The PDK1/Akt/PDE4D axis serves as a novel asthma target, which may benefit airflow obstruction.
Collapse
Affiliation(s)
- R. Fang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing China
- State Key Laboratory of Medicinal Chemical Biology; Department of Biochemistry; College of Life Sciences; Nankai University; Tianjin China
| | - Q. Cui
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - J. Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - X. Duan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - X. Ma
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - W. Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - B. Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Y. Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| | - Y. Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing China
| | - G. Bai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Tianjin Key Laboratory of Molecular Drug Research; Nankai University; Tianjin China
| |
Collapse
|
26
|
Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg Med Chem 2015; 23:6467-76. [DOI: 10.1016/j.bmc.2015.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/05/2015] [Accepted: 08/13/2015] [Indexed: 12/17/2022]
|
27
|
Tsai YF, Hwang TL. Neutrophil elastase inhibitors: a patent review and potential applications for inflammatory lung diseases (2010 - 2014). Expert Opin Ther Pat 2015; 25:1145-58. [PMID: 26118988 DOI: 10.1517/13543776.2015.1061998] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The proteolytic activity of neutrophil elastase (NE) not only destroys pathogens but also degrades host matrix tissues by generating a localized protease-antiprotease imbalance. In humans, NE is well known to be involved in various acute and chronic inflammatory diseases, such as chronic obstructive pulmonary disease, emphysema, asthma, acute lung injury, acute respiratory distress syndrome and cystic fibrosis. The regulation of NE activity is thought to represent a promising therapeutic approach, and NE is considered as an important target for the development of novel selective inhibitors to treat these diseases. AREAS COVERED This article summarizes and analyzes patents on NE inhibitors and their therapeutic potential based on a review of patent applications disclosed between 2010 and 2014. EXPERT OPINION According to this review of recent NE inhibitor patents, all of the disclosed inhibitors can be classified into peptide- and non-peptide-based groups. The non-peptide NE inhibitors include heterocyclics, uracil derivatives and deuterium oxide. Among the heterocyclic analogs, derivatives of pyrimidinones, tetrahydropyrrolopyrimidinediones, pyrazinones, benzoxazinones and hypersulfated disaccharides were introduced. The literature has increasingly implicated NE in the pathogenesis of various diseases, of which inflammatory destructive lung diseases remain a major concern. However, only a few agents have been validated for therapeutic use in clinical settings to date.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- a 1 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan.,b 2 Chang Gung Memorial Hospital, Department of Anesthesiology , Kweishan, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- a 1 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan.,c 3 Chang Gung University, Healthy Aging Research Center, Chinese Herbal Medicine Research Team , Taoyuan 33302, Taiwan.,d 4 Chang Gung University of Science and Technology, Department of Cosmetic Science and Research Center for Industry of Human Ecology , Taoyuan 33302, Taiwan.,e 5 Chang Gung University, Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine , Taoyuan 33302, Taiwan +88 6 3211 8506 ; +88 6 3211 8506 ;
| |
Collapse
|