1
|
Matesanz SE, Brigatti KW, Young M, Yum SW, Strauss KA. Preemptive dual therapy for children at risk for infantile-onset spinal muscular atrophy. Ann Clin Transl Neurol 2024; 11:1868-1878. [PMID: 38817128 PMCID: PMC11251472 DOI: 10.1002/acn3.52093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/13/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Compare efficacy of gene therapy alone (monotherapy) or in combination with an SMN2 augmentation agent (dual therapy) for treatment of children at risk for spinal muscular atrophy type 1. METHODS Eighteen newborns with biallelic SMN1 deletions and two SMN2 copies were treated preemptively with monotherapy (n = 11) or dual therapy (n = 7) and followed for a median of 3 years. Primary outcomes were independent sitting and walking. Biomarkers were serial muscle ultrasonography (efficacy) and sensory action potentials (safety). RESULTS Gene therapy was administered by 7-43 postnatal days; dual therapy with risdiplam (n = 6) or nusinersen (n = 1) was started by 15-39 days. Among 18 children enrolled, 17 sat, 15 walked, and 44% had motor delay (i.e., delay or failure to achieve prespecified milestones). Those on dual therapy sat but did not walk at an earlier age. 91% of muscle ultrasounds conducted within 60 postnatal days were normal but by 3-61 months, 94% showed echogenicity and/or fasciculation of at least one muscle group; these changes were indistinguishable between monotherapy and dual therapy cohorts. Five children with three SMN2 copies were treated with monotherapy in parallel: all sat and walked on time and had normal muscle sonograms at all time points. No child on dual therapy experienced treatment-associated adverse events. All 11 participants who completed sensory testing (including six on dual therapy) had intact sural sensory responses. INTERPRETATION Preemptive dual therapy is well tolerated and may provide modest benefit for children at risk for severe spinal muscular atrophy but does not prevent widespread degenerative changes.
Collapse
Affiliation(s)
- Susan E. Matesanz
- Division of Neurology, Children's Hospital of PhiladelphiaPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Millie Young
- Clinic for Special ChildrenGordonvillePennsylvaniaUSA
| | - Sabrina W. Yum
- Division of Neurology, Children's Hospital of PhiladelphiaPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kevin A. Strauss
- Clinic for Special ChildrenGordonvillePennsylvaniaUSA
- Horae Gene Therapy CenterUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
2
|
Peng J, Zou WW, Wang XL, Zhang ZG, Huo R, Yang L. Viral-mediated gene therapy in pediatric neurological disorders. World J Pediatr 2024; 20:533-555. [PMID: 36607547 DOI: 10.1007/s12519-022-00669-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Due to the broad application of next-generation sequencing, the molecular diagnosis of genetic disorders in pediatric neurology is no longer an unachievable goal. However, treatments for neurological genetic disorders in children remain primarily symptomatic. On the other hand, with the continuous evolution of therapeutic viral vectors, gene therapy is becoming a clinical reality. From this perspective, we wrote this review to illustrate the current state regarding viral-mediated gene therapy in childhood neurological disorders. DATA SOURCES We searched databases, including PubMed and Google Scholar, using the keywords "adenovirus vector," "lentivirus vector," and "AAV" for gene therapy, and "immunoreaction induced by gene therapy vectors," "administration routes of gene therapy vectors," and "gene therapy" with "NCL," "SMA," "DMD," "congenital myopathy," "MPS" "leukodystrophy," or "pediatric metabolic disorders". We also screened the database of ClinicalTrials.gov using the keywords "gene therapy for children" and then filtered the results with the ones aimed at neurological disorders. The time range of the search procedure was from the inception of the databases to the present. RESULTS We presented the characteristics of commonly used viral vectors for gene therapy for pediatric neurological disorders and summarized their merits and drawbacks, the administration routes of each vector, the research progress, and the clinical application status of viral-mediated gene therapy on pediatric neurological disorders. CONCLUSIONS Viral-mediated gene therapy is on the brink of broad clinical application. Viral-mediated gene therapy will dramatically change the treatment pattern of childhood neurological disorders, and many children with incurable diseases will meet the dawn of a cure. Nevertheless, the vectors must be optimized for better safety and efficacy.
Collapse
Affiliation(s)
- Jing Peng
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wei-Wei Zou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Lei Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhi-Guo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Department of Pediatrics, Clinical Research Center for Chidren Neurodevelopmental disablities of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
3
|
Kimizu T, Nozaki M, Okada Y, Sawada A, Morisaki M, Fujita H, Irie A, Matsuda K, Hasegawa Y, Nishi E, Okamoto N, Kawai M, Imai K, Suzuki Y, Wada K, Mitsuda N, Ida S. Multiplex Real-Time PCR-Based Newborn Screening for Severe Primary Immunodeficiency and Spinal Muscular Atrophy in Osaka, Japan: Our Results after 3 Years. Genes (Basel) 2024; 15:314. [PMID: 38540372 PMCID: PMC10970021 DOI: 10.3390/genes15030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
In newborn screening (NBS), it is important to consider the availability of multiplex assays or other tests that can be integrated into existing systems when attempting to implement NBS for new target diseases. Recent developments in innovative testing technology have made it possible to simultaneously screen for severe primary immunodeficiency (PID) and spinal muscular atrophy (SMA) using quantitative real-time polymerase chain reaction (qPCR) assays. We describe our experience of optional NBS for severe PID and SMA in Osaka, Japan. A multiplex TaqMan qPCR assay was used for the optional NBS program. The assay was able to quantify the levels of T-cell receptor excision circles and kappa-deleting recombination excision circles, which is useful for severe combined immunodeficiency and B-cell deficiency screening, and can simultaneously detect the homozygous deletion of SMN1 exon 7, which is useful for NBS for SMA. In total, 105,419 newborns were eligible for the optional NBS program between 1 August 2020 and 31 August 2023. A case each of X-linked agammaglobulinemia and SMA were diagnosed through the optional NBS and treated at early stages (before symptoms appeared). Our results show how multiplex PCR-based NBS can benefit large-scale NBS implementation projects for new target diseases.
Collapse
Affiliation(s)
- Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Masatoshi Nozaki
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
- Department of Perinatal and Pediatric Infectious Diseases, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan
| | - Yousuke Okada
- Department of Hematology/Oncology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (Y.O.); (A.S.)
| | - Akihisa Sawada
- Department of Hematology/Oncology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (Y.O.); (A.S.)
| | - Misaki Morisaki
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| | - Hiroshi Fujita
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| | - Akemi Irie
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| | - Keiko Matsuda
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (K.M.); (Y.H.); (E.N.); (N.O.)
| | - Masanobu Kawai
- Department of Pediatric Gastroenterology, Nutrition, and Endocrinology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama 359-0042, Japan;
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Kazuko Wada
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Nobuaki Mitsuda
- Department of Maternal Fetal Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan;
| | - Shinobu Ida
- Department of Laboratory Medicine, Osaka Women’s and Children’s Hospital, Izumi 594-1101, Japan; (M.M.); (H.F.); (A.I.); (S.I.)
| |
Collapse
|
4
|
Tao Y, Zhang Q, Wang H, Yang X, Mu H. Alternative splicing and related RNA binding proteins in human health and disease. Signal Transduct Target Ther 2024; 9:26. [PMID: 38302461 PMCID: PMC10835012 DOI: 10.1038/s41392-024-01734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.
Collapse
Affiliation(s)
- Yining Tao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Qi Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
| | - Haoyu Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China
- Shanghai Bone Tumor Institution, 200000, Shanghai, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200000, Shanghai, China.
- Shanghai Bone Tumor Institution, 200000, Shanghai, China.
| |
Collapse
|
5
|
Audic F. Gene therapy in spinal muscular atrophy. Arch Pediatr 2023; 30:8S12-8S17. [PMID: 38043977 DOI: 10.1016/s0929-693x(23)00222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Infantile SMA is a neuromuscular disease caused by the motor neuron degeneration, depending on the age of appearance of clinical signs and the evolution of the disease, three types of decreasing severity have been defined. SMA is caused by mutations or deletions of the SMN1 gene and disease. Various therapies aimed at increasing SMN protein levels have been developed. Gene therapy is part of the therapeutic arsenal now available for the treatment of SMA under certain conditions. It uses the scAAV9 vector carrying a functional copy of SMN1 to restore SMN protein expression at the cellular level. Because the adeno-associated virus genome is maintained as it is an episome, a single intravenous administration is sufficient to producing a long-lasting therapeutic effect. The effectiveness of gene replacement therapy in patients with SMA has been demonstrated in various studies. It is now clear that treatment as early as possible provides better clinical results. However, this treatment must be carried out in a suitable medical environment, with close monitoring initially due to potentially serious side effects. In France, this treatment has been available since 2019. A national committee of experts involved in the treatment of pediatric SMA patients has established that pediatric patients with SMA decide on the indications for disease-modifying therapies (DMT) in children. The French Spinal Muscular Atrophy Registry (SMA France Registry) was established in January 2020. The registry includes all patients with genetically confirmed SMN1-related SMA. All patients treated with GT are systematically included in the registry. As of July 21, 2023: 72 patients with SMA have been treated with GT in France since June 2019. The arrival of new treatments reveals new clinical phenotypes of SMA which constitute a new management challenge. Treatment as early as possible is also a very important factor for a favorable outcome and calls for presymptomatic screening. However, the arrival of these new treatments, extremely expensive raises other socio-economic questions. © 2023 Published by Elsevier Masson SAS on behalf of French Society of Pediatrics.
Collapse
Affiliation(s)
- Frédérique Audic
- Centre de Référence des Maladies Neuromusculaires de l'enfant PACARARE, Service de Neuropédiatrie, Hôpital Timone Enfants, 264 rue Saint Pierre, 14 13385 Marseille Cedex 5, France.
| |
Collapse
|
6
|
Kimizu T, Ida S, Oki K, Shima M, Nishimoto S, Nakajima K, Ikeda T, Mogami Y, Yanagihara K, Matsuda K, Nishi E, Hasegawa Y, Nozaki M, Fujita H, Irie A, Katayama T, Okamoto N, Imai K, Nishio H, Suzuki Y. Newborn screening for spinal muscular atrophy in Osaka -challenges in a Japanese pilot study. Brain Dev 2023:S0387-7604(23)00058-X. [PMID: 36973114 DOI: 10.1016/j.braindev.2023.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE This study aimed to establish an optional newborn screening program for spinal muscular atrophy (SMA-NBS) in Osaka. METHODS A multiplex TaqMan real-time quantitative polymerase chain reaction assay was used to screen for SMA. Dried blood spot samples obtained for the optional NBS program for severe combined immunodeficiency, which covers about 50% of the newborns in Osaka, were used. To obtain informed consent, participating obstetricians provided information about the optional NBS program to all parents by giving leaflets to prospective parents and uploading the information onto the internet. We prepared a workflow so that babies that were diagnosed with SMA through the NBS could be treated immediately. RESULTS From 1 February 2021 to 30 September 2021, 22,951 newborns were screened for SMA. All of them tested negative for survival motor neuron (SMN)1 deletion, and there were no false-positives. Based on these results, an SMA-NBS program was established in Osaka and included in the optional NBS programs run in Osaka from 1 October 2021. A positive baby was found by screening, diagnosed with SMA (the baby possessed 3 copies of the SMN2 gene and was pre-symptomatic), and treated immediately. CONCLUSION The workflow of the Osaka SMA-NBS program was confirmed to be useful for babies with SMA.
Collapse
Affiliation(s)
- Tomokazu Kimizu
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan.
| | - Shinobu Ida
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keisuke Oki
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Morimasa Shima
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Shizuka Nishimoto
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Ken Nakajima
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tae Ikeda
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yukiko Mogami
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keiko Yanagihara
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Keiko Matsuda
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yuiko Hasegawa
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Masatoshi Nozaki
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Hiroshi Fujita
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Akemi Irie
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Toru Katayama
- Department of Laboratory Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Kohsuke Imai
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo, Japan; Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan
| | - Yasuhiro Suzuki
- Department of Pediatric Neurology, Osaka Women's and Children's Hospital, Izumi, Japan
| |
Collapse
|
7
|
Hell AK, Grages A, Braunschweig L, Lueders KA, Austein F, Lorenz HM, Lippross S, Tsaknakis K. Children with Spinal Muscular Atrophy Have Reduced Vertebral Body Height and Depth and Pedicle Size in Comparison to Age-Matched Healthy Controls. World Neurosurg 2022; 165:e352-e356. [PMID: 35717014 DOI: 10.1016/j.wneu.2022.06.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Most children with spinal muscular atrophy (SMA) develop spinal deformity, which may require surgical intervention. In addition to poor bone stock, vertebral body shape may hinder the placement of spinal implants resulting in complications and poor outcome. The aim of this study was to analyze whether vertebral body morphology of children and adolescents with SMA is altered in comparison to healthy age-matched controls. METHODS In this prospective cohort study, 17 children with SMA (mean age 8.7 ±1.0 years) and 13 adolescents with SMA (mean age 13.6 ±1.4 years), all with some degree of neuromuscular scoliosis, were analyzed by standardized radiographic measurements to evaluate vertebral body height and depth. Results were compared with age-matched healthy controls (n = 10 children; mean age 9.1 ± 1.6 years; n = 20 adolescents, mean age 13.1 ± 0.5 years). Computed tomography scans of 27 adolescents with SMA (13.5 ±1.2 years) and 25 healthy age-matched controls (13.8 ±2.0 years) were analyzed to define pedicle diameters. RESULTS All children and adolescents with SMA had decreased vertebral height and depth in comparison to age-matched healthy controls. In adolescents, reduced depth was more pronounced than height in the thoracic spine. Pedicle size was significantly reduced in the lower thoracic and lumbar area. CONCLUSIONS Reduced vertebral body height and depth and pedicle size in children and adolescents with SMA may influence surgical treatment of spinal deformity. Surgeons should be aware of anatomical differences and choose implant devices accordingly.
Collapse
Affiliation(s)
- Anna K Hell
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany.
| | - Antonia Grages
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Lena Braunschweig
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Katja A Lueders
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Friederike Austein
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heiko M Lorenz
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Sebastian Lippross
- Department of Orthopaedic and Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Konstantinos Tsaknakis
- Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
8
|
An Optimized Comparative Proteomic Approach as a Tool in Neurodegenerative Disease Research. Cells 2022; 11:cells11172653. [PMID: 36078061 PMCID: PMC9454658 DOI: 10.3390/cells11172653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Recent advances in proteomic technologies now allow unparalleled assessment of the molecular composition of a wide range of sample types. However, the application of such technologies and techniques should not be undertaken lightly. Here, we describe why the design of a proteomics experiment itself is only the first step in yielding high-quality, translatable results. Indeed, the effectiveness and/or impact of the majority of contemporary proteomics screens are hindered not by commonly considered technical limitations such as low proteome coverage but rather by insufficient analyses. Proteomic experimentation requires a careful methodological selection to account for variables from sample collection, through to database searches for peptide identification to standardised post-mass spectrometry options directed analysis workflow, which should be adjusted for each study, from determining when and how to filter proteomic data to choosing holistic versus trend-wise analyses for biologically relevant patterns. Finally, we highlight and discuss the difficulties inherent in the modelling and study of the majority of progressive neurodegenerative conditions. We provide evidence (in the context of neurodegenerative research) for the benefit of undertaking a comparative approach through the application of the above considerations in the alignment of publicly available pre-existing data sets to identify potential novel regulators of neuronal stability.
Collapse
|
9
|
Migliorati JM, Liu S, Liu A, Gogate A, Nair S, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Absorption, Distribution, Metabolism, and Excretion of US Food and Drug Administration-Approved Antisense Oligonucleotide Drugs. Drug Metab Dispos 2022; 50:888-897. [PMID: 35221287 PMCID: PMC11022858 DOI: 10.1124/dmd.121.000417] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2022] [Indexed: 04/19/2024] Open
Abstract
Absorption, distribution, metabolism, and excretion (ADME) are the key biologic processes for determination of a drug's pharmacokinetic parameters, which have direct impacts on efficacy and adverse drug reactions (ADRs). The chemical structures, dosage forms, and sites and routes of administration are the principal determinants of ADME profiles and consequent impacts on their efficacy and ADRs. Newly developed large molecule biologic antisense oligonucleotide (ASO) drugs have completely unique ADME that is not fully defined. ASO-based drugs are single-stranded synthetic antisense nucleic acids with diverse modes of drug actions from induction of mRNA degradation, exon skipping and restoration, and interactions with proteins. ASO drugs have a great potential to treat certain human diseases that have remained untreatable with small molecule-based drugs. The ADME of ASO drugs contributes to their unique set of ADRs and toxicity. In this review, to better understand their ADME, the 10 US Food and Drug Administration (FDA)-approved ASO drugs were selected: fomivirsen, pegaptanib, mipomersen, nusinersen, inotersen, defibrotide, eteplirsen, golodirsen, viltolarsen, and casimersen. A meta-analysis was conducted on their formulation, dosage, sites of administration, local and systematic distribution, metabolism, degradation, and excretion. Membrane permeabilization through endocytosis and nucleolytic degradation by endonucleases and exonucleases are major ADME features of the ASO drugs that differ from small-molecule drugs. The information summarized here provides comprehensive ADME characteristics of FDA-approved ASO drugs, leading to a better understanding of their therapeutic efficacy and their potential ADRs and toxicity. Numerous knowledge gaps, particularly on cellular uptake and subcellular trafficking and distribution, are identified, and future perspectives and directions are discussed. SIGNIFICANCE STATEMENT: Through a systematic analysis of the existing information of absorption, distribution, metabolism, and excretion (ADME) parameters for 10 US Food and Drug Administration (FDA)-approved antisense oligonucleotide (ASO) drugs, this review provides an overall view of the unique ADME characteristics of ASO drugs, which are distinct from small chemical drug ADME. This knowledge is useful for discovery and development of new ASO drugs as well as clinical use of current FDA-approved ASO drugs.
Collapse
Affiliation(s)
- Julia M Migliorati
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Sunna Liu
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Anna Liu
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Anagha Gogate
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Sreenidhi Nair
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy (J.M.M., S.L., A.L., A.G., R.B., T.P.R., J.E.M., X.Z.) and Department of Molecular and Cell Biology (S.N.), University of Connecticut, Storrs, Connecticut
| |
Collapse
|
10
|
Ferguson MW, Kennedy CJ, Palpagama TH, Waldvogel HJ, Faull RLM, Kwakowsky A. Current and Possible Future Therapeutic Options for Huntington's Disease. J Cent Nerv Syst Dis 2022; 14:11795735221092517. [PMID: 35615642 PMCID: PMC9125092 DOI: 10.1177/11795735221092517] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease that is characterized by an excessive number of CAG trinucleotide repeats within the huntingtin gene (HTT). HD patients can present with a variety of symptoms including chorea, behavioural and psychiatric abnormalities and cognitive decline. Each patient has a unique combination of symptoms, and although these can be managed using a range of medications and non-drug treatments there is currently no cure for the disease. Current therapies prescribed for HD can be categorized by the symptom they treat. These categories include chorea medication, antipsychotic medication, antidepressants, mood stabilizing medication as well as non-drug therapies. Fortunately, there are also many new HD therapeutics currently undergoing clinical trials that target the disease at its origin; lowering the levels of mutant huntingtin protein (mHTT). Currently, much attention is being directed to antisense oligonucleotide (ASO) therapies, which bind to pre-RNA or mRNA and can alter protein expression via RNA degradation, blocking translation or splice modulation. Other potential therapies in clinical development include RNA interference (RNAi) therapies, RNA targeting small molecule therapies, stem cell therapies, antibody therapies, non-RNA targeting small molecule therapies and neuroinflammation targeted therapies. Potential therapies in pre-clinical development include Zinc-Finger Protein (ZFP) therapies, transcription activator-like effector nuclease (TALEN) therapies and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) therapies. This comprehensive review aims to discuss the efficacy of current HD treatments and explore the clinical trial progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Mackenzie W. Ferguson
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Connor J. Kennedy
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Thulani H. Palpagama
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
11
|
Hu L, Mao S, Lin L, Bai G, Liu B, Mao J. Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis 2022; 170:105749. [PMID: 35568100 DOI: 10.1016/j.nbd.2022.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/27/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
Abstract
Increasing genetic and biochemical evidence has broadened our view of the pathomechanisms that lead to Spinal muscular atrophy (SMA) and Amyotrophic lateral sclerosis (ALS), two fatal neurodegenerative diseases with similar symptoms and causes. Stress granules are dynamic cytosolic storage hubs for mRNAs in response to stress exposures, that are evolutionarily conserved cytoplasmic RNA granules in somatic cells. A lot of previous studies have shown that the impaired stress granules are crucial events in SMA/ALS pathogenesis. In this review, we described the key stress granules related RNA binding proteins (SMN, TDP-43, and FUS) involved in SMA/ALS, summarized the reported mutations in these RNA binding proteins involved in SMA/ALS pathogenesis, and discussed the mechanisms through which stress granules dynamics participate in the diseases. Meanwhile, we described the applications and limitation of current therapies targeting SMA/ALS. We futher proposed the promising targets on stress granules in the future therapeutic interventions of SMA/ALS.
Collapse
Affiliation(s)
- LiDan Hu
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China.
| | - Shanshan Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Li Lin
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Guannan Bai
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Bingjie Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianhua Mao
- the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
12
|
Venkataramany AS, Schieffer KM, Lee K, Cottrell CE, Wang PY, Mardis ER, Cripe TP, Chandler DS. Alternative RNA Splicing Defects in Pediatric Cancers: New Insights in Tumorigenesis and Potential Therapeutic Vulnerabilities. Ann Oncol 2022; 33:578-592. [PMID: 35339647 DOI: 10.1016/j.annonc.2022.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Compared to adult cancers, pediatric cancers are uniquely characterized by a genomically stable landscape and lower tumor mutational burden. However, alternative splicing, a global cellular process that produces different mRNA/protein isoforms from a single mRNA transcript, has been increasingly implicated in the development of pediatric cancers. DESIGN We review the current literature on the role of alternative splicing in adult cancer, cancer predisposition syndromes, and pediatric cancers. We also describe multiple splice variants identified in adult cancers and confirmed through comprehensive genomic profiling in our institutional cohort of rare, refractory and relapsed pediatric and adolescent young adult cancer patients. Finally, we summarize the contributions of alternative splicing events to neoantigens and chemoresistance and prospects for splicing-based therapies. RESULTS Published dysregulated splicing events can be categorized as exon inclusion, exon exclusion, splicing factor upregulation, or splice site alterations. We observe these phenomena in cancer predisposition syndromes (Lynch syndrome, Li-Fraumeni syndrome, CHEK2) and pediatric leukemia (B-ALL), sarcomas (Ewing sarcoma, rhabdomyosarcoma, osteosarcoma), retinoblastoma, Wilms tumor, and neuroblastoma. Within our institutional cohort, we demonstrate splice variants in key regulatory genes (CHEK2, TP53, PIK3R1, MDM2, KDM6A, NF1) that resulted in exon exclusion or splice site alterations, which were predicted to impact functional protein expression and promote tumorigenesis. Differentially spliced isoforms and splicing proteins also impact neoantigen creation and treatment resistance, such as imatinib or glucocorticoid regimens. Additionally, splice-altering strategies with the potential to change the therapeutic landscape of pediatric cancers include antisense oligonucleotides, adeno-associated virus gene transfers, and small molecule inhibitors. CONCLUSIONS Alternative splicing plays a critical role in the formation and growth of pediatric cancers, and our institutional cohort confirms and highlights the broad spectrum of affected genes in a variety of cancers. Further studies that elucidate the mechanisms of disease-inducing splicing events will contribute toward the development of novel therapeutics.
Collapse
Affiliation(s)
- A S Venkataramany
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, United States; Medical Scientist Training Program, The Ohio State University, Columbus, Ohio, United States
| | - K M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States
| | - K Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - C E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - P Y Wang
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - E R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - T P Cripe
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, United States; Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States; Division of Hematology, Oncology and Blood and Marrow Transplant, Department of Pediatrics, The Ohio State University, Columbus, Ohio, United States
| | - D S Chandler
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States; Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States.
| |
Collapse
|
13
|
Dominguez CE, Cunningham D, Venkataramany AS, Chandler DS. Heat increases full-length SMN splicing: promise for splice-augmenting therapies for SMA. Hum Genet 2022; 141:239-256. [PMID: 35088120 DOI: 10.1007/s00439-021-02408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Spinal muscular atrophy (SMA) is a debilitating neurodegenerative pediatric disease characterized by low levels of the survival motor protein (SMN). Humans have two SMN genes that produce identical SMN proteins, but they differ at a key nucleotide in exon 7 that induces differential mRNA splicing. SMN1 primarily produces full-length SMN protein, but due to the spliceosome's inability to efficiently recognize exon 7, SMN2 transcripts are often truncated. SMA occurs primarily through mutations or deletions in the SMN1 gene; therefore, current therapies use antisense oligonucleotides (ASOs) to target exon 7 inclusion in SMN2 mRNA and promote full-length SMN protein production. Here, we explore additional methods that can target SMN splicing and therapeutically increase full-length SMN protein. We demonstrate that in vitro heat treatment of cells increases exon 7 inclusion and relative abundance of full-length SMN2 mRNA and protein, a response that is modulated through the upregulation of the positive splicing factor TRA2 beta. We also observe that HSP90, but not HSP40 or HSP70, in the heat shock response is essential for SMN2 exon 7 splicing under hyperthermic conditions. Finally, we show that pulsatile heat treatments for one hour in vitro and in vivo are effective in increasing full-length SMN2 levels. These findings suggest that timed interval treatments could be a therapeutic alternative for SMA patients who do not respond to current ASO-based therapies or require a unique combination regimen.
Collapse
Affiliation(s)
- Catherine E Dominguez
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - David Cunningham
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
| | - Akila S Venkataramany
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA.,Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.,Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Dawn S Chandler
- Molecular, Cellular and Developmental Biology Graduate Program and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA. .,Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA. .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
14
|
Edinoff AN, Nguyen LH, Odisho AS, Maxey BS, Pruitt JW, Girma B, Cornett EM, Kaye AM, Kaye AD. The Antisense Oligonucleotide Nusinersen for Treatment of Spinal Muscular Atrophy. Orthop Rev (Pavia) 2021; 13:24934. [PMID: 34745470 DOI: 10.52965/001c.24934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/25/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, autosomal recessive neuromuscular degenerative disease characterized by loss of spinal cord motor neurons leading to progressive muscle wasting. The most common pathology results from a homozygous disruption in the survival motor neuron 1 (SMN1) gene on chromosome 5q13 via deletion, conversion, or mutation. SMN2 is a near duplicate of SMN1 that can produce full-length SMN mRNA transcripts, but its overall production capability of these mRNA transcripts is lower than that seen in SMN1. This leads to lower levels of functional SMN protein within motor neurons. The FDA approved nusinersen in December 2016 to treat SMA associated with SMN1 gene mutation. It is administered directly to the central nervous system by intrathecal injection. An antisense oligonucleotide (ASO) drug, nusinersen, provides an upcoming and promising treatment option for SMA and represents a novel pharmacological approach with a mechanism of action relevant for other neurodegenerative disorders. Nusinersen begins with four initial loading doses that are followed by three maintenance doses per year. Three major studies (CHERISH, ENDEAR, and NURTURE) have shown to improve motor function in early and late-onset individuals and reduce the chances of ventilator requirements in pre-symptomatic infants. Studies investigating the timing of drug delivery in mouse models of SMA report the best outcomes when drugs are delivered early before any significant motor function is lost. Nusinersen is a novel therapeutic approach with consistent results in all three studies and is proof of the novel concept for treating SMA and other neurodegenerative disorders in the future.
Collapse
Affiliation(s)
| | - Long H Nguyen
- Louisiana State University Health Science Center Shreveport
| | - Amira S Odisho
- Louisiana State University Health Science Center Shreveport
| | | | - John W Pruitt
- Louisiana State University Health Science Center Shreveport
| | - Brook Girma
- Louisiana State University Health Science Center Shreveport
| | | | - Adam M Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | - Alan D Kaye
- Louisiana State University Health Science Center Shreveport
| |
Collapse
|
15
|
Abstract
Autosomal-recessive spinal muscular atrophy (SMA) is characterized by the loss of specific motor neurons of the spinal cord and skeletal muscle atrophy. SMA is caused by mutations or deletions of the survival motor neuron 1 (SMN1) gene, and disease severity correlates with the expression levels of the nearly identical copy gene, SMN2. Both genes ubiquitously express SMN protein, but SMN2 generates only low levels of protein that do not fully compensate for the loss-of-function of SMN1. SMN protein forms a multiprotein complex essential for the cellular assembly of ribonucleoprotein particles involved in diverse aspects of RNA metabolism. Other studies using animal models revealed a spatio-temporal requirement of SMN that is high during the development of the neuromuscular system and later, in the general maintenance of cellular and tissues homeostasis. These observations define a period for maximum therapeutic efficiency of SMN restoration, and suggest that cells outside the central nervous system may also participate in the pathogenesis of SMA. Finally, recent innovative therapies have been shown to mitigate SMN deficiency and have been approved to treat SMA patients. We briefly review major findings from the past twenty-five years of SMA research. © 2020 French Society of Pediatrics. Published by Elsevier Masson SAS. All rights reserved.
Collapse
Affiliation(s)
- S Lefebvre
- T3S INSERM UMR 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, UFR des Sciences Fondamentales et Biomédicales, Campus Saint-Germain-des-prés, Université de Paris, Paris, France.
| | - C Sarret
- Centre de compétence maladies rares des pathologies neuromusculaires, service de génétique médicale, Hôpital Estaing, CHU Clermont-Ferrand, France.
| |
Collapse
|
16
|
Chong LC, Gandhi G, Lee JM, Yeo WWY, Choi SB. Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review. Int J Mol Sci 2021; 22:8962. [PMID: 34445667 PMCID: PMC8396480 DOI: 10.3390/ijms22168962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
Collapse
Affiliation(s)
- Li Chuin Chong
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Gayatri Gandhi
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Jian Ming Lee
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| | - Wendy Wai Yeng Yeo
- Perdana University Graduate School of Medicine, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (G.G.); (W.W.Y.Y.)
| | - Sy-Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Suite 9.2, 9th Floor, Wisma Chase Perdana, Changkat Semantan, Kuala Lumpur 50490, Malaysia; (L.C.C.); (J.M.L.)
| |
Collapse
|
17
|
Hell AK, Braunschweig L, Tsaknakis K, von Deimling U, Lüders KA, Hecker M, Lorenz HM. Children With Spinal Muscular Atrophy With Prior Growth-Friendly Spinal Implants Have Better Results After Definite Spinal Fusion in Comparison to Untreated Patients. Neurosurgery 2021; 87:910-917. [PMID: 32171009 DOI: 10.1093/neuros/nyaa053] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Almost all children with spinal muscular atrophy (SMA) develop a scoliosis during childhood and adolescence. In the last decades, growth-friendly spinal implants have been established as an interim solution for these patients until definite spinal fusion can be performed. The effect of those implants on the final outcome has yet to be described. OBJECTIVE To assess the effect of prior growth-friendly spinal surgical treatment on the outcome after spinal fusion in SMA children in comparison to untreated SMA patients through the prospective study. METHODS A total of 28 SMA patients with (n = 14) and without (n = 14) prior surgical treatment with growth-friendly implants were included. Average surgical treatment prior to definite spinal fusion was 4.9 yr. Scoliotic curve angle, pelvic obliquity, spinal length, kyphosis, and lordosis were evaluated for children with prior treatment and before and after dorsal spondylodesis for all children. RESULTS The curve angle before definite spinal fusion averaged at 104° for SMA patients without prior treatment and 71° for patients with prior treatment. Spondylodesis reduced the scoliotic curve to 50° and 33°, respectively, which equals a correction of 52% vs 54%. Pelvic obliquity could be improved by spinal fusion in all patients with better results in the pretreated group. Results for spinal length, kyphosis, and lordosis were similar in both groups. CONCLUSION These data show the positive effect of prior growth-friendly surgical treatment on radiographic results of spinal fusion in children with SMA. Both scoliotic curve angles and pelvic obliquity showed significantly better values when patients had growth-friendly implants before definite spinal fusion.
Collapse
Affiliation(s)
- Anna K Hell
- Investigations performed at Pediatric Orthopaedics; Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Lena Braunschweig
- Investigations performed at Pediatric Orthopaedics; Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Konstantinos Tsaknakis
- Investigations performed at Pediatric Orthopaedics; Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Urs von Deimling
- Department of Pediatric Orthopaedics; Asklepios, Sankt Augustin, Germany
| | - Katja A Lüders
- Investigations performed at Pediatric Orthopaedics; Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Marina Hecker
- Investigations performed at Pediatric Orthopaedics; Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Heiko M Lorenz
- Investigations performed at Pediatric Orthopaedics; Department of Trauma, Orthopaedic and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
18
|
Lippross S, Grages A, Lueders KA, Braunschweig L, Austein F, Tsaknakis K, Lorenz HM, Hell AK. Vertebral body changes after continuous spinal distraction in scoliotic children. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:1928-1934. [PMID: 33619647 DOI: 10.1007/s00586-021-06775-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 02/13/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE Growth-friendly spinal implants (GFSI) were established for scoliotic children as an interim solution until definite spinal fusion could be performed during puberty. While deformity control was clearly proven, the effects on vertebral shape and morphology are still unclear. Our prospective study assesses the effect of GFSI with continuous distraction on vertebral body shape and volume in SMA children in comparison with previously untreated age-matched SMA patients. METHODS Cohort I (n = 19, age 13.2 years) were SMA patients without prior surgical scoliosis treatment. Cohort II (n = 24, age 12.4 years) were children, who had continuous spinal distraction with GFSI for 4.5 years. Radiographic measurements and computed tomography (CT) 3D volume rendering were performed before definite spinal fusion. For cohort II, additional radiographs were analyzed before the first surgical implantation of GFSI, after surgery and every year thereafter. RESULTS Our analysis revealed decreased depth and volume in scoliotic patients with prior GFSI compared to scoliotic patients without prior implants. This difference was significant for the lower thoracic and entire lumbar spine. Vertebral body height and pedicle size were unchanged between the two cohorts. CONCLUSION CT data showed volume reduction in the vertebral body in scoliotic children after GFSI treatment. This effect was more severe in the lumbar and lower thoracic area. While vertebral height was identical in both groups, vertebral depth was reduced in the GFSI-treated group. Reduced vertebral depth and altered vertebral morphology should be considered before instrumenting the spine in previously treated scoliotic SMA children. LEVEL OF EVIDENCE III Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.
Collapse
Affiliation(s)
- Sebastian Lippross
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.,Department of Orthopaedic and Trauma Surgery, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Antonia Grages
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Katja A Lueders
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Lena Braunschweig
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Friederike Austein
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Campus Kiel, Germany
| | - Konstantinos Tsaknakis
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Heiko M Lorenz
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Anna K Hell
- Department of Trauma, Orthopaedic and Plastic Surgery, Investigations Performed At Pediatric Orthopaedics, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| |
Collapse
|
19
|
Chiu W, Hsun YH, Chang KJ, Yarmishyn AA, Hsiao YJ, Chien Y, Chien CS, Ma C, Yang YP, Tsai PH, Chiou SH, Lin TY, Cheng HM. Current Genetic Survey and Potential Gene-Targeting Therapeutics for Neuromuscular Diseases. Int J Mol Sci 2020; 21:E9589. [PMID: 33339321 PMCID: PMC7767109 DOI: 10.3390/ijms21249589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Neuromuscular diseases (NMDs) belong to a class of functional impairments that cause dysfunctions of the motor neuron-muscle functional axis components. Inherited monogenic neuromuscular disorders encompass both muscular dystrophies and motor neuron diseases. Understanding of their causative genetic defects and pathological genetic mechanisms has led to the unprecedented clinical translation of genetic therapies. Challenged by a broad range of gene defect types, researchers have developed different approaches to tackle mutations by hijacking the cellular gene expression machinery to minimize the mutational damage and produce the functional target proteins. Such manipulations may be directed to any point of the gene expression axis, such as classical gene augmentation, modulating premature termination codon ribosomal bypass, splicing modification of pre-mRNA, etc. With the soar of the CRISPR-based gene editing systems, researchers now gravitate toward genome surgery in tackling NMDs by directly correcting the mutational defects at the genome level and expanding the scope of targetable NMDs. In this article, we will review the current development of gene therapy and focus on NMDs that are available in published reports, including Duchenne Muscular Dystrophy (DMD), Becker muscular dystrophy (BMD), X-linked myotubular myopathy (XLMTM), Spinal Muscular Atrophy (SMA), and Limb-girdle muscular dystrophy Type 2C (LGMD2C).
Collapse
Affiliation(s)
- Wei Chiu
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
| | - Ya-Hsin Hsun
- Department of Psychology, University of Toronto, Toronto, ON M1C 1A4, Canada;
- Department of Biological Science, University of Toronto, Toronto, ON M1C 1A4, Canada
| | - Kao-Jung Chang
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Aliaksandr A. Yarmishyn
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
| | - Yu-Jer Hsiao
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
| | - Yueh Chien
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
| | - Chian-Shiu Chien
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chun Ma
- Department of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Yi-Ping Yang
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ping-Hsing Tsai
- Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan; (A.A.Y.); (P.-H.T.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Shih-Hwa Chiou
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 11221, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao-Tung University, Hsinchu 1001, Taiwan
| | - Ting-Yi Lin
- Department of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Min Cheng
- Department of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (W.C.); (K.-J.C.); (Y.-J.H.); (Y.C.); (Y.-P.Y.); (S.-H.C.)
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112201, Taiwan;
- Center for Evidence-based Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
20
|
Müller-Felber W, Vill K, Schwartz O, Gläser D, Nennstiel U, Wirth B, Burggraf S, Röschinger W, Becker M, Durner J, Eggermann K, Müller C, Hannibal I, Olgemöller B, Schara U, Blaschek A, Kölbel H. Infants Diagnosed with Spinal Muscular Atrophy and 4 SMN2 Copies through Newborn Screening - Opportunity or Burden? J Neuromuscul Dis 2020; 7:109-117. [PMID: 32144995 PMCID: PMC7175938 DOI: 10.3233/jnd-200475] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although the value of newborn screening (NBS) for early detection and treatment opportunity in SMA patients is generally accepted, there is still an ongoing discussion about the best strategy in children with 4 and more copies of the SMN2 gene. This gene is known to be the most important but not the only disease modifier. In our SMA-NBS pilot project in Germany comprising 278,970 infants screened between January 2018 and November 2019 were 38 positive cases with a homozygous SMN1 deletion. 40% of them had 4 or more SMN2 copies. The incidence for homozygous SMN1 deletion was 1 : 7350, which is within the known range of SMA incidence in Germany. Of the 15 SMA children with 4 SMN2 copies, one child developed physical signs of SMA by the age of 8 months. Reanalysis of the SMN2 copy number by a different test method revealed 3 copies. Two children had affected siblings with SMA Type III, who were diagnosed only after detection of the index patient in the NBS. One had a positive family history with an affected aunt (onset of disease at the age of 3 years). Three families were lost to medical follow up; two because of socioeconomic reasons and one to avoid the psychological stress associated with the appointments. Decisions on how to handle patients with 4 SMN2 copies are discussed in the light of the experience gathered from our NBS pilot SMA program.
Collapse
Affiliation(s)
- Wolfgang Müller-Felber
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Katharina Vill
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Oliver Schwartz
- Department of Pediatric Neurology, Muenster University Hospital, Münster, Germany
| | - Dieter Gläser
- Genetikum ®, Center for Human Genetics, Neu-Ulm, Germany
| | - Uta Nennstiel
- Screening Center of the Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Genetics Cologne and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | | | | | | | - Jürgen Durner
- Labor Becker und Kollegen, Munich, Germany.,Department of Operative/Restorative Dentistry, Periodontology and Pedodontics, Ludwig-Maximilians-Universität München, Goethestr. 70, 80336 Munich, Germany
| | - Katja Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Christine Müller
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Iris Hannibal
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | | | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Astrid Blaschek
- Dr. v. Hauner Children's Hospital, Department of Pediatric Neurology and Developmental Medicine, LMU - University of Munich, Munich, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| |
Collapse
|
21
|
Menduti G, Rasà DM, Stanga S, Boido M. Drug Screening and Drug Repositioning as Promising Therapeutic Approaches for Spinal Muscular Atrophy Treatment. Front Pharmacol 2020; 11:592234. [PMID: 33281605 PMCID: PMC7689316 DOI: 10.3389/fphar.2020.592234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is the most common genetic disease affecting infants and young adults. Due to mutation/deletion of the survival motor neuron (SMN) gene, SMA is characterized by the SMN protein lack, resulting in motor neuron impairment, skeletal muscle atrophy and premature death. Even if the genetic causes of SMA are well known, many aspects of its pathogenesis remain unclear and only three drugs have been recently approved by the Food and Drug Administration (Nusinersen-Spinraza; Onasemnogene abeparvovec or AVXS-101-Zolgensma; Risdiplam-Evrysdi): although assuring remarkable results, the therapies show some important limits including high costs, still unknown long-term effects, side effects and disregarding of SMN-independent targets. Therefore, the research of new therapeutic strategies is still a hot topic in the SMA field and many efforts are spent in drug discovery. In this review, we describe two promising strategies to select effective molecules: drug screening (DS) and drug repositioning (DR). By using compounds libraries of chemical/natural compounds and/or Food and Drug Administration-approved substances, DS aims at identifying new potentially effective compounds, whereas DR at testing drugs originally designed for the treatment of other pathologies. The drastic reduction in risks, costs and time expenditure assured by these strategies make them particularly interesting, especially for those diseases for which the canonical drug discovery process would be long and expensive. Interestingly, among the identified molecules by DS/DR in the context of SMA, besides the modulators of SMN2 transcription, we highlighted a convergence of some targeted molecular cascades contributing to SMA pathology, including cell death related-pathways, mitochondria and cytoskeleton dynamics, neurotransmitter and hormone modulation.
Collapse
Affiliation(s)
| | | | | | - Marina Boido
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| |
Collapse
|
22
|
Jones CC, Cook SF, Jarecki J, Belter L, Reyna SP, Staropoli J, Farwell W, Hobby K. Spinal Muscular Atrophy (SMA) Subtype Concordance in Siblings: Findings From the Cure SMA Cohort. J Neuromuscul Dis 2020; 7:33-40. [PMID: 31707372 PMCID: PMC7029365 DOI: 10.3233/jnd-190399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by homozygous survival of motor neuron 1 (SMN1) gene disruption. Despite a genetic etiology, little is known about subtype concordance among siblings. Objective: To investigate subtype concordance among siblings with SMA. Methods: Cure SMA maintains a database of newly diagnosed patients with SMA, which was utilized for this research. Results: Among 303 sibships identified between 1996 and 2016, 84.8% were subtype concordant. Of concordant sibships, subtype distribution was as follows: Type I, 54.5%; Type II, 31.9%; Type III, 13.2%; Type IV, 0.4%. Subtype and concordance/discordance association was significant (Fisher’s exact test; p < 0.0001). Among discordant sibships (chi-square test, p < 0.0001), Types II/III (52.2%) and Types I/II (28.3%) were the most common pairs. No association was found between sibling sex and concordance. Our findings show that most siblings with SMA shared the same subtype concordance (most commonly Type I). Conclusions: These data are valuable for understanding familial occurrence of SMA subtypes, enabling better individual treatment and management planning in view of new treatment options and newborn screening initiatives.
Collapse
|
23
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
24
|
Uchitel J, Kantor B, Smith EC, Mikati MA. Viral-Mediated Gene Replacement Therapy in the Developing Central Nervous System: Current Status and Future Directions. Pediatr Neurol 2020; 110:5-19. [PMID: 32684374 DOI: 10.1016/j.pediatrneurol.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
The past few years have witnessed rapid developments in viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders. Here, we provide pediatric neurologists with an up-to-date, comprehensive overview of these developments and note emerging trends for future research. This review presents the different types of viral vectors used in viral-mediated gene replacement therapy; the fundamental properties of viral-mediated gene replacement therapy; the challenges associated with the use of this therapy in the central nervous system; the pathway for therapy development, from translational basic science studies to clinical trials; and an overview of the therapies that have reached clinical trials in patients. Current viral platforms under investigation include adenovirus vectors, adeno-associated viral vectors, lentiviral/retroviral vectors, and herpes simplex virus type 1 vectors. This review also presents an in-depth analysis of numerous studies that investigated these viral platforms in cultured cells and in transgenic animal models for pediatric neurogenetic disorders. Viral vectors have been applied to clinical trials for many different pediatric neurogenetic disorders, including Canavan disease, metachromatic leukodystrophy, neuronal ceroid lipofuscinosis, mucopolysaccharidosis III, spinal muscular atrophy, and aromatic l-amino acid decarboxylase deficiency. Of these diseases, only spinal muscular atrophy has a viral-mediated gene replacement therapy approved for marketing. Despite significant progress in therapy development, many challenges remain. Surmounting these challenges is critical to advancing the current status of viral-mediated gene replacement therapy for pediatric central nervous system neurogenetic disorders.
Collapse
Affiliation(s)
- Julie Uchitel
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Boris Kantor
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Edward C Smith
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina
| | - Mohamad A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University Medical Center, Durham, North Carolina; Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
25
|
Singh NN, Ottesen EW, Singh RN. A survey of transcripts generated by spinal muscular atrophy genes. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2020; 1863:194562. [PMID: 32387331 PMCID: PMC7302838 DOI: 10.1016/j.bbagrm.2020.194562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Human Survival Motor Neuron (SMN) genes code for SMN, an essential multifunctional protein. Complete loss of SMN is embryonic lethal, while low levels of SMN lead to spinal muscular atrophy (SMA), a major genetic disease of children and infants. Reduced levels of SMN are associated with the abnormal development of heart, lung, muscle, gastro-intestinal system and testis. The SMN loci have been shown to generate a vast repertoire of transcripts, including linear, back- and trans-spliced RNAs as well as antisense long noncoding RNAs. However, functions of the majority of these transcripts remain unknown. Here we review the nature of RNAs generated from the SMN loci and discuss their potential functions in cellular metabolism.
Collapse
Affiliation(s)
- Natalia N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Eric W Ottesen
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America
| | - Ravindra N Singh
- Department of Biomedical Science, Iowa State University, Ames, IA, 50011, United States of America.
| |
Collapse
|
26
|
[Molecular therapies in childhood neuromuscular disorders-definite hope versus unknown pitfalls]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:891-897. [PMID: 32542436 DOI: 10.1007/s00103-020-03165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Spinal muscular atrophy and muscular dystrophy Duchenne belong to the group of rare neuromuscular diseases manifesting in early childhood. Therapeutic options for some of these rare monogenic diseases have changed significantly in recent years. Molecular therapies such as direct gene transfer or alternative processing of the disease-specific gene play an important role in this transformation.In particular, the course of 5q-associated spinal muscle atrophy has changed significantly due to the availability of such causal therapies, while the results of ongoing studies are still pending for most muscle diseases. In the area of neuromuscular diseases, an achievable therapeutic goal is to slow the progression, but not complete healing. Currently, only limited data are available. In particular, the long-term effectiveness and the possible risks are still unknown. Therefore, these therapies should be used under strictly monitored conditions.
Collapse
|
27
|
Abstract
Background: Spinal muscular atrophy (SMA) is a devastating rare disease that affects individuals regardless of ethnicity, gender, and age. The first-approved disease-modifying therapy for SMA, nusinursen, was approved by Health Canada, as well as by American and European regulatory agencies following positive clinical trial outcomes. The trials were conducted in a narrow pediatric population defined by age, severity, and genotype. Broad approval of therapy necessitates close follow-up of potential rare adverse events and effectiveness in the larger real-world population. Methods: The Canadian Neuromuscular Disease Registry (CNDR) undertook an iterative multi-stakeholder process to expand the existing SMA dataset to capture items relevant to patient outcomes in a post-marketing environment. The CNDR SMA expanded registry is a longitudinal, prospective, observational study of patients with SMA in Canada designed to evaluate the safety and effectiveness of novel therapies and provide practical information unattainable in trials. Results: The consensus expanded dataset includes items that address therapy effectiveness and safety and is collected in a multicenter, prospective, observational study, including SMA patients regardless of therapeutic status. The expanded dataset is aligned with global datasets to facilitate collaboration. Additionally, consensus dataset development aimed to standardize appropriate outcome measures across the network and broader Canadian community. Prospective outcome studies, data use, and analyses are independent of the funding partner. Conclusion: Prospective outcome data collected will provide results on safety and effectiveness in a post-therapy approval era. These data are essential to inform improvements in care and access to therapy for all SMA patients.
Collapse
|
28
|
Abstract
Traditionally treatment of epileptic seizures has been symptomatic, namely medication has been targeted at raising the threshold to the occurrence of epileptic seizures. This has had little impact on the rate of drug resistance over time, or impact on comorbidities such as learning and behaviour particularly in the early onset epilepsies. The advent of advanced neuroimaging and genomics has revealed the cause of the epilepsy in a much higher percentage, and advanced our knowledge as to the underlying pathophysiology. This has given us the opportunity to turn to the possibility of interventional treatment, targeting the underlying cause, and consequently the possibility of changing the natural history of disease. Here we review the options open to us, and the evidence to date.
Collapse
Affiliation(s)
- J Helen Cross
- UCL NIHR BRC Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - Lieven Lagae
- Paediatric Neurology, University Hospitals Leuven, Herestraat 49, Leuven, BE B-3000, Belgium
| |
Collapse
|
29
|
Abstract
Onasemnogene abeparvovec (onasemnogene abeparvovec-xioi; formerly AVXS-101; ZOLGENSMA®) is an adeno-associated viral vector-based gene therapy designed to deliver a functional copy of the human survival motor neuron (SMN) gene to the motor neuron cells of patients with spinal muscular atrophy (SMA). It has been developed by AveXis, a Novartis company, and was approved in May 2019 in the USA for the treatment of paediatric patients aged < 2 years with SMA and bi-allelic mutations in the SMN1 gene (the primary gene encoding survival motor neuron protein). Onasemnogene abeparvovec is the first gene therapy to be approved for SMA in the USA. The recommended dose is 1.1 × 1014 vector genomes per kg of bodyweight, administered as a single intravenous infusion over 60 min. Regulatory assessments for this formulation of onasemnogene abeparvovec are underway in the EU and Japan; an intrathecal formulation is currently undergoing clinical development in the USA. This article summarizes the milestones in the development of onasemnogene abeparvovec leading to this first approval for the treatment of paediatric patients aged < 2 years with SMA and bi-allelic mutations in SMN1.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
30
|
Meanwell NA, Ewing WR. In Praise of Remarkably Powerful Centamolecular Therapeutic Agents. ACS Med Chem Lett 2019; 10:1094-1097. [PMID: 31413789 DOI: 10.1021/acsmedchemlett.9b00286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While biological medications have addressed many important and challenging therapeutic targets, the pharmacopeia is still dominated by centamolecules. In this Viewpoint, we illustrate the impact of centamolecule drugs on mortality and morbidity due to chronic viral infections and present select examples from other disease areas that highlight some of their remarkably powerful biochemical effects.
Collapse
Affiliation(s)
- Nicholas A. Meanwell
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| | - William R. Ewing
- Department of Discovery Chemistry, Bristol-Myers Squibb Research and Development, PO Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|
31
|
Evolution of bone mineral density, bone metabolism and fragility fractures in Spinal Muscular Atrophy (SMA) types 2 and 3. Neuromuscul Disord 2019; 29:525-532. [DOI: 10.1016/j.nmd.2019.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022]
|
32
|
Bozorg Qomi S, Asghari A, Salmaninejad A, Mojarrad M. Spinal Muscular Atrophy and Common Therapeutic Advances. Fetal Pediatr Pathol 2019; 38:226-238. [PMID: 31060440 DOI: 10.1080/15513815.2018.1520374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive destructive motor neuron disease which is characterized primarily by the degeneration of α-motor neurons in the ventral gray horn of the spinal cord. It mainly affects children and represents the most common reason of inherited infant mortality. MATERIAL AND METHODS We provide an overview of the recent therapeutic strategies for the treatment of SMA together with available and developing therapeutic strategies. For this purpose, Google Scholar and PubMed databases were searched for literature on SMA, therapy and treatment. Titles were reviewed and 96 were selected and assessed in this paper. RESULT Over the last two decades, different therapeutic strategies have been proposed for SMA. Some methods are in the pre-clinical, others the clinical phase. CONCLUSION By emergence of the new approaches, especially in gene therapy, effective treatment in the close future is probable.
Collapse
Affiliation(s)
- Saeed Bozorg Qomi
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Asghari
- c Department of Medical Physiology, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Arash Salmaninejad
- d Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Majid Mojarrad
- a Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran.,b Medical Genetics Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
33
|
Spring AM, Raimer AC, Hamilton CD, Schillinger MJ, Matera AG. Comprehensive Modeling of Spinal Muscular Atrophy in Drosophila melanogaster. Front Mol Neurosci 2019; 12:113. [PMID: 31156382 PMCID: PMC6532329 DOI: 10.3389/fnmol.2019.00113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/18/2019] [Indexed: 01/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that affects motor neurons, primarily in young children. SMA is caused by mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN functions in the assembly of spliceosomal RNPs and is well conserved in many model systems including mouse, zebrafish, fruit fly, nematode, and fission yeast. Work in Drosophila has focused on the loss of SMN function during larval stages, primarily using null alleles or strong hypomorphs. A systematic analysis of SMA-related phenotypes in the context of moderate alleles that more closely mimic the genetics of SMA has not been performed in the fly, leading to debate over the validity and translational value of this model. We, therefore, examined 14 Drosophila lines expressing SMA patient-derived missense mutations in Smn, with a focus on neuromuscular phenotypes in the adult stage. Animals were evaluated on the basis of organismal viability and longevity, locomotor function, neuromuscular junction structure, and muscle health. In all cases, we observed phenotypes similar to those of SMA patients, including progressive loss of adult motor function. The severity of these defects is variable and forms a broad spectrum across the 14 lines examined, recapitulating the full range of phenotypic severity observed in human SMA. This includes late-onset models of SMA, which have been difficult to produce in other model systems. The results provide direct evidence that SMA-related locomotor decline can be reproduced in the fly and support the use of patient-derived SMN missense mutations as a comprehensive system for modeling SMA.
Collapse
Affiliation(s)
- Ashlyn M. Spring
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Amanda C. Raimer
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
| | - Christine D. Hamilton
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | | | - A. Gregory Matera
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of North Carolina, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
34
|
Buijsen RAM, Toonen LJA, Gardiner SL, van Roon-Mom WMC. Genetics, Mechanisms, and Therapeutic Progress in Polyglutamine Spinocerebellar Ataxias. Neurotherapeutics 2019; 16:263-286. [PMID: 30607747 PMCID: PMC6554265 DOI: 10.1007/s13311-018-00696-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autosomal dominant cerebellar ataxias (ADCAs) are a group of neurodegenerative disorders characterized by degeneration of the cerebellum and its connections. All ADCAs have progressive ataxia as their main clinical feature, frequently accompanied by dysarthria and oculomotor deficits. The most common spinocerebellar ataxias (SCAs) are 6 polyglutamine (polyQ) SCAs. These diseases are all caused by a CAG repeat expansion in the coding region of a gene. Currently, no curative treatment is available for any of the polyQ SCAs, but increasing knowledge on the genetics and the pathological mechanisms of these polyQ SCAs has provided promising therapeutic targets to potentially slow disease progression. Potential treatments can be divided into pharmacological and gene therapies that target the toxic downstream effects, gene therapies that target the polyQ SCA genes, and stem cell replacement therapies. Here, we will provide a review on the genetics, mechanisms, and therapeutic progress in polyglutamine spinocerebellar ataxias.
Collapse
Affiliation(s)
- Ronald A M Buijsen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | - Lodewijk J A Toonen
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sarah L Gardiner
- Department of Human Genetics, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Neurology, LUMC, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | | |
Collapse
|
35
|
Tips to Design Effective Splice-Switching Antisense Oligonucleotides for Exon Skipping and Exon Inclusion. Methods Mol Biol 2019; 1828:79-90. [PMID: 30171536 DOI: 10.1007/978-1-4939-8651-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Antisense-mediated exon skipping and exon inclusion have proven to be powerful tools for treating neuromuscular diseases. The approval of Exondys 51 (eteplirsen) and Spinraza (nusinersen) for the treatment of patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) was the most noteworthy accomplishment in 2016. Exon skipping uses short DNA-like molecules called antisense oligonucleotides (AONs) to correct the disrupted reading frame, allowing the production of functional quasi-dystrophin proteins, and ameliorate the progression of the disease. Exon inclusion for SMA employs an AON targeting an intronic splice silencer site to include an exon which is otherwise spliced out. Recently, these strategies have also been explored in many other genetic disorders, including dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy; MM, limb-girdle muscular dystrophy type 2B; LGMD2B, and distal myopathy with anterior tibial onset; DMAT), laminin α2 chain (merosin)-deficient congenital muscular dystrophy (MDC1A), sarcoglycanopathy (e.g., limb-girdle muscular dystrophy type 2C; LGMD2C), and Fukuyama congenital muscular dystrophy (FCMD). A major challenge in exon skipping and exon inclusion is the difficulty in designing effective AONs. The mechanism of mRNA splicing is highly complex, and the efficacy of AONs is often unpredictable. We will discuss the design of effective AONs for exon skipping and exon inclusion in this chapter.
Collapse
|
36
|
Groen EJN, Perenthaler E, Courtney NL, Jordan CY, Shorrock HK, van der Hoorn D, Huang YT, Murray LM, Viero G, Gillingwater TH. Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy. Hum Mol Genet 2019; 27:2851-2862. [PMID: 29790918 PMCID: PMC6077828 DOI: 10.1093/hmg/ddy195] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/14/2018] [Indexed: 02/02/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by deleterious variants in SMN1 that lead to a marked decrease in survival motor neuron (SMN) protein expression. Humans have a second SMN gene (SMN2) that is almost identical to SMN1. However, due to alternative splicing the majority of SMN2 messenger ribonucleic acid (mRNA) is translated into a truncated, unstable protein that is quickly degraded. Because the presence of SMN2 provides a unique opportunity for therapy development in SMA patients, the mechanisms that regulate SMN2 splicing and mRNA expression have been elucidated in great detail. In contrast, how much SMN protein is produced at different developmental time points and in different tissues remains under-characterized. In this study, we addressed this issue by determining SMN protein expression levels at three developmental time points across six different mouse tissues and in two distinct mouse models of SMA (‘severe’ Taiwanese and ‘intermediate’ Smn2B/− mice). We found that, in healthy control mice, SMN protein expression was significantly influenced by both age and tissue type. When comparing mouse models of SMA, we found that, despite being transcribed from genetically different alleles, control SMN levels were relatively similar. In contrast, the degree of SMN depletion between tissues in SMA varied substantially over time and between the two models. These findings offer an explanation for the differential vulnerability of tissues and organs observed in SMA and further our understanding of the systemic and temporal requirements for SMN with direct relevance for developing effective therapies for SMA.
Collapse
Affiliation(s)
- Ewout J N Groen
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Elena Perenthaler
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Natalie L Courtney
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Crispin Y Jordan
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences
| | - Hannah K Shorrock
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Dinja van der Hoorn
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Yu-Ting Huang
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Gabriella Viero
- Institute of Biophysics, CNR Unit at Trento, 38123 Povo, Trento, Italy
| | - Thomas H Gillingwater
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
37
|
Shorrock HK, Gillingwater TH, Groen EJN. Molecular Mechanisms Underlying Sensory-Motor Circuit Dysfunction in SMA. Front Mol Neurosci 2019; 12:59. [PMID: 30886572 PMCID: PMC6409332 DOI: 10.3389/fnmol.2019.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
Activation of skeletal muscle in response to acetylcholine release from the neuromuscular junction triggered by motor neuron firing forms the basis of all mammalian locomotion. Intricate feedback and control mechanisms, both from within the central nervous system and from sensory organs in the periphery, provide essential inputs that regulate and finetune motor neuron activity. Interestingly, in motor neuron diseases, such as spinal muscular atrophy (SMA), pathological studies in patients have identified alterations in multiple parts of the sensory-motor system. This has stimulated significant research efforts across a range of different animal models of SMA in order to understand these defects and their contribution to disease pathogenesis. Several recent studies have demonstrated that defects in sensory components of the sensory-motor system contribute to dysfunction of motor neurons early in the pathogenic process. In this review, we provide an overview of these findings, with a specific focus on studies that have provided mechanistic insights into the molecular processes that underlie dysfunction of the sensory-motor system in SMA. These findings highlight the role that cell types other than motor neurons play in SMA pathogenesis, and reinforce the need for therapeutic interventions that target and rescue the wide array of defects that occur in SMA.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ewout J N Groen
- Edinburgh Medical School: Biomedical Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Vill K, Kölbel H, Schwartz O, Blaschek A, Olgemöller B, Harms E, Burggraf S, Röschinger W, Durner J, Gläser D, Nennstiel U, Wirth B, Schara U, Jensen B, Becker M, Hohenfellner K, Müller-Felber W. One Year of Newborn Screening for SMA - Results of a German Pilot Project. J Neuromuscul Dis 2019; 6:503-515. [PMID: 31594245 PMCID: PMC6918901 DOI: 10.3233/jnd-190428] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Spinal muscular atrophy (SMA) is the most common neurodegenerative disease in childhood. The study was conducted to assess the impact of early detection of SMA by newborn screening (NBS) on the clinical course of the disease. METHODS Screening was performed in two federal states of Germany, Bavaria and North Rhine Westphalia, between January 2018 and February 2019. The incidence in the screening population was calculated as number of detected patients with a homozygous deletion in the SMN1-gene per number of screened patients. To get an idea about the incidence of newly diagnosed SMA in the year prior to screening a survey covering all neuropediatric centers in the state of Bavaria was conducted, identifying all SMA-cases in 2017 and 2018. Following positive NBS and confirmatory diagnostic test, treatment was advised according to the recommendations of the "American SMA NBS Multidisciplinary Working Group". Immediate treatment with Nusinersen was recommended in children with 2 and 3 SMN2 copies and a conservative strict follow-up strategy in children with ≥4 copies. All children underwent regular standardized neuropediatric examination, CHOP INTEND and HINE-2 testing as well as electrophysiological exams every 2-3 months. RESULTS 165,525 children were screened. 22 cases of SMA were identified, meaning an incidence rate of 1:7524. SMN2 copy number analysis showed 2 SMN2 copies in 45% of patients, 3 SMN2 copies in 19 % and 4 SMN2 copies in 36%. These findings are confirmed in the most recent statistical data-cut from 31st August 2019 (incidence 1:7089, 2 SMN2 copies in 44%, 3 in 15% and 4 in 38%). Comparison with up-to-date German data on SMA incidence and the Bavarian survey give evidence that NBS did not lead to a relevant increase in incidence. 10 patients with 2 or 3 SMN2 copies were treated with Nusinersen, starting between 15- 39 days after birth, in 7/10 patients before onset of symptoms. Presymptomatically treated patients (age at last examination: 1- 12 months, median 8 months) showed no muscle weakness by the age of one month to one year. One child with 4 SMN2 copies became symptomatic at the age of 8 months. CONCLUSIONS Newborn screening, resulting in presymptomatic treatment, improves outcome in children with genetically proven SMA. Newborn screening for SMA should be introduced in all countries where therapy is available. An immediate therapy in cases with 4 SMN2 copies should be considered.
Collapse
Affiliation(s)
- Katharina Vill
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children’s Hospital, LMU – University of Munich, Munich, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Oliver Schwartz
- Department of Pediatric Neurology, Muenster University Hospital, Münster, Germany
| | - Astrid Blaschek
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children’s Hospital, LMU – University of Munich, Munich, Germany
| | | | - Erik Harms
- Department of Pediatric Medicine, Previously Muenster University Hospital, Münster, Germany
| | | | | | | | - Dieter Gläser
- Genetikum, Center for Human Genetics, Neu-Ulm, Germany
| | - Uta Nennstiel
- Screening Center of the Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Ulrike Schara
- Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Essen, Germany
| | - Beate Jensen
- Department of Pediatric Neurology, Muenster University Hospital, Münster, Germany
| | | | | | - Wolfgang Müller-Felber
- Department of Pediatric Neurology and Developmental Medicine, Dr. v. Hauner Children’s Hospital, LMU – University of Munich, Munich, Germany
| |
Collapse
|
39
|
Šoltić D, Bowerman M, Stock J, Shorrock HK, Gillingwater TH, Fuller HR. Multi-Study Proteomic and Bioinformatic Identification of Molecular Overlap between Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). Brain Sci 2018; 8:brainsci8120212. [PMID: 30518112 PMCID: PMC6315439 DOI: 10.3390/brainsci8120212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/24/2022] Open
Abstract
Unravelling the complex molecular pathways responsible for motor neuron degeneration in amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) remains a persistent challenge. Interest is growing in the potential molecular similarities between these two diseases, with the hope of better understanding disease pathology for the guidance of therapeutic development. The aim of this study was to conduct a comparative analysis of published proteomic studies of ALS and SMA, seeking commonly dysregulated molecules to be prioritized as future therapeutic targets. Fifteen proteins were found to be differentially expressed in two or more proteomic studies of both ALS and SMA, and bioinformatics analysis identified over-representation of proteins known to associate in vesicles and molecular pathways, including metabolism of proteins and vesicle-mediated transport—both of which converge on endoplasmic reticulum (ER)-Golgi trafficking processes. Calreticulin, a calcium-binding chaperone found in the ER, was associated with both pathways and we independently confirm that its expression was decreased in spinal cords from SMA and increased in spinal cords from ALS mice. Together, these findings offer significant insights into potential common targets that may help to guide the development of new therapies for both diseases.
Collapse
Affiliation(s)
- Darija Šoltić
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Melissa Bowerman
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Joanne Stock
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Hannah K. Shorrock
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK; (H.K.S.); (T.H.G.)
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Thomas H. Gillingwater
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh EH8 9AG, UK; (H.K.S.); (T.H.G.)
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH8 9AG, UK
| | - Heidi R. Fuller
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (D.S.); (M.B.)
- Institute for Science and Technology in Medicine, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
- Correspondence: ; Tel.: +44-169-140-4693; Fax: +44-169-140-4065
| |
Collapse
|
40
|
Rao VK, Kapp D, Schroth M. Gene Therapy for Spinal Muscular Atrophy: An Emerging Treatment Option for a Devastating Disease. J Manag Care Spec Pharm 2018; 24:S3-S16. [PMID: 30582825 PMCID: PMC10408414 DOI: 10.18553/jmcp.2018.24.12-a.s3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease that, in most cases, involves homozygous deletion of the SMN1 gene. This causes a deficiency in survival motor neuron (SMN) protein, which plays a critical role in motor neuron development. SMA has a range of phenotype expression resulting in variable age of symptom onset, maximum motor strength achieved, and survival. Without intervention, infants with a more severe form of the disease (type 1 SMA) die before 2 years of age. Although it is rare, SMA is the most common fatal inherited disease of infancy, and until recently, treatment was primarily supportive. In 2016, a new agent, nusinersen, was approved by the FDA. Other treatments are in development, including a gene therapy, AVXS-101. These treatments are not only improving the lives of patients with SMA and their families, they are changing the disease phenotype. They have the greatest benefit when given early in the disease course. OBJECTIVES To discuss current knowledge about SMA, provide clinical evidence for available and emerging treatment options, and present approaches for adding new therapies to hospital/health system formularies to ensure timely access to newly approved therapies for SMA. SUMMARY Advances in clinical care have significantly extended the lives of individuals with SMA, and research into the genetic mechanisms leading to disease have revealed strategies for intervention that target the underlying cause of SMA. Nusinersen is now on the market, and other treatment options, such as AVXS-101, may soon be approved. This article provides an overview of SMA and the genetic mechanisms leading to SMN deficiency, then describes how new and emerging treatments work to overcome this deficiency and prevent associated nerve damage and disability. In addition, we discuss steps for incorporating AVXS-101 into hospital/health system formularies, along with barriers and concerns that may delay access, based in part on lessons learned with nusinersen.
Collapse
|
41
|
Stolte B, Totzeck A, Kizina K, Bolz S, Pietruck L, Mönninghoff C, Guberina N, Oldenburg D, Forsting M, Kleinschnitz C, Hagenacker T. Feasibility and safety of intrathecal treatment with nusinersen in adult patients with spinal muscular atrophy. Ther Adv Neurol Disord 2018; 11:1756286418803246. [PMID: 30305849 PMCID: PMC6174643 DOI: 10.1177/1756286418803246] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022] Open
Abstract
Background: Nusinersen is an intrathecally administered antisense oligonucleotide (ASO) and the first approved drug for the treatment of spinal muscular atrophy (SMA). However, progressive neuromyopathic scoliosis and the presence of spondylodesis can impede lumbar punctures in SMA patients. Our aim was to assess the feasibility and safety of the treatment in adults with SMA. Methods: For the intrathecal administration of nusinersen, we performed conventional, fluoroscopy-assisted and computer tomography (CT)-guided lumbar punctures in adult patients with type 2 and type 3 SMA. We documented any reported adverse events and performed blood tests. Results: We treated a total of 28 adult SMA patients (9 patients with SMA type 2 and 19 patients with SMA type 3) aged between 18–61 years with nusinersen. The mean Revised Upper Limb Module (RULM) score at baseline in SMA type 2 and SMA type 3 patients was 9.9 ± 4.6 and 29.5 ± 8.5, respectively. The mean Hammersmith Functional Motor Scale Expanded (HFMSE) score at baseline was 3.1 ± 2.5 and 31.2 ± 18.1, respectively. Half of the SMA type 3 patients were ambulatory at treatment onset. In total, we performed 122 lumbar punctures with 120 successful intrathecal administrations of nusinersen. Lumbar punctures were well tolerated, and no serious adverse events occurred. Conclusions: Our data demonstrate the feasibility and tolerability of intrathecal treatment with nusinersen in adults with SMA type 2 and type 3. However, treatment can be medically and logistically challenging, particularly in patients with SMA type 2 and in patients with spondylodesis.
Collapse
Affiliation(s)
- Benjamin Stolte
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Andreas Totzeck
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Kathrin Kizina
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Lena Pietruck
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Christoph Mönninghoff
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Nika Guberina
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Denise Oldenburg
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | | | - Tim Hagenacker
- Department of Neurology, University Hospital Essen, Hufelandstr.55, Essen, 45147, Germany
| |
Collapse
|
42
|
Shorrock HK, van der Hoorn D, Boyd PJ, Llavero Hurtado M, Lamont DJ, Wirth B, Sleigh JN, Schiavo G, Wishart TM, Groen EJN, Gillingwater TH. UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain 2018; 141:2878-2894. [PMID: 30239612 PMCID: PMC6158753 DOI: 10.1093/brain/awy237] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/25/2018] [Indexed: 01/09/2023] Open
Abstract
Deafferentation of motor neurons as a result of defective sensory-motor connectivity is a critical early event in the pathogenesis of spinal muscular atrophy, but the underlying molecular pathways remain unknown. We show that restoration of ubiquitin-like modifier-activating enzyme 1 (UBA1) was sufficient to correct sensory-motor connectivity in the spinal cord of mice with spinal muscular atrophy. Aminoacyl-tRNA synthetases, including GARS, were identified as downstream targets of UBA1. Regulation of GARS by UBA1 occurred via a non-canonical pathway independent of ubiquitylation. Dysregulation of UBA1/GARS pathways in spinal muscular atrophy mice disrupted sensory neuron fate, phenocopying GARS-dependent defects associated with Charcot-Marie-Tooth disease. Sensory neuron fate was corrected following restoration of UBA1 expression and UBA1/GARS pathways in spinal muscular atrophy mice. We conclude that defective sensory motor connectivity in spinal muscular atrophy results from perturbations in a UBA1/GARS pathway that modulates sensory neuron fate, thereby highlighting significant molecular and phenotypic overlap between spinal muscular atrophy and Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- Hannah K Shorrock
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Present address: Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Dinja van der Hoorn
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Penelope J Boyd
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Present address: Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Maica Llavero Hurtado
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, UK
| | | | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Germany
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, UK, Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK, UK Dementia Research Institute at UCL, London, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Roslin Institute, Royal (Dick) School of Veterinary Science, University of Edinburgh, UK
| | - Ewout J N Groen
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Correspondence may also be addressed to: Ewout J. N. Groen E-mail:
| | - Thomas H Gillingwater
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK,Correspondence to: Thomas H. Gillingwater University of Edinburgh - Biomedical Sciences (Anatomy) Hugh Robson Building George Square Edinburgh, Scotland EH8 9XD, UK E-mail:
| |
Collapse
|