1
|
Du J, Shen M, Chen J, Yan H, Xu Z, Yang X, Yang B, Luo P, Ding K, Hu Y, He Q. The impact of solute carrier proteins on disrupting substance regulation in metabolic disorders: insights and clinical applications. Front Pharmacol 2025; 15:1510080. [PMID: 39850557 PMCID: PMC11754210 DOI: 10.3389/fphar.2024.1510080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Carbohydrates, lipids, bile acids, various inorganic salt ions and organic acids are the main nutrients or indispensable components of the human body. Dysregulation in the processes of absorption, transport, metabolism, and excretion of these metabolites can lead to the onset of severe metabolic disorders, such as type 2 diabetes, non-alcoholic fatty liver disease, gout and hyperbilirubinemia. As the second largest membrane receptor supergroup, several major families in the solute carrier (SLC) supergroup have been found to play key roles in the transport of substances such as carbohydrates, lipids, urate, bile acids, monocarboxylates and zinc ions. Based on common metabolic dysregulation and related metabolic substances, we explored the relationship between several major families of SLC supergroup and metabolic diseases, providing examples of drugs targeting SLC proteins that have been approved or are currently in clinical/preclinical research as well as SLC-related diagnostic techniques that are in clinical use or under investigation. By highlighting these connections, we aim to provide insights that may contribute to the development of improved treatment strategies and targeted therapies for metabolic disorders.
Collapse
Affiliation(s)
- Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minhui Shen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuhuai Hu
- Yuhong Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qiaojun He
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Pharmaceutical and Translational Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Sawant A, Kanji N, DiMare M, Matusow D, Edelstein S, Menakuru SR. A randomized pilot study to evaluate the stability, taste, and palatability of a novel liquid formulation of tenapanor. Drug Dev Ind Pharm 2025; 51:29-37. [PMID: 39686557 DOI: 10.1080/03639045.2024.2441880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
OBJECTIVE This pilot study aimed to develop a liquid formulation of tenapanor and evaluate taste and palatability with different sweetener and flavor combinations. SIGNIFICANCE Tenapanor is a first-in-class, minimally absorbed, small molecule inhibitor of intestinal sodium/hydrogen exchanger 3, indicated (as tablets) to treat adults with constipation-predominant irritable bowel syndrome. It is also approved as add-on therapy to reduce serum phosphorus in adults with chronic kidney disease on dialysis who are intolerant of, or unacceptably responsive to, any dose of phosphate binder therapy. Since many patients have difficulty swallowing pills and pediatric studies are underway, a liquid formulation was developed, and taste profiles were evaluated for overall acceptability. METHODS Formulation of liquid tenapanor targeted a concentration of 5 mg/mL, for a dosing range of 1-50 mg twice daily. Improvements in solubility and stability of tenapanor in water were investigated with the use of buffers, cosolvents, and preservatives. Seven liquid formulations with different sweetener/flavor combinations were assessed for taste and palatability by healthy adult participants using the sip-and-spit method in a randomized design. RESULTS An aqueous solution of tenapanor (5 mg/mL), pH 3.4, with 0.05 % (w/v) benzoic acid, was stable at 2-8 °C for 12 months. The formulation with sucralose and raspberry flavor had the greatest improvement in overall acceptability and taste when compared to the reference solution without sweeteners or flavors. CONCLUSIONS A suitable liquid formulation was identified for progression to patient studies.
Collapse
|
3
|
Taclob JA, Kalas MA, McCallum RW. Examining linaclotide for the treatment of chronic idiopathic constipation. Expert Opin Pharmacother 2024; 25:1281-1290. [PMID: 39058326 DOI: 10.1080/14656566.2024.2386160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024]
Abstract
INTRODUCTION Chronic idiopathic constipation (CIC) is characterized by infrequent bowel movements and hard stools lasting for at least three months or longer. This disease affects 8-12% of the US population and 10-17% of the world population. Treatment and management involve identifying the primary cause, changing dietary habits, and adequate physical activity. Linaclotide is a guanylate cyclase-agonist acting locally in the luminal surface of the intestinal enterocyte leading to a signal transduction cascade, activation of the cystic fibrosis transmembrane conductance regulator (CFTR), thus increasing secretion of chloride and bicarbonate into the intestinal lumen with eventual increased intestinal fluid and faster transit time. AREAS COVERED We reviewed multiple studies and did a thorough literature review on CIC including its pathophysiology. Through this literature review, we were able to discuss and give the context and rationale for drug regimens indicated for CIC. EXPERT OPINION The era we live in right now is akin to nutrient-rich and fertilized soil as knowledge and resources are abundant. The opportunities and potential are endless. Constipation being more extensively studied, our understanding of medications and diseases broadens, leading to novel medications being discovered. Linaclotide is a pioneer in this aspect and can pave the way for future generations.
Collapse
Affiliation(s)
- Jeff Angelo Taclob
- Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - M Ammar Kalas
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Richard W McCallum
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
4
|
Currò D, Ianiro G, Gasbarrini A. A pharmacokinetic evaluation of tenapanor for the treatment of irritable bowel syndrome with constipation: an update of the literature. Expert Opin Drug Metab Toxicol 2023; 19:889-894. [PMID: 38108081 DOI: 10.1080/17425255.2023.2294937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Tenapanor is the latest addition to the second-line pharmacotherapeutic options for the treatment of irritable bowel syndrome with constipation. It is a first-in-class inhibitor of type 3 sodium/hydrogen exchanger (NHE3), characterized by very low oral absorption. Its pharmacological properties are discussed here based on the latest literature. AREAS COVERED A general description of tenapanor is provided, highlighting those pharmacokinetic and pharmacodynamic characteristics of the drug which may be of major importance for tolerability and safety. This description is associated with a summary and analysis of currently available toxicological data. EXPERT OPINION Plasma concentrations of free tenapanor after oral administration are well below the half maximal inhibitory concentration for NHE3, so that systemic effects of the drug are minimal. Therefore, the action of tenapanor is limited to NHE3 located on the apical membrane of enterocytes. The consequent reduction in intestinal sodium absorption increases the intraluminal content by osmosis, which in turn enhances the propulsive activity of the colon. Diarrhea is the most frequent adverse effect of tenapanor. Increased fecal sodium and water excretion do not appear to expose patients to short- and long-term hydro-electrolyte imbalances.
Collapse
Affiliation(s)
- Diego Currò
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| |
Collapse
|
5
|
Lembo AJ, Friedenberg KA, Fogel RP, Edelstein S, Zhao S, Yang Y, Rosenbaum DP, Chey WD. Long-term safety of tenapanor in patients with irritable bowel syndrome with constipation in the T3MPO-3 study. Neurogastroenterol Motil 2023; 35:e14658. [PMID: 37668173 DOI: 10.1111/nmo.14658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/26/2023] [Accepted: 07/31/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Tenapanor, a first-in-class, minimally systemic inhibitor of intestinal sodium/hydrogen exchanger isoform 3 (NHE3), is approved for the treatment of irritable bowel syndrome with constipation (IBS-C) in adults based on two randomized, placebo-controlled, phase III studies (T3MPO-1 [NCT02621892], T3MPO-2 [NCT02686138]). The open-label T3MPO-3 extension study (NCT02727751) enrolled patients who completed these studies to investigate long-term safety and tolerability of tenapanor. METHODS Patients who completed T3MPO-1 (16 weeks) or T3MPO-2 (26 weeks) were eligible for enrollment in T3MPO-3. Patients in T3MPO-3 received open-label tenapanor 50 mg twice a day for up to an additional 39 (T3MPO-1) or 26 (T3MPO-2) weeks. Treatment-emergent adverse events (TEAEs) were evaluated in the entire T3MPO-3 safety population and in patients who received a total of ≥52 weeks of tenapanor. KEY RESULTS A total of 312 patients were enrolled in T3MPO-3; 90 received ≥52 weeks of tenapanor. TEAEs were reported in 117 (37.5%) patients in the safety population and in 52 (57.8%) patients who received ≥52 weeks of tenapanor. Diarrhea was the most common TEAE, occurring in 10.6% of the safety population and in 11.1% of patients who received ≥52 weeks of tenapanor. Most cases were mild or moderate in severity, with only two severe cases reported in the safety population. No deaths occurred during the T3MPO-3 study. CONCLUSIONS Tenapanor was tolerable over ≥52 weeks of treatment and showed similar safety to that seen in shorter studies. Combined results of the T3MPO studies indicate that tenapanor is a valuable new treatment option for patients with IBS-C.
Collapse
Affiliation(s)
- Anthony J Lembo
- Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Ronald P Fogel
- Digestive Health Center of Michigan, Chesterfield, Michigan, USA
| | | | | | - Yang Yang
- Ardelyx, Inc., Waltham, Massachusetts, USA
| | | | | |
Collapse
|
6
|
Caminero Gomes Soares A, Marques Sousa GH, Calil RL, Goulart Trossini GH. Absorption matters: A closer look at popular oral bioavailability rules for drug approvals. Mol Inform 2023; 42:e202300115. [PMID: 37550251 DOI: 10.1002/minf.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
This study examines how two popular drug-likeness concepts used in early development, Lipinski Rule of Five (Ro5) and Veber's Rules, possibly affected drug profiles of FDA approved drugs since 1997. Our findings suggest that when all criteria are applied, relevant compounds may be excluded, addressing the harmfulness of blindly employing these rules. Of all oral drugs in the period used for this analysis, around 66 % conform to the RO5 and 85 % to Veber's Rules. Molecular Weight and calculated LogP showed low consistent values over time, apart from being the two least followed rules, challenging their relevance. On the other hand, hydrogen bond related rules and the number of rotatable bonds are amongst the most followed criteria and show exceptional consistency over time. Furthermore, our analysis indicates that topological polar surface area and total count of hydrogen bonds cannot be used as interchangeable parameters, contrary to the original proposal. This research enhances the comprehension of drug profiles that were FDA approved in the post-Lipinski period. Medicinal chemists could utilize these heuristics as a limited guide to direct their exploration of the oral bioavailability chemical space, but they must also steer the wheel to break these rules and explore different regions when necessary.
Collapse
Affiliation(s)
- Artur Caminero Gomes Soares
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Marques Sousa
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Raisa Ludmila Calil
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| | - Gustavo Henrique Goulart Trossini
- School of Pharmaceutical Sciences, University of São Paulo, Department of Pharmacy, Laboratório de Integração entre Técnicas Experimentais e Computacionais (LITEC), Av. Prof. Lineu Prestes, 580, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Zheng G, Pang S, Wang J, Wang F, Wang Q, Yang L, Ji M, Xie D, Zhu S, Chen Y, Zhou Y, Higgins GA, Wiley JW, Hou X, Lin R. Glucocorticoid receptor-mediated Nr1d1 chromatin circadian misalignment in stress-induced irritable bowel syndrome. iScience 2023; 26:107137. [PMID: 37404374 PMCID: PMC10316663 DOI: 10.1016/j.isci.2023.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
Stress-elevated glucocorticoids cause circadian disturbances and gut-brain axis (GBA) disorders, including irritable bowel syndrome (IBS). We hypothesized that the glucocorticoid receptor (GR/NR3C1) might cause chromatin circadian misalignment in the colon epithelium. We observed significantly decreased core circadian gene Nr1d1 in water avoidance stressed (WAS) BALB/c colon epithelium, like in IBS patients. WAS decreased GR binding at the Nr1d1 promoter E-box (enhancer box), and GR could suppress Nr1d1 via this site. Stress also altered GR binding at the E-box sites along the Ikzf3-Nr1d1 chromatin and remodeled circadian chromatin 3D structures, including Ikzf3-Nr1d1 super-enhancer, Dbp, and Npas2. Intestinal deletion of Nr3c1 specifically abolished these stress-induced transcriptional alternations relevant to IBS phenotypes in BALB/c mice. GR mediated Ikzf3-Nr1d1 chromatin disease related circadian misalignment in stress-induced IBS animal model. This animal model dataset suggests that regulatory SNPs of human IKZF3-NR1D1 transcription through conserved chromatin looping have translational potential based on the GR-mediated circadian-stress crosstalk.
Collapse
Affiliation(s)
- Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junbao Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Fangyu Wang
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Qi Wang
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Lili Yang
- Central Laboratory of Yan’an Hospital Affiliated to Kunming Medical University, Kunming Medical University, Kunming 650500, China
| | - Mengdie Ji
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Dejian Xie
- Beijing Research Center, Wuhan Frasergen Bioinformatics Co., Ltd, Beijing 100081, China
| | - Shengtao Zhu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yang Chen
- The State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yan Zhou
- Medical Research Institute at School of Medicine, Wuhan University, Wuhan 430072, China
| | - Gerald A. Higgins
- Department of Computational Medicine and Bioinformatics, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - John W. Wiley
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor 48109, MI, USA
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Ma JX, Chen T, Xue H, Zhang M, Li ZY, Li X, Wang YT, Kang N, Wang FY, Tang XD. Jian-Pi-Yin decoction attenuates lactose-induced chronic diarrhea in rats by regulating GLP-1 and reducing NHE3 ubiquitination and phosphorylation. Heliyon 2023; 9:e17444. [PMID: 37539150 PMCID: PMC10395042 DOI: 10.1016/j.heliyon.2023.e17444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 08/05/2023] Open
Abstract
Objectives Jian-Pi-Yin decoction (JPY), a prescription derived from the traditional Chinese medicine Shen-Ling-Bai-Zhu-San, has shown good clinical efficacy in the treatment of diarrhea caused by lactose intolerance. However, the mechanism of action of JPY in the treatment of diarrhea is not fully understood. Design In this study, a rat diarrhea model was induced by high lactose feeding combined with standing on a small platform to investigate the ameliorating effect of JPY on hyper lactose-induced diarrhea in rats and its possible mechanism. Methods The rat model of hyper lactose diarrhea was given high, medium, and low doses of JPY and the positive control drug Smida by gavage for 1 week. At the same time, NA+-H+ exchanger 3 (NHE3) inhibitor Tenapanor was administered orally for 3 weeks. Body weight, food intake, water intake, grip strength, and severity of diarrhea symptoms were measured in rats throughout the study. The serum, colon, and jejunum tissues of the model and drug-treated rats were collected for histopathological examination and analysis of relevant indicators. Results JPY significantly alleviated the symptoms of fatigue, diet reduction and diarrhea in the model group. Glucagon-like peptide-1 (GLP-1) and cyclic adenosine monophosphate (cAMP) expression were also down-regulated after JPY treatment. JPY can significantly promote NHE3 in intestinal tissues of rats with diarrhea, and the mechanism is related to the decrease of GLP-1, inhibition of cAMP/PKA pathway activation, an increase of ubiquitin-specific protease 7 (USP7) and USP10 expression, and decrease of NHE3 ubiquitination and phosphorylation. Conclusion JPY can reduce the expression of GLP-1, reduce the ubiquitination and phosphorylation of NHE3, regulate the expression of NHE3, at least partly improve ion transport in the intestinal epithelium, and improve the imbalance of electrolyte absorption, thus significantly reducing the diarrhea symptoms of rats with high lactose combined with small platform standing. Innovation In this study, we explored the mechanism of intestinal GLP-1 activation of cAMP/PKA signaling pathway from multiple dimensions, and increased its expression by reducing phosphorylation and ubiquitination of NHE3, thereby treating chronic diarrhea associated with lactose intolerance.
Collapse
Affiliation(s)
- Jin-xin Ma
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
- Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ting Chen
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
| | - Hong Xue
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
| | - Min Zhang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
| | - Zhong-yu Li
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
| | - Xuan Li
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 11 North Third Ring East Road, Beijing, 100029, China
| | - Yi-tian Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
| | - Nan Kang
- Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Feng-yun Wang
- Institute of Digestive Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
| | - Xu-dong Tang
- Department of Gastroenterology, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Zhongzhi Dong Lu, Haidian District, Beijing, 100091, China
- Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
- China Academy of Chinese Medical Sciences, 16 Nanxiao Street, Dongzhimen Nei, Beijing, 100700, China
| |
Collapse
|
9
|
Asymmetric Synthesis of US-FDA Approved Drugs over Five Years (2016–2020): A Recapitulation of Chirality. Pharmaceuticals (Basel) 2023; 16:ph16030339. [PMID: 36986439 PMCID: PMC10052577 DOI: 10.3390/ph16030339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Chirality is a major theme in the design, discovery, and development of new drugs. Historically, pharmaceuticals have been synthesized as racemic mixtures. However, the enantiomeric forms of drug molecules have distinct biological properties. One enantiomer may be responsible for the desired therapeutic effect (eutomer), whereas the other may be inactive, interfere with the therapeutic form, or exhibit toxicity (distomer). Classical chemical synthesis usually leads to a racemic mixture unless stereospecific synthesis is employed. To meet the requirements of single-enantiomeric drugs, asymmetric synthesis has evolved at the forefront of drug discovery. Asymmetric synthesis involves the conversion of an achiral starting material into a chiral product. This review emphasizes the methods used for synthesizing FDA-approved chiral drugs during 2016–2020, with a special focus on asymmetric synthesis by means of chiral induction, resolution, or chiral pool.
Collapse
|
10
|
Hunter K, Larsen JA, Love HD, Evans RC, Roy S, Zent R, Harris RC, Wilson MH, Fissell WH. Inhibition of Transforming Growth Factor-β Improves Primary Renal Tubule Cell Differentiation in Long-Term Culture. Tissue Eng Part A 2023; 29:102-111. [PMID: 36274231 PMCID: PMC10081716 DOI: 10.1089/ten.tea.2022.0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022] Open
Abstract
Patient-oriented applications of cell culture include cell therapy of organ failure like chronic renal failure. Clinical deployment of a cell-based device for artificial renal replacement requires qualitative and quantitative fidelity of a cultured cell to its in vivo counterpart. Active specific apicobasal ion transport reabsorbs 90-99% of the filtered load of salt and water in the kidney. In a bioengineered kidney, tubular transport concentrates wastes and eliminates the need for hemodialysis, but renal tubule cells in culture transport little or no salt and water due to dedifferentiation that mammalian cells undergo in vitro thereby losing important cell-type specific functions. We previously identified transforming growth factor-β (TGF-β) as a signaling pathway necessary for in vitro differentiation of renal tubule cells. Inhibition of TGF-β receptor-1 led to active and inhibitable electrolyte and water transport by primary human renal tubule epithelial cells in vitro. Addition of metformin increased transport, in the context of a transient effect on 5'-AMP-activated kinase phosphorylation. These data motivated us to examine whether increased transport was an idiosyncratic effect of SB431542, probe pathways downstream of TGF-β receptors possibly responsible for the improved differentiation, evaluate whether TGF-β inhibition induced a range of differentiated tubule functions, and to explore crosstalk between the effects of SB431542 and metformin. In this study, we use multiple small-molecule inhibitors of canonical and noncanonical pathways to confirm that inhibition of canonical TGF-β signaling caused the increased apicobasal transport. Hallmarks of proximal tubule cell function, including sodium reabsorption, para-amino hippurate excretion, and glucose uptake increased with TGF-β inhibition, and the specificity of the response was shown using inhibitors of each transport protein. We did not find any evidence of crosstalk between metformin and SB431542. These data suggest that the TGF-β signaling pathway governs multiple features of differentiation in renal proximal tubule cells in vitro. Inhibition of TGF-β by pharmacologic or genome engineering approaches may be a viable approach to enhancing differentiated function of tubule cells in vitro. Impact statement Cell therapy of renal failure requires qualitative and quantitative fidelity between in vitro and in vivo phenotypes, which has been elusive. We show that control of transforming growth factor-β signaling can promote differentiation of renal tubule cells grown in artificial environments. This is a key enabling step for cell therapy of renal failure.
Collapse
Affiliation(s)
- Kuniko Hunter
- Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Jaclyn A. Larsen
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Harold D. Love
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel C. Evans
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shuvo Roy
- Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | - Roy Zent
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew H. Wilson
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William H. Fissell
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Han F, Ning M, Wang K, Gu Y, Qu H, Leng Y, Shen J. Design and exploration of gut-restricted bifunctional molecule with TGR5 agonistic and DPP4 inhibitory effects for treating ulcerative colitis. Eur J Med Chem 2022; 242:114697. [PMID: 36029562 DOI: 10.1016/j.ejmech.2022.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022]
Abstract
Ulcerative colitis (UC) is a gastrointestinal disease with complex etiology, and the shortage of the treatment further intensifies the need to discover new therapies based on novel mechanisms and strategies. TGR5 and DPP4 are beneficial to treat UC through multiple mechanisms, notably increasing GLP-2 levels by promoting secretion and inhibiting degradation respectively. However, some unwanted systemic effects caused by systemic exposure hinder development, especially the gallbladder-filling effects. Herein, we firstly reported a series of high-potency gut-restricted TGR5-DPP4 bifunctional molecules by gut-restriction and multitarget strategies to utilize the positive impacts of TGR5 and DPP4 on UC and avoid unwanted systemic effects. In particularly, racemic compound 15, a high-potency TGR5-DPP4 bifunctional molecule, showed favorable intestinal distribution, preferable efficacy in mice colitis model and good gallbladder safety. Therefore, the feasibility of gut-restricted TGR5-DPP4 bifunctional molecule was confirmed for the treatment UC, providing a new insight into the development of anti-UC drugs.
Collapse
Affiliation(s)
- Fanghui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Yipei Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
12
|
Liu JJ, Brenner DM. Focus on Pharmacotherapy for Irritable Bowel Syndrome with Constipation. Gastroenterol Clin North Am 2021; 50:639-653. [PMID: 34304792 DOI: 10.1016/j.gtc.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Irritable bowel syndrome with constipation is a common disorder that significantly impairs quality of life. There are now multiple classes of therapeutics that have been shown via rigorous clinical testing to improve the abdominal and bowel symptoms attributed to irritable bowel syndrome with constipation. These include the secretagogues (lubiprostone, linaclotide, plecanatide, tenapenor) and the prokinetic agent tegaserod. This article highlights the pivotal evidence for these agents and most recent treatment guidance from the major North American gastroenterological societies. When pharmaceuticals are used, a patient-specific approach based on efficacy, safety, tolerability, access, and affordability is recommended.
Collapse
Affiliation(s)
- Joy J Liu
- Division of Gastroenterology/Hepatology, Department of Medicine, Northwestern University, 676 North St Clair Street, Suite 1400, Chicago, IL 60611, USA
| | - Darren M Brenner
- Division of Gastroenterology/Hepatology, Department of Medicine, Northwestern University, 676 North St Clair Street, Suite 1400, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Current Overview on Clinical Management of Chronic Constipation. J Clin Med 2021; 10:jcm10081738. [PMID: 33923772 PMCID: PMC8073140 DOI: 10.3390/jcm10081738] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Constipation is one of the major gastrointestinal disorders diagnosed in clinical practice in Western countries. Almost 20% of population suffer from this disorder, which means constipation is a substantial utilization of healthcare. Pathophysiology of constipation is complex and multifactorial, where aspects like disturbance in colonic transit, genetic predisposition, lifestyle habits, psychological distress, and many others need to be taken into consideration. Diagnosis of constipation is troublesome and requires thorough accurate examination. A nonpharmacological approach, education of the patient about the importance of lifestyle changes like diet and sport activity state, are the first line of therapy. In case of ineffective treatment, pharmacological treatments such as laxatives, secretagogues, serotonergic agonists, and many other medications should be induced. If pharmacologic treatment fails, the definitive solution for constipation might be surgical approach. Commonness of this disorder, costs of medical care and decrease in quality life cause constipation is a serious issue for many specialists. The aim of this review is to present current knowledge of chronic constipation and management of this disorder.
Collapse
|
14
|
Arokiadoss A, Weber HC. Targeted pharmacotherapy of irritable bowel syndrome. Curr Opin Endocrinol Diabetes Obes 2021; 28:214-221. [PMID: 33481423 DOI: 10.1097/med.0000000000000618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Irritable bowel syndrome (IBS) is a highly prevalent functional gastrointestinal (GI) disorder with negative impact on quality of life and it represents a substantial economic burden on healthcare cost. The medical management of IBS is symptom directed. This review provides an update related to clinical trial data for novel treatment modalities in IBS targeting the gut epithelium secretagogue receptors and channels. RECENT FINDINGS The new Rome IV criteria define functional gastrointestinal disorders (FGID) as disorders of the gut-brain interaction. Pharmacological treatment modalities for IBS target gastrointestinal receptors and ion channels, peripheral opioid receptor, gut serotonin receptors, and the gut microbiome. New targeted pharmacotherapies have shown efficacy and safety in the treatment of patients with IBS. SUMMARY Diagnostic criteria for FGID, including IBS, have been revised in Rome IV and are defined as gut-brain disorders. Newly approved pharmacotherapy options with proven efficacy and acceptable side-effect profiles are available for the symptom-based management of IBS.
Collapse
Affiliation(s)
| | - H Christian Weber
- Boston University School of Medicine, Section of Gastroenterology
- VA Boston Healthcare System, Section of Gastroenterology and Hepatology, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Flick AC, Leverett CA, Ding HX, McInturff E, Fink SJ, Mahapatra S, Carney DW, Lindsey EA, DeForest JC, France SP, Berritt S, Bigi-Botterill SV, Gibson TS, Liu Y, O'Donnell CJ. Synthetic Approaches to the New Drugs Approved during 2019. J Med Chem 2021; 64:3604-3657. [PMID: 33783211 DOI: 10.1021/acs.jmedchem.1c00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New drugs introduced to the market are privileged structures having affinities for biological targets implicated in human diseases and conditions. These new chemical entities (NCEs), particularly small molecules and antibody-drug conjugates, provide insight into molecular recognition and simultaneously function as leads for the design of future medicines. This review is part of a continuing series presenting the most likely process-scale synthetic approaches to 40 NCEs approved for the first time anywhere in the world in 2019.
Collapse
Affiliation(s)
- Andrew C Flick
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Carolyn A Leverett
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Hong X Ding
- Pharmacodia (Beijing) Co., Ltd., Beijing 100085, China
| | - Emma McInturff
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Sarah J Fink
- Takeda Pharmaceuticals, 125 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Subham Mahapatra
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Daniel W Carney
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Erick A Lindsey
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Jacob C DeForest
- Pfizer Worldwide Research and Development, 10777 Science Center Drive, San Diego, California 92121, United States
| | - Scott P France
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simon Berritt
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | | | - Tony S Gibson
- Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, California 92121, United States
| | - Yiyang Liu
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christopher J O'Donnell
- Pfizer Worldwide Research and Development, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Tan Q, di Stefano G, Tan X, Renjie X, Römermann D, Talbot SR, Seidler UE. Inhibition of Na + /H + exchanger isoform 3 improves gut fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator-deficient and F508del mutant mice. Br J Pharmacol 2021; 178:1018-1036. [PMID: 33179259 DOI: 10.1111/bph.15323] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Constipation and intestinal obstructive episodes are major health problems in cystic fibrosis (CF) patients. Three FDA-approved drugs against constipation-prone irritable bowel syndrome were tested for their ability to increase luminal fluidity and alkalinity in cystic fibrosis transmembrane conductance regulator (CFTR) null (cftr-/- ) and F508del mutant (F508delmut/mut ) murine intestine. EXPERIMENTAL APPROACH Guanylate cyclase C agonist linaclotide, PGE1 analogue lubiprostone and intestine-specific NHE3 inhibitor tenapanor were perfused through a ~3 cm jejunal, proximal or mid-distal colonic segment in anaesthetized cftr-/- , F508delmut/mut and WT mice. Net fluid balance was determined gravimetrically and alkaline output by pH-stat back titration. KEY RESULTS Basal jejunal fluid absorptive rates were significantly higher and basal HCO3 - output was significantly lower in cftr-/- and F508delmut/mut compared to WT mice. In cftr-/- and F508delmut/mut mice, all three drugs significantly inhibited the fluid absorptive rate and increased alkaline output in the jejunum and tenapanor and lubiprostone, but not linaclotide, in the colon. After tenapanor pre-incubation, linaclotide elicited a robust fluid secretory response in WT jejunum, while no further change in absorptive rates was observed in cftr-/- and F508delmut/mut jejunum, suggesting that the increase in gut fluidity and alkalinity by linaclotide in CF gut is mediated via NHE3 inhibition. Lubiprostone also inhibited fluid absorption in cftr-/- and F508delmut/mut jejunum via NHE3 inhibition but had a residual NHE3-independent effect. CONCLUSION AND IMPLICATIONS Linaclotide, lubiprostone and tenapanor reduced fluid absorption and increased alkaline output in the CF gut. Their application may ameliorate constipation and reduce obstructive episodes in CF patients.
Collapse
Affiliation(s)
- Qinghai Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | | | - Xinjie Tan
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Xiu Renjie
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Dorothee Römermann
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| | - Steven R Talbot
- Institute of Veterinary Research, Hannover Medical School, Hanover, Germany
| | - Ursula E Seidler
- Department of Gastroenterology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Conrad KP. Might proton pump or sodium-hydrogen exchanger inhibitors be of value to ameliorate SARs-CoV-2 pathophysiology? Physiol Rep 2021; 8:e14649. [PMID: 33369281 PMCID: PMC7762781 DOI: 10.14814/phy2.14649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Discovering therapeutics for COVID-19 is a priority. Besides high-throughput screening of compounds, candidates might be identified based on their known mechanisms of action and current understanding of the SARs-CoV-2 life cycle. Using this approach, proton pump (PPIs) and sodium-hydrogen exchanger inhibitors (NHEIs) emerged, because of their potential to inhibit the release of extracellular vesicles (EVs; exosomes and/or microvesicles) that could promote disease progression, and to directly disrupt SARs-CoV-2 pathogenesis. If EVs exacerbate SARs-CoV-2 infection as suggested for other viruses, then inhibiting EV release by PPIs/NHEIs should be beneficial. Mechanisms underlying inhibition of EV release by these drugs remain uncertain, but may involve perturbing endosomal pH especially of multivesicular bodies where intraluminal vesicles (nascent exosomes) are formed. Additionally, PPIs might inhibit the endosomal sorting complex for transport machinery involved in EV biogenesis. Through perturbing endocytic vesicle pH, PPIs/NHEIs could also impede cleavage of SARs-CoV-2 spike protein by cathepsins necessary for viral fusion with the endosomal membrane. Although pulmonary epithelial cells may rely mainly on plasma membrane serine protease TMPRSS2 for cell entry, PPIs/NHEIs might be efficacious in ACE2-expressing cells where viral endocytosis is the major or a contributing entry pathway. These pharmaceutics might also perturb pH in the endoplasmic reticulum-Golgi intermediate and Golgi compartments, thereby potentially disrupting viral assembly and glycosylation of spike protein/ACE2, respectively. A caveat, however, is that facilitation not inhibition of avian infectious bronchitis CoV pathogenesis was reported in one study after increasing Golgi pH. Envelope protein-derived viroporins contributed to pulmonary edema formation in mice infected with SARs-CoV. If similar pathogenesis occurs with SARs-CoV-2, then blocking these channels with NHEIs could ameliorate disease pathogenesis. To ascertain their potential efficacy, PPIs/NHEIs need evaluation in cell and animal models at various phases of SARs-CoV-2 infection. If they prove to be therapeutic, the greatest benefit might be realized with the administration before the onset of severe cytokine release syndrome.
Collapse
Affiliation(s)
- Kirk P. Conrad
- Departments of Physiology and Functional Genomics, and of Obstetrics and GynecologyUniversity of Florida College of MedicineGainesvilleFLUSA
| |
Collapse
|
18
|
Chao CT, Lin SH. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins (Basel) 2020; 12:toxins12120812. [PMID: 33371477 PMCID: PMC7767516 DOI: 10.3390/toxins12120812] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Uremic vascular calcification (VC) commonly occurs during advanced chronic kidney disease (CKD) and significantly increases cardiovascular morbidity and mortality. Uremic toxins are integral within VC pathogenesis, as they exhibit adverse vascular influences ranging from atherosclerosis, vascular inflammation, to VC. Experimental removal of these toxins, including small molecular (phosphate, trimethylamine-N-oxide), large molecular (fibroblast growth factor-23, cytokines), and protein-bound ones (indoxyl sulfate, p-cresyl sulfate), ameliorates VC. As most uremic toxins share a gut origin, interventions through gastrointestinal tract are expected to demonstrate particular efficacy. The “gastrointestinal decontamination” through the removal of toxin in situ or impediment of toxin absorption within the gastrointestinal tract is a practical and potential strategy to reduce uremic toxins. First and foremost, the modulation of gut microbiota through optimizing dietary composition, the use of prebiotics or probiotics, can be implemented. Other promising strategies such as reducing calcium load, minimizing intestinal phosphate absorption through the optimization of phosphate binders and the inhibition of gut luminal phosphate transporters, the administration of magnesium, and the use of oral toxin adsorbent for protein-bound uremic toxins may potentially counteract uremic VC. Novel agents such as tenapanor have been actively tested in clinical trials for their potential vascular benefits. Further advanced studies are still warranted to validate the beneficial effects of gastrointestinal decontamination in the retardation and treatment of uremic VC.
Collapse
Affiliation(s)
- Chia-Ter Chao
- Nephrology Division, Department of Medicine, National Taiwan University Hospital BeiHu Branch, Taipei 10845, Taiwan;
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
- Nephrology Division, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Shih-Hua Lin
- Department of Internal Medicine, Tri-Service General Hospital and National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
19
|
Lucak S, Lunsford TN, Harris LA. Evaluation and Treatment of Constipation in the Geriatric Population. Clin Geriatr Med 2020; 37:85-102. [PMID: 33213776 DOI: 10.1016/j.cger.2020.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic constipation affects one-third of the US population and occurs disproportionately in the elderly and female individuals, increasing in older individuals who are institutionalized. This condition has a significant impact on health care costs and quality of life. Clinicians need to consider primary as well as secondary causes of constipation in elderly individuals because the cause is often multifactorial. Diagnostic algorithms should eliminate red-flag symptoms that may indicate a malignancy but also consider pelvic floor dysfunction, which is more common in this age group. An appropriate treatment plan is tailored to the severity of the patient's symptoms.
Collapse
Affiliation(s)
- Susan Lucak
- Weill Cornell Medicine, Columbia University Medical Center
| | - Tisha N Lunsford
- Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA
| | - Lucinda A Harris
- Division of Gastroenterology & Hepatology, Alix School of Medicine, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259, USA.
| |
Collapse
|
20
|
New drug approvals for 2019: Synthesis and clinical applications. Eur J Med Chem 2020; 205:112667. [DOI: 10.1016/j.ejmech.2020.112667] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022]
|
21
|
Abstract
INTRODUCTION The increasing global prevalence of the symptoms of constipation adversely affects the quality of life (QOL) of symptomatic patients. An acceptable universal definition of constipation does not exist and a detailed history taking form each patient with various complaints including stool consistency, sensing of incomplete evacuation or a manual need to assist evacuation is required. Complexity of obtaining etiologic diagnosis and the wide range of therapeutic options can mislead physicians in choosing correct treatment. AREAS COVERED This review, considers the pathophysiology of constipation and the diagnostic approach to identify the etiology of constipation. Available interventions including non-pharmacological, pharmacological, and invasive methods such as acupuncture and surgical management are discussed. This review utilized on PubMed, Google Scholar, Scopus, and clinicaltrials.gov to search for studies and reviews published between 2000 and 2020. EXPERT COMMENTARY Constipation necessitates careful considerations to detect the exact pathophysiology. Medical history, focused physical assessments, and selected diagnostic tests help choosing the right management. Non-pharmacological methods are beneficial in most of the cases. If a satisfactory response is not achieved, over the counter or prescribed medications are available. Options for patients who failed to respond to available medications are addressed in this review.
Collapse
Affiliation(s)
- Marzieh Daniali
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Shekoufeh Nikfar
- Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences , Tehran, Iran.,Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes Group, Pharmaceutical Sciences Research Center (PSRC), and the Pharmaceutical Management and Economics Research Center (PMERC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Pharmacoeconomics and Pharmaceutical Administration, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), the Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences , Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran.,Personalized Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
22
|
An inducible intestinal epithelial cell-specific NHE3 knockout mouse model mimicking congenital sodium diarrhea. Clin Sci (Lond) 2020; 134:941-953. [PMID: 32227118 PMCID: PMC8819665 DOI: 10.1042/cs20200065] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
The sodium–hydrogen exchanger isoform 3 (NHE3, SLC9A3) is abundantly expressed in the gastrointestinal tract and is proposed to play essential roles in Na+ and fluid absorption as well as acid–base homeostasis. Mutations in the SLC9A3 gene can cause congenital sodium diarrhea (CSD). However, understanding the precise role of intestinal NHE3 has been severely hampered due to the lack of a suitable animal model. To navigate this problem and better understand the role of intestinal NHE3, we generated a tamoxifen-inducible intestinal epithelial cell-specific NHE3 knockout mouse model (NHE3IEC-KO). Before tamoxifen administration, the phenotype and blood parameters of NHE3IEC-KO were unremarkable compared with control mice. After tamoxifen administration, NHE3IEC-KO mice have undetectable levels of NHE3 in the intestine. NHE3IEC-KO mice develop watery, alkaline diarrhea in combination with a swollen small intestine, cecum and colon. The persistent diarrhea results in higher fluid intake. After 3 weeks, NHE3IEC-KO mice show a ~25% mortality rate. The contribution of intestinal NHE3 to acid–base and Na+ homeostasis under normal conditions becomes evident in NHE3IEC-KO mice that have metabolic acidosis, lower blood bicarbonate levels, hyponatremia and hyperkalemia associated with drastically elevated plasma aldosterone levels. These results demonstrate that intestinal NHE3 has a significant contribution to acid–base, Na+ and volume homeostasis, and lack of intestinal NHE3 has consequences on intestinal structural integrity. This mouse model mimics and explains the phenotype of individuals with CSD carrying SLC9A3 mutations.
Collapse
|
23
|
Sinagra E, Rossi F, Raimondo D, Conoscenti G, Anderloni A, Guarnotta V, Maida M. Tenapanor for the treatment of irritable bowel syndrome with constipation. Expert Rev Clin Pharmacol 2020; 13:473-479. [PMID: 32478632 DOI: 10.1080/17512433.2020.1762570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Irritable bowel syndrome with constipation is associated with higher rates of functional impairment, as compared to other subtypes of the syndrome. Conventional laxative-based pharmacologic therapy of IBS-C, which is mostly symptom-based, is often unsatisfactory. Tenapanor represents a first-in-class orally available inhibitor of NHE3, which is minimally absorbed in the GI tract, what constitutes a significant therapeutic benefit, as it may act on the drug target. AREAS COVERED Aim of this article is to sum up the evidences about pharmacodynamics and pharmacokinetics of tenapanor, focusing on animal models and in vitro studies, but also discuss clinical trials on tenapanor's safety and efficacy in view of its important potential role in IBS-C treatment. EXPERT OPINION In the challenging setting of irritable bowel syndrome with constipation, tenapanor represents a novel strategy in the pipeline of the therapies of IBS-C. Its pharmacokinetic and pharmacodynamic profile provides that it is minimally absorbed from the intestinal lumen and that its action is local, but not systemic action, therefore guaranteeing the reduction of drug-drug interactions, toxicity and severe adverse effects. Phase 2b and 3 trials showed an optimal satisfaction of primary and secondary endpoints.
Collapse
Affiliation(s)
- Emanuele Sinagra
- Gastroenterology and Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto , Cefalù, Italy.,Section of Nutrition, Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo, Italy
| | - Francesca Rossi
- Gastroenterology and Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto , Cefalù, Italy
| | - Dario Raimondo
- Gastroenterology and Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto , Cefalù, Italy
| | - Giuseppe Conoscenti
- Gastroenterology and Endoscopy Unit, Fondazione Istituto G. Giglio, Contrada Pietra Pollastra Pisciotto , Cefalù, Italy
| | - Andrea Anderloni
- Digestive Endoscopy Unit, Division of Gastroenterology, Humanitas Research Hospital , Rozzano Italy
| | - Valentina Guarnotta
- Dipartimento Di Promozione Della Salute, Materno-Infantile, Medicina Interna E Specialistica Di Eccellenza "G. D'Alessandro" (PROMISE), Sezione Di Malattie Endocrine, Del Ricambio E Della Nutrizione, Università Di Palermo , Italy
| | - Marcello Maida
- Section of Gastroenterology, S.Elia - Raimondi Hospital , Caltanissetta, Italy
| |
Collapse
|
24
|
Bassotti G. What can be done pharmacologically for a subject with severe refractory constipation-predominant irritable bowel syndrome? Expert Opin Pharmacother 2020; 21:617-618. [PMID: 31990590 DOI: 10.1080/14656566.2020.1718650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Gabrio Bassotti
- Gastroenterology & Hepatology Section, Department of Medicine, University of Perugia Medical School, Perugia, Italy
- Gastroenterology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|