1
|
Nakamura-Nishimura Y, Shinkuma S, Miyagawa F, Haredy A, Gomi Y, Yamanishi K, Asada H. Immunogenicity of varicella-zoster virus vaccine by different routes of administration: comparable vaccination efficacy of one-fifth dose intradermal vaccination to conventional subcutaneous vaccination. J Dermatol Sci 2022; 106:86-92. [DOI: 10.1016/j.jdermsci.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
2
|
Performance and usability evaluation of novel intradermal injection device Immucise™ and reanalysis of intradermal administration trials of influenza vaccine for the elderly. Vaccine 2022; 40:873-879. [PMID: 35031147 DOI: 10.1016/j.vaccine.2021.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 11/24/2022]
Abstract
Under the pandemic situation, there is an urgent need to produce and acquire sufficient quantities of prophylactic vaccines. It becomes important to devise a way to achieve reliable immunity with lower doses to distribute limited supplies of vaccines to maximum number of people very quickly. Intradermal (ID) vaccination is one such method to increase the effectiveness of vaccines. However, this method has not been widely used in general clinical practice because it is technically difficult to inject vaccines precisely into the ID tissue. Therefore, new ID delivery systems that allow reliable ID administration are under development. In this paper, we summarize its design and present the results of performance and usability testing for the Immucise™ Intradermal Injection System (Immucise™). This study showed that Immucise™ can reduce dead volume and inject drugs precisely into the ID tissues of subjects from infants to the elderly and can be used correctly and safely by healthcare professionals. This randomized controlled trial compared ID administration with Immucise™ and standard subcutaneous (SC) administration of seasonal influenza vaccine by analyzing the efficacy of the vaccine in the elderly group at 90 days and 180 days after administration. It was found that the vaccine for the ID group was as effective or more effective than that for the SC group up to 180 days later. It was also found that the geometric mean titer values, especially for B strains, were higher in the two-dose ID group than in the two-dose SC group. These findings suggest that Immucise™ is one of the best devices to distribute a small amount of vaccine quickly and widely to a larger number of people with little loss of vaccine during a pandemic.
Collapse
|
3
|
Migliore A, Gigliucci G, Di Marzo R, Russo D, Mammucari M. Intradermal Vaccination: A Potential Tool in the Battle Against the COVID-19 Pandemic? Risk Manag Healthc Policy 2021; 14:2079-2087. [PMID: 34045909 PMCID: PMC8144901 DOI: 10.2147/rmhp.s309707] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
This narrative review is the final output of an initiative of the SIM (Italian Society of Mesotherapy). A narrative review of scientific literature on the efficacy of fractional intradermal vaccination in comparison with full doses has been conducted for the following pathogens: influenza virus, rabies virus, poliovirus (PV), hepatitis B virus (HBV), hepatitis A virus (HAV), diphtheria-tetanus-pertussis bacterias (DTP), human papillomavirus (HPV), Japanese encephalitis virus (JE), meningococcus, varicella zoster virus (VZV) and yellow fever virus. The findings suggest that the use of the intradermal route represents a valid strategy in terms of efficacy and efficiency for influenza, rabies and HBV vaccines. Some systematic reviews on influenza vaccines suggest the absence of a substantial difference between immunogenicity induced by a fractional ID dose of up to 20% and the IM dose in healthy adults, elderly, immunocompromised patients and children. Clinical studies of remaining vaccines against other pathogens (HAV, DTP bacterias, JE, meningococcal disease, VZV, and yellow fever virus) are scarce, but promising. In the context of a COVID-19 vaccine shortage, countries should investigate if a fractional dosing scheme may help to save doses and achieve herd immunity quickly. SIM urges the scientific community and health authorities to investigate the potentiality of fractionate intradermal administration in anti-COVID-19 vaccination. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/xyVoP0mH6sQ
Collapse
Affiliation(s)
- Alberto Migliore
- Department of Internal Medicine, Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | - Gianfranco Gigliucci
- Department of Internal Medicine, Unit of Rheumatology, San Pietro Fatebenefratelli Hospital, Rome, Italy
| | | | | | | |
Collapse
|
4
|
Egunsola O, Clement F, Taplin J, Mastikhina L, Li JW, Lorenzetti DL, Dowsett LE, Noseworthy T. Immunogenicity and Safety of Reduced-Dose Intradermal vs Intramuscular Influenza Vaccines: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2035693. [PMID: 33560425 PMCID: PMC7873776 DOI: 10.1001/jamanetworkopen.2020.35693] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Low-dose intradermal influenza vaccines could be a suitable alternative to full intramuscular dose during vaccine shortages. OBJECTIVE To compare the immunogenicity and safety of the influenza vaccine at reduced or full intradermal doses with full intramuscular doses to inform policy design in the event of vaccine shortages. DATA SOURCES MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched for studies published from 2010 until June 5, 2020. STUDY SELECTION All comparative studies across all ages assessing the immunogenicity or safety of intradermal and intramuscular influenza vaccinations were included. DATA EXTRACTION AND SYNTHESIS Data were extracted by a single reviewer and verified by a second reviewer. Discrepancies between reviewers were resolved through consensus. Random-effects meta-analysis was conducted. MAIN OUTCOMES AND MEASURES Primary outcomes included geometric mean titer, seroconversion, seroprotection, and adverse events. RESULTS A total of 30 relevant studies were included; 29 studies were randomized clinical trials with 13 759 total participants, and 1 study was a cohort study of 164 021 participants. There was no statistically significant difference in seroconversion rates between the 3-µg, 6-µg, 7.5-µg, and 9-µg intradermal vaccine doses and the 15-µg intramuscular vaccine dose for each of the H1N1, H3N2, and B strains, but rates were significantly higher with the 15-µg intradermal dose compared with the 15-µg intramuscular dose for the H1N1 strain (rate ratio [RR], 1.10; 95% CI, 1.01-1.20) and B strain (RR, 1.40; 95% CI, 1.13-1.73). Seroprotection rates for the 9-µg and 15-µg intradermal doses did not vary significantly compared with the 15-µg intramuscular dose for all the 3 strains, except for the 15-µg intradermal dose for the H1N1 strain, for which rates were significantly higher (RR, 1.05; 95% CI, 1.01-1.09). Local adverse events were significantly higher with intradermal doses than with the 15-µg intramuscular dose, particularly erythema (3-µg dose: RR, 9.62; 95% CI, 1.07-86.56; 6-µg dose: RR, 23.79; 95% CI, 14.42-39.23; 9-µg dose: RR, 4.56; 95% CI, 3.05-6.82; 15-µg dose: RR, 3.68; 95% CI, 3.19-4.25) and swelling (3-µg dose: RR, 20.16; 95% CI, 4.68-86.82; 9-µg dose: RR, 5.23; 95% CI, 3.58-7.62; 15-µg dose: RR, 3.47 ; 95% CI, 2.21-5.45). Fever and chills were significantly more common with the 9-µg intradermal dose than the 15-µg intramuscular dose (fever: RR, 1.36; 95% CI, 1.03-1.80; chills: RR, 1.24; 95% CI, 1.03-1.50) while all other systemic adverse events were not statistically significant for all other doses. CONCLUSIONS AND RELEVANCE These findings suggest that reduced-dose intradermal influenza vaccination could be a reasonable alternative to standard dose intramuscular vaccination.
Collapse
Affiliation(s)
- Oluwaseun Egunsola
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Fiona Clement
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - John Taplin
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Liza Mastikhina
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Joyce W. Li
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Diane L. Lorenzetti
- Department Community Health Sciences, University of Calgary Alberta, Canada
- Health Sciences Library, University of Calgary, Alberta, Canada
| | - Laura E. Dowsett
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Tom Noseworthy
- Department Community Health Sciences, University of Calgary Alberta, Canada
| |
Collapse
|
5
|
Schnyder JL, De Pijper CA, Garcia Garrido HM, Daams JG, Goorhuis A, Stijnis C, Schaumburg F, Grobusch MP. Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination - A systematic review and meta-analysis. Travel Med Infect Dis 2020; 37:101868. [PMID: 32898704 PMCID: PMC7474844 DOI: 10.1016/j.tmaid.2020.101868] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vaccine supply shortages are of global concern. We hypothesise that intradermal (ID) immunisation as an alternative to standard routes might augment vaccine supply utilisation without loss of vaccine immunogenicity and efficacy. METHODS We conducted a systematic review and meta-analysis searching Medline, Embase and Web of Science databases. Studies were included if: licensed, currently available vaccines were used; fractional dose of ID was compared to IM or SC immunisation; primary immunisation schedules were evaluated; immunogenicity, safety data and/or cost were reported. We calculated risk differences (RD). Studies were included in meta-analysis if: a pre-defined immune correlate of protection was assessed; WHO-recommend schedules and antigen doses were used in the control group; the same schedule was applied to both ID and control groups (PROSPERO registration no. CRD42020151725). RESULTS The primary search yielded 5,873 articles, of which 156 articles were included; covering 12 vaccines. Non-inferiority of immunogenicity with 20-60% of antigen used with ID vaccines was demonstrated for influenza (H1N1: RD -0·01; 95% CI -0·02, 0·01; I2 = 55%, H2N3: RD 0·00; 95% CI -0·01, 0·01; I2 = 0%, B: RD -0·00; 95% CI -0·02, 0·01; I2 = 72%), rabies (RD 0·00; 95% CI -0·02, 0·02; I2 = 0%), and hepatitis B vaccines (RD -0·01; 95% CI -0·04, 0·02; I2 = 20%). Clinical trials on the remaining vaccines yielded promising results, but are scarce. CONCLUSIONS There is potential for inoculum/antigen dose-reduction by using ID immunisation as compared to standard routes of administration for some vaccines (e.g. influenza, rabies). When suitable, vaccine trials should include an ID arm.
Collapse
Affiliation(s)
- Jenny L Schnyder
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Cornelis A De Pijper
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Hannah M Garcia Garrido
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Abraham Goorhuis
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Cornelis Stijnis
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Martin P Grobusch
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands.
| |
Collapse
|
6
|
Dimova RB, Egelebo CC, Izurieta HS. Systematic Review of Published Meta-Analyses of Vaccine Safety. Stat Biopharm Res 2020. [DOI: 10.1080/19466315.2020.1763833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Wagner A, Weinberger B. Vaccines to Prevent Infectious Diseases in the Older Population: Immunological Challenges and Future Perspectives. Front Immunol 2020; 11:717. [PMID: 32391017 PMCID: PMC7190794 DOI: 10.3389/fimmu.2020.00717] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases are a major cause for morbidity and mortality in the older population. Demographic changes will lead to increasing numbers of older persons over the next decades. Prevention of infections becomes increasingly important to ensure healthy aging for the individual, and to alleviate the socio-economic burden for societies. Undoubtedly, vaccines are the most efficient health care measure to prevent infections. Age-associated changes of the immune system are responsible for decreased immunogenicity and clinical efficacy of most currently used vaccines in older age. Efficacy of standard influenza vaccines is only 30-50% in the older population. Several approaches, such as higher antigen dose, use of MF59 as adjuvant and intradermal administration have been implemented in order to specifically target the aged immune system. The use of a 23-valent polysaccharide vaccine against Streptococcus pneumoniae has been amended by a 13-valent conjugated pneumococcal vaccine originally developed for young children several years ago to overcome at least some of the limitations of the T cell-independent polysaccharide antigens, but still is only approximately 50% protective against pneumonia. A live-attenuated vaccine against herpes zoster, which has been available for several years, demonstrated efficacy of 51% against herpes zoster and 67% against post-herpetic neuralgia. Protection was lower in the very old and decreased several years after vaccination. Recently, a recombinant vaccine containing the viral glycoprotein gE and the novel adjuvant AS01B has been licensed. Phase III studies demonstrated efficacy against herpes zoster of approx. 90% even in the oldest age groups after administration of two doses and many countries now recommend the preferential use of this vaccine. There are still many infectious diseases causing substantial morbidity in the older population, for which no vaccines are available so far. Extensive research is ongoing to develop vaccines against novel targets with several vaccine candidates already being clinically tested, which have the potential to substantially reduce health care costs and to save many lives. In addition to the development of novel and improved vaccines, which specifically target the aged immune system, it is also important to improve uptake of the existing vaccines in order to protect the vulnerable, older population.
Collapse
Affiliation(s)
- Angelika Wagner
- Department of Pathophysiology, Infectiology, and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Ng TWY, Cowling BJ, Gao HZ, Thompson MG. Comparative Immunogenicity of Enhanced Seasonal Influenza Vaccines in Older Adults: A Systematic Review and Meta-analysis. J Infect Dis 2019; 219:1525-1535. [PMID: 30551178 PMCID: PMC6775043 DOI: 10.1093/infdis/jiy720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/12/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A number of enhanced influenza vaccines have been developed for use in older adults, including high-dose, MF59-adjuvanted, and intradermal vaccines. METHODS We conducted a systematic review examining the improvements in antibody responses measured by the hemagglutination inhibition assay associated with these enhanced vaccines, compared with each other and with the standard-dose (SD) vaccine using random effects models. RESULTS Thirty-nine trials were included. Compared with adults aged ≥60 years receiving SD vaccines, those receiving enhanced vaccines had significantly higher postvaccination titers (for all vaccine strains) and higher proportions with elevated titers ≥40 (for most vaccine strains). High-dose vaccine elicited 82% higher postvaccination titer to A(H3N2) compared with SD vaccine; this was significantly higher than the 52% estimated for MF59-adjuvanted versus SD vaccines (P = .04), which was higher than the 32% estimated for intradermal versus SD vaccines (P < .01). CONCLUSIONS Overall, by summarizing current evidence, we found that enhanced vaccines had greater antibody responses than the SD vaccine. Indications of differences among enhanced vaccines highlight the fact that further research is needed to compare new vaccine options, especially during seasons with mismatched circulating strains and for immune outcomes other than hemagglutination inhibition titers as well as vaccine efficacy.
Collapse
Affiliation(s)
- Tiffany W Y Ng
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Benjamin J Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Hui Zhi Gao
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China
| | - Mark G Thompson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
9
|
Hung IFN, Yuen KY. Immunogenicity, safety and tolerability of intradermal influenza vaccines. Hum Vaccin Immunother 2018; 14:565-570. [PMID: 28604266 PMCID: PMC5861844 DOI: 10.1080/21645515.2017.1328332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/17/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022] Open
Abstract
Intradermal influenza vaccination has been studied for more than 80 y. The revived interest in this strategy of vaccination is a result of the innovative technologies in needle design allowing more precise injection and making the device easier to use. Furthermore, clinical trials on these novel devices have demonstrated significant dose sparing effects, improved immunogenicity and very few adverse effects. This review compares intradermal vaccination with various devices with subcutaneous and intramuscular vaccination. We also discussed the role of topical adjuvant before intradermal vaccination.
Collapse
Affiliation(s)
- Ivan F. N. Hung
- Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection and Division of Infectious Disease, State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, the University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Carol Yu Centre for Infection and Division of Infectious Disease, State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, the University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
10
|
Teresa Aguado M, Barratt J, Beard JR, Blomberg BB, Chen WH, Hickling J, Hyde TB, Jit M, Jones R, Poland GA, Friede M, Ortiz JR. Report on WHO meeting on immunization in older adults: Geneva, Switzerland, 22-23 March 2017. Vaccine 2018; 36:921-931. [PMID: 29336923 PMCID: PMC5865389 DOI: 10.1016/j.vaccine.2017.12.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/30/2022]
Abstract
Many industrialized countries have implemented routine immunization policies for older adults, but similar strategies have not been widely implemented in low- and middle-income countries (LMICs). In March 2017, the World Health Organization (WHO) convened a meeting to identify policies and activities to promote access to vaccination of older adults, specifically in LMICs. Participants included academic and industry researchers, funders, civil society organizations, implementers of global health interventions, and stakeholders from developing countries with adult immunization needs. These experts reviewed vaccine performance in older adults, the anticipated impact of adult vaccination programs, and the challenges and opportunities of building or strengthening an adult and older adult immunization platforms. Key conclusions of the meeting were that there is a need for discussion of new opportunities for vaccination of all adults as well as for vaccination of older adults, as reflected in the recent shift by WHO to a life-course approach to immunization; that immunization in adults should be viewed in the context of a much broader model based on an individual's abilities rather than chronological age; and that immunization beyond infancy is a global priority that can be successfully integrated with other interventions to promote healthy ageing. As WHO is looking ahead to a global Decade of Healthy Ageing starting in 2020, it will seek to define a roadmap for interdisciplinary collaborations to integrate immunization with improving access to preventive and other healthcare interventions for adults worldwide.
Collapse
Affiliation(s)
| | - Jane Barratt
- International Federation on Ageing, Toronto, Canada.
| | - John R Beard
- Ageing and Life Course, World Health Organization, Geneva, Switzerland.
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | - Terri B Hyde
- Vaccine Introduction Team, Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Mark Jit
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, United Kingdom; Modelling and Economics Unit, Public Health England, London, United Kingdom.
| | | | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic and Foundation, Rochester, MN, USA.
| | - Martin Friede
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland.
| | - Justin R Ortiz
- Initiative for Vaccine Research, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
11
|
Challenges of vaccination in older people. Can we circumvent immunosenescence? Maturitas 2016; 90:1-2. [DOI: 10.1016/j.maturitas.2016.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 11/20/2022]
|