1
|
Devi B, Jangid K, Kumar V, Arora T, Kumar N, Dwivedi AR, Parkash J, Kumar V. Phenylstyrylpyrimidine derivatives as potential multipotent therapeutics for Alzheimer's disease. RSC Med Chem 2024; 15:2922-2936. [PMID: 39149109 PMCID: PMC11324047 DOI: 10.1039/d4md00277f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurological disorder that affects millions of people worldwide. Despite extensive research efforts, there are currently no effective disease-modifying therapeutics available for the complete cure of AD. In the current study, we have designed and synthesized a series of phenyl-styryl-pyrimidine derivatives as potential multifunctional agents against different targets of AD. The compounds were evaluated for their ability to inhibit acetylcholinesterase (AChE), monoamine oxidase (MAO) and β amyloid aggregation which are associated with the initiation and progression of the disease. Several compounds in the series exhibited potent inhibitory activity against AChE and MAO-B, with IC50 values in the low micromolar range. In particular, two compounds, BV-12 and BV-14, were found to exhibit a multipotent profile and showed non-competitive inhibition against MAO-B with IC50 values of 4.93 ± 0.38 & 7.265 ± 0.82 μM, respectively and AChE inhibition with IC50 values of 7.265 and 9.291 μM, respectively. BV-12 and BV-14 also displayed β amyloid self-aggregation inhibition of 32.98% and 23.25%, respectively. Furthermore, molecular modelling studies revealed that BV-14 displayed a docking score of -11.20 kcal mol-1 with MAO-B & -6.767 kcal mol-1 with AChE, forming a stable complex with both proteins. It was concluded that phenyl-styryl-pyrimidine derivatives have the potential to be developed as multitarget directed ligands for the treatment of AD.
Collapse
Affiliation(s)
- Bharti Devi
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Kailash Jangid
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda-151401 India
| | - Vijay Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Tania Arora
- Department of Zoology, School of Basic Sciences, Central University of Punjab Bathinda-151401 India
| | - Naveen Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| | - Ashish Ranjan Dwivedi
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Bathinda-151401 India
- Gitam School of Pharmacy Hyderabad Telangana 502329 India
| | - Jyoti Parkash
- Department of Zoology, School of Basic Sciences, Central University of Punjab Bathinda-151401 India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, School of Basic Sciences, Central University of Punjab Bathinda Punjab-151401 India
| |
Collapse
|
2
|
Almeaqli MT, Alaidaa Y, Alnajjar FM, Al Shararh AS, Alharbi DS, Almslmani YI, Alotibi YA, Alrashidi HS, Alshehri WA, Hassan HM, Al-Gayyar MMH. Therapeutic Effects of Arctiin on Alzheimer's Disease-like Model in Rats by Reducing Oxidative Stress, Inflammasomes and Fibrosis. Curr Alzheimer Res 2024; 21:276-288. [PMID: 39136502 DOI: 10.2174/0115672050333388240801043509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/28/2024] [Accepted: 07/19/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) affects approximately 50 million people globally and is expected to triple by 2050. Arctiin is a lignan found in the Arctium lappa L. plant. Arctiin possesses anti-proliferative, antioxidative and anti-adipogenic. OBJECTIVES We aimed to explore the potential therapeutic effects of Arctiin on rats with AD by evaluating the expression of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. METHODS AD was induced in rats by administering 70 mg/kg of aluminum chloride through intraperitoneal injection daily for six weeks. After inducing AD, some rats were treated with 25 mg/kg of Arctiin daily for three weeks through oral gavage. Furthermore, to examine the brain tissue structure, hippocampal sections were stained with hematoxylin/eosin and anti-TLR4 antibodies. The collected samples were analyzed for gene expression and protein levels of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. RESULTS In behavioral tests, rats showed a significant improvement in their behavior when treated with Arctiin. Microimages stained with hematoxylin/eosin showed that Arctiin helped to improve the structure and cohesion of the hippocampus, which was previously impaired by AD. Furthermore, Arctiin reduced the expression of TLR4, NLRP3, STAT3, TGF-β, cyclin D1, and CDK2. CONCLUSION Arctiin can enhance rats' behavior and structure of the hippocampus in AD rats. This is achieved through its ability to reduce the expression of both TLR4 and NLRP3, hence inhibiting the inflammasome pathway. Furthermore, Arctiin can improve tissue fibrosis by regulating STAT3 and TGF-β. Lastly, it can block the cell cycle proteins cyclin D1 and CDK2.
Collapse
Affiliation(s)
- Mohamed T Almeaqli
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yazeed Alaidaa
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Faisal M Alnajjar
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Abdullah S Al Shararh
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Danah S Alharbi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yazeed I Almslmani
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Yousef A Alotibi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hani S Alrashidi
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Wael A Alshehri
- PharmD Program, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Hanan M Hassan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa City, Egypt
| | - Mohammed M H Al-Gayyar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
3
|
Huang Y, Agarwal SK, Chen H, Chatterjee S, Johnson ML, Aparasu RR. Real-world Comparative Effectiveness of Methotrexate-based Combinations for Rheumatoid Arthritis: A Retrospective Cohort Study. Clin Ther 2023; 45:e177-e186. [PMID: 37573225 DOI: 10.1016/j.clinthera.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/24/2023] [Accepted: 06/28/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Guidelines recommend using disease-modifying antirheumatic drugs (DMARDs) in combination with methotrexate (MTX) for patients with rheumatoid arthritis (RA) after monotherapy. Little is known about the real-world comparative effectiveness of these MTX-DMARD combinations. This study compared the effectiveness of various MTX-based DMARD combinations for patients with RA initiating MTX-DMARD combination therapy using administrative claims database. METHODS This retrospective cohort study included adults (aged ≥18 years) with RA who initiated MTX combination treatment with conventional synthetic DMARDs (csDMARDs), tumor necrosis factor inhibitor (TNFi) biologic DMARDs (bDMARDs), non-TNFi bDMARDs, or targeted synthetic DMARDs (tsDMARDs) between July 1, 2012, and December 31, 2013 (index date), from the MarketScan Commercial Claims Data. Patients had continuous enrollment from the 6 months of preindex period until the 12 months of postindex period. The MTX-based DMARD combination therapy cohort was defined as ≥1 MTX prescription in the first 30 days from the index date and ≥14 days overlapping use of the prescription fills of the MTX and the index DMARD. Effectiveness was measured by using the claims algorithm (dosing, switching, addition, oral glucocorticoid use, or multiple glucocorticoid injection). Propensity score analysis with the inverse probability of treatment weighting (PS-IPTW), estimated by using the generalized boosted machine learning method, was used to balance the distribution of baseline variables between the combination groups. Multivariable logistic regression using PS-IPTW was conducted to compare the effectiveness of the combination groups. Sensitivity analysis evaluated the modified effectiveness algorithms or the time to the first treatment failure. FINDINGS A total of 3174 adult patients with RA starting an MTX-DMARD combination therapy were identified (mean [SD] age, 50 [9] years), including 1568 (49%) initiating a csDMARD + MTX, 1343 (42%) initiating TNFi + MTX, and 240 (8%) initiating non-TNFi bDMARD + MTX, and 23 (1%) initiating tsDMARD + MTX. Owing to the small sample, the tsDMARD combination group was not included in the comparative analysis. Algorithm-based therapy effectiveness was found in 9.95% of the csDMARD + MTX, 20.48% of the TNFi + MTX, and 20.83% of the non-TNFi + MTX groups. PS-IPTW showed that the csDMARD combination is less effective (adjusted odds ratio, 0.422; 95% CI, 0.341-0.524) than the TNFi combination; however, the non-TNFi biologic combination had similar effectiveness (aOR, 1.063; 95% CI, 0.680-1.662) compared to the TNFi combination. Sensitivity analyses confirmed the main results. IMPLICATIONS Among RA patients initiating MTX-DMARD combinations, both non-TNFi biologics and TNFi-based combinations with MTX were equally effective, but csDMARD + MTX was less effective than the TNFi plus MTX.
Collapse
Affiliation(s)
- Yinan Huang
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, Oxford. Mississippi, USA
| | - Sandeep K Agarwal
- Section of Immunology, Allergy & Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hua Chen
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Satabdi Chatterjee
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Michael L Johnson
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Rajender R Aparasu
- Department of Pharmaceutical Health Outcomes and Policy, College of Pharmacy, University of Houston, Houston, Texas, USA.
| |
Collapse
|
4
|
Dávila G, Torres-Prioris MJ, López-Barroso D, Berthier ML. Turning the Spotlight to Cholinergic Pharmacotherapy of the Human Language System. CNS Drugs 2023; 37:599-637. [PMID: 37341896 PMCID: PMC10374790 DOI: 10.1007/s40263-023-01017-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Even though language is essential in human communication, research on pharmacological therapies for language deficits in highly prevalent neurodegenerative and vascular brain diseases has received little attention. Emerging scientific evidence suggests that disruption of the cholinergic system may play an essential role in language deficits associated with Alzheimer's disease and vascular cognitive impairment, including post-stroke aphasia. Therefore, current models of cognitive processing are beginning to appraise the implications of the brain modulator acetylcholine in human language functions. Future work should be directed further to analyze the interplay between the cholinergic system and language, focusing on identifying brain regions receiving cholinergic innervation susceptible to modulation with pharmacotherapy to improve affected language domains. The evaluation of language deficits in pharmacological cholinergic trials for Alzheimer's disease and vascular cognitive impairment has thus far been limited to coarse-grained methods. More precise, fine-grained language testing is needed to refine patient selection for pharmacotherapy to detect subtle deficits in the initial phases of cognitive decline. Additionally, noninvasive biomarkers can help identify cholinergic depletion. However, despite the investigation of cholinergic treatment for language deficits in Alzheimer's disease and vascular cognitive impairment, data on its effectiveness are insufficient and controversial. In the case of post-stroke aphasia, cholinergic agents are showing promise, particularly when combined with speech-language therapy to promote trained-dependent neural plasticity. Future research should explore the potential benefits of cholinergic pharmacotherapy in language deficits and investigate optimal strategies for combining these agents with other therapeutic approaches.
Collapse
Affiliation(s)
- Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain
- Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, University of Malaga, Marqués de Beccaria 3, 29010, Malaga, Spain.
- Instituto de Investigación Biomédica de Malaga-IBIMA, Malaga, Spain.
- Language Neuroscience Research Laboratory, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain.
| |
Collapse
|