1
|
Van de Voorde P, Turner NM, Djakow J, de Lucas N, Martinez-Mejias A, Biarent D, Bingham R, Brissaud O, Hoffmann F, Johannesdottir GB, Lauritsen T, Maconochie I. [Paediatric Life Support]. Notf Rett Med 2021; 24:650-719. [PMID: 34093080 PMCID: PMC8170638 DOI: 10.1007/s10049-021-00887-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
The European Resuscitation Council (ERC) Paediatric Life Support (PLS) guidelines are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations of the International Liaison Committee on Resuscitation (ILCOR). This section provides guidelines on the management of critically ill or injured infants, children and adolescents before, during and after respiratory/cardiac arrest.
Collapse
Affiliation(s)
- Patrick Van de Voorde
- Department of Emergency Medicine, Faculty of Medicine UG, Ghent University Hospital, Gent, Belgien
- Federal Department of Health, EMS Dispatch Center, East & West Flanders, Brüssel, Belgien
| | - Nigel M. Turner
- Paediatric Cardiac Anesthesiology, Wilhelmina Children’s Hospital, University Medical Center, Utrecht, Niederlande
| | - Jana Djakow
- Paediatric Intensive Care Unit, NH Hospital, Hořovice, Tschechien
- Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Medical Faculty of Masaryk University, Brno, Tschechien
| | | | - Abel Martinez-Mejias
- Department of Paediatrics and Emergency Medicine, Hospital de Terassa, Consorci Sanitari de Terrassa, Barcelona, Spanien
| | - Dominique Biarent
- Paediatric Intensive Care & Emergency Department, Hôpital Universitaire des Enfants, Université Libre de Bruxelles, Brüssel, Belgien
| | - Robert Bingham
- Hon. Consultant Paediatric Anaesthetist, Great Ormond Street Hospital for Children, London, Großbritannien
| | - Olivier Brissaud
- Réanimation et Surveillance Continue Pédiatriques et Néonatales, CHU Pellegrin – Hôpital des Enfants de Bordeaux, Université de Bordeaux, Bordeaux, Frankreich
| | - Florian Hoffmann
- Pädiatrische Intensiv- und Notfallmedizin, Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität, München, Deutschland
| | | | - Torsten Lauritsen
- Paediatric Anaesthesia, The Juliane Marie Centre, University Hospital of Copenhagen, Kopenhagen, Dänemark
| | - Ian Maconochie
- Paediatric Emergency Medicine, Faculty of Medicine Imperial College, Imperial College Healthcare Trust NHS, London, Großbritannien
| |
Collapse
|
2
|
Van de Voorde P, Turner NM, Djakow J, de Lucas N, Martinez-Mejias A, Biarent D, Bingham R, Brissaud O, Hoffmann F, Johannesdottir GB, Lauritsen T, Maconochie I. European Resuscitation Council Guidelines 2021: Paediatric Life Support. Resuscitation 2021; 161:327-387. [PMID: 33773830 DOI: 10.1016/j.resuscitation.2021.02.015] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
These European Resuscitation Council Paediatric Life Support (PLS) guidelines, are based on the 2020 International Consensus on Cardiopulmonary Resuscitation Science with Treatment Recommendations. This section provides guidelines on the management of critically ill infants and children, before, during and after cardiac arrest.
Collapse
Affiliation(s)
- Patrick Van de Voorde
- Department of Emergency Medicine Ghent University Hospital, Faculty of Medicine UG, Ghent, Belgium; EMS Dispatch Center, East & West Flanders, Federal Department of Health, Belgium.
| | - Nigel M Turner
- Paediatric Cardiac Anesthesiology, Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
| | - Jana Djakow
- Paediatric Intensive Care Unit, NH Hospital, Hořovice, Czech Republic; Paediatric Anaesthesiology and Intensive Care Medicine, University Hospital Brno, Medical Faculty of Masaryk University, Brno, Czech Republic
| | | | - Abel Martinez-Mejias
- Department of Paediatrics and Emergency Medicine, Hospital de Terassa, Consorci Sanitari de Terrassa, Barcelona, Spain
| | - Dominique Biarent
- Paediatric Intensive Care & Emergency Department, Hôpital Universitaire des Enfants, Université Libre de Bruxelles, Brussels, Belgium
| | - Robert Bingham
- Hon. Consultant Paediatric Anaesthetist, Great Ormond Street Hospital for Children, London, UK
| | - Olivier Brissaud
- Réanimation et Surveillance Continue Pédiatriques et Néonatales, CHU Pellegrin - Hôpital des Enfants de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Florian Hoffmann
- Paediatric Intensive Care and Emergency Medicine, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Torsten Lauritsen
- Paediatric Anaesthesia, The Juliane Marie Centre, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Ian Maconochie
- Paediatric Emergency Medicine, Imperial College Healthcare Trust NHS, Faculty of Medicine Imperial College, London, UK
| |
Collapse
|
3
|
Irschik S, Veljkovic J, Golej J, Schlager G, Brandt JB, Krall C, Hermon M. Pediatric Simplified Acute Physiology Score II: Establishment of a New, Repeatable Pediatric Mortality Risk Assessment Score. Front Pediatr 2021; 9:757822. [PMID: 34778148 PMCID: PMC8583491 DOI: 10.3389/fped.2021.757822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: In critical care it is crucial to appropriately assess the risk of mortality for each patient. This is especially relevant in pediatrics, with its need for accurate and repeatable scoring. Aim of this study was to evaluate an age-adapted version of the expanded Simplified Acute Physiology Score II; (p-SAPS II), a repeatable, newly-designed scoring system compared to established scores (Pediatric Sequential Organ Failure Assessment Score/pSOFA, Pediatric Logistic Organ Dysfunction Score-2/PELOD-2 and Pediatric Index of Mortality 3/PIM3). Design: This retrospective cohort pilot study included data collected from patients admitted to the Pediatric Intensive Care Unit (PICU) at the Medical University of Vienna between July 2017 through December 2018. Patients: 231 admissions were included, comprising neonates (gestational age of ≥ 37 weeks) and patients up to 18 years of age with a PICU stay longer than 48 h. Main Outcomes: Mortality risk prediction and discrimination between survivors and non-survivors were the main outcomes of this study. The primary statistical methods for evaluating the performance of each score were the area under the receiver operating characteristic curve (AUROC) and goodness-of-fit test. Results: Highest AUROC curve was calculated for p-SAPS II (AUC = 0.86; 95% CI: 0.77-0.96; p < 0.001). This was significantly higher than the AUROCs of PELOD-2/pSOFA but not of PIM3. However, in a logistic regression model including p-SAPS II and PIM3 as covariates, p-SAPS II had a significant effect on the accuracy of prediction (p = 0.003). Nevertheless, according to the goodness-of-fit test for p-SAPS II and PIM3, p-SAPS II overestimated the number of deaths, whereas PIM3 showed acceptable estimations. Repeatability testing showed increasing AUROC values for p-SAPS II throughout the clinical stay (0.96 at day 28) but still no significant difference to PIM 3. The prediction accuracy, although improved over the days and even exceeded PIM 3. Conclusions: The newly-created p-SAPS II performed better than the established PIM3 in terms of discriminating between survivors and non-survivors. Furthermore, p-SAPS II can be assessed repeatably throughout a patient's PICU stay what improves mortality prediction. However, there is still a need to optimize calibration of the score to accurately predict mortality sooner throughout the clinical stay.
Collapse
Affiliation(s)
- Stefan Irschik
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Johann Golej
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Gerald Schlager
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Jennifer B Brandt
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | - Christoph Krall
- Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Michael Hermon
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Saxena R, Anand A, Deep A. Use of terlipressin in critically ill children with liver disease. BMC Nephrol 2020; 21:360. [PMID: 32819297 PMCID: PMC7441708 DOI: 10.1186/s12882-020-01914-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/26/2020] [Indexed: 01/25/2023] Open
Abstract
Background Terlipressin, a long-acting synthetic analogue of vasopressin has been used in the adult population for various indications including hepatorenal syndrome (HRS-AKI), esophageal variceal hemorrhage (EVH) and shock, but its use in pediatrics is still limited to individualized cases and data on safety and efficacy is scant. Methods We reviewed the patient records of children with liver disease and Acute Kidney Injury requiring terlipressin admitted to the Paediatric Intensive Care Unit (PICU) of King’s College Hospital, London from January 2010–December 2017, with special emphasis on its effect on renal parameters and adverse event profile. Results Twenty-one terlipressin administration records in a total of 16 patients (median) (IQR) 10 years (6.1–14.4) were included. The drug was initially given as a bolus dose in all cases, followed by either bolus or infusion with median dosage being 5.2 (3.8–6.7) mcg/kg/hour. After administration, a sustained increase of mean arterial pressure was observed. There was an improvement in serum creatinine (Cr) (at 24 h; p = 0.386) and increase in urine output (UO), especially in the hepatorenal syndrome subgroup (HRS-AKI). We found minimal evidence of gastrointestinal side effects including feeding intolerance and vasoconstrictive side effects including cyanosis / ischaemia of extremities. Conclusion Terlipressin was found to be safe in critically sick children with liver disease with positive impact on renal parameters which might be taken as a surrogate marker of HRS reversal, though effects on outcomes are difficult to ascertain. It is important to be aware of all its side-effects and actively watch for them. Future prospective studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Romit Saxena
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Aravind Anand
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Akash Deep
- Paediatric Intensive Care Unit, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK.
| |
Collapse
|
5
|
Perspectives on aetiology, pathophysiology and management of shock in African children. Afr J Emerg Med 2017; 7:S20-S26. [PMID: 30505670 PMCID: PMC6246868 DOI: 10.1016/j.afjem.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/22/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022] Open
Abstract
Paediatric shock is still a common emergency of public health importance with an estimated 400,000–500,000 reported cases annually. Mortality due to paediatric shock has varied over the years. Data in 1980s show that mortality rates due to septic shock in children were over 50%; but by the end of the year 2000 data indicated that though a marked decline in mortality rates had been achieved, it had stagnated at about 20%. Descriptions of paediatric shock reveal the lack of a common definition and there are important gaps in evidence-based management in different settings. In well-resourced healthcare systems with well-functioning intensive care facilities, the widespread implementation of shock management guidelines based on the Paediatric Advanced Life Support and European Paediatric Advanced Life Support courses have reduced mortality. In resource limited settings with diverse infectious causative agents, the Emergency Triage Assessment and Treatment (ETAT) approach is more pragmatic, but its impact remains circumscribed to centres where ETAT has been implemented and sustained. Advocacy for common management pathways irrespective of underlying cause have been suggested. However, in sub Saharan Africa, the diversity of underlying causative organisms and patient phenotypes may limit a single approach to shock management. Data from a large fluid trial (the FEAST trial) in East Africa have provided vital insight to shock management. In this trial febrile children with clinical features of impaired perfusion were studied. Rapid infusion of fluid boluses, irrespective of whether the fluid was colloid or crystalloid, when compared to maintenance fluids alone had an increased risk of mortality at 48 h. All study participants were promptly managed for underlying conditions and comorbidity such as malaria, bacteraemia, severe anaemia, meningitis, pneumonia, convulsions, hypoglycaemia and others. The overall low mortality in the trial suggests the potential contribution of ETAT, the improved standard of care and supportive treatment across the subgroups in the trial. Strengthening systems that enable rapid identification of shock, prompt treatment of children with correct antimicrobials and supportive care such as oxygen administration and blood transfusion may contribute to better survival outcomes in resources limited settings.
Collapse
|