1
|
Zhang L, Luo P, Li H, Pan Y, Zhang H, Si X, Chen W, Huang Y. Chicken GLUT4 function via enhancing mitochondrial oxidative phosphorylation and inhibiting ribosome pathway in skeletal muscle satellite cells. Poult Sci 2024; 103:104403. [PMID: 39515116 PMCID: PMC11584589 DOI: 10.1016/j.psj.2024.104403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Glucose Transporter 4 (GLUT4) is a crucial protein facilitating glucose uptake and metabolism across cell membranes in mammals. However, information on GLUT4 in birds has historically been limited. In this study, we investigated the dynamic expression profile of chicken GLUT4 using real-time quantitative PCR (RT-qPCR) and examined its potential effects and mechanisms via GLUT4 overexpression and RNA sequencing (RNA-seq) in chicken primary skeletal muscle satellite cells (CP-SMSCs). Our results demonstrated that chicken GLUT4 is differentially expressed across tissues, with predominant expression in skeletal muscles, and across developmental stages of CP-SMSCs, with notable upregulation during the phases of cell proliferation and early differentiation. Notably, 0.1 μM insulin for 60 min significantly elevated the expression of GLUT4 in CP-SMSCs (P < 0.05). GLUT4 overexpression in CP-SMSCs promoted cell proliferation, as evidenced by Cell Counting Kit-8 (CCK-8) (P < 0.05) and 5-Ethynyl-2'-Deoxyuridine (EDU) assays (P < 0.05), and enhanced glucose consumption following 0.1 μM insulin treatment (P < 0.05). However, it inhibited glucose consumption 12 h after the addition of 5 g/L glucose (P < 0.05). After overexpressing GLUT4, we identified 302 differentially expressed genes (DEGs) in CP-SMSCs, with 134 upregulated and 168 downregulated. These DEGs are primarily enriched in pathways such as oxidative phosphorylation, ribosome, cardiac muscle contraction, ATP metabolic processes, and mitochondrial protein complexes. Specifically, in the enriched oxidative phosphorylation pathway, the upregulated DEGs (12) encode mitochondrial proteins, while the downregulated DEGs (6) are nuclear genome-derived. The ribosomal pathway is predominantly inhibited, accompanying with the downregulation of the translocase of outer mitochondrial membrane 7 (TOMM7)/translocase of inner mitochondrial membrane 8 (TIMM8A) complex responsible for mitochondrial protein transport, and a reduction in 28S (LOC121106978) and 18S (LOC112533601) ribosomal rRNAs. In conclusion, chicken GLUT4 is dynamically modulated during development and acts as an insulin responder that significantly regulates cellular glucose uptake and cell proliferation. This regulation occurs mainly through enhancing the mitochondrial oxidative phosphorylation and inhibiting ribosomal pathway.
Collapse
Affiliation(s)
- Lin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Huihong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yuxian Pan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China.
| |
Collapse
|
2
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
3
|
Kahn RE, Dayanidhi S, Lacham-Kaplan O, Hawley JA. Molecular clocks, satellite cells, and skeletal muscle regeneration. Am J Physiol Cell Physiol 2023; 324:C1332-C1340. [PMID: 37184229 DOI: 10.1152/ajpcell.00073.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Skeletal muscle comprises approximately 50% of individual body mass and plays vital roles in locomotion, heat production, and whole body metabolic homeostasis. This tissue exhibits a robust diurnal rhythm that is under control of the suprachiasmatic nucleus (SCN) region of the hypothalamus. The SCN acts as a "central" coordinator of circadian rhythms, while cell-autonomous "peripheral" clocks are located within almost all other tissues/organs in the body. Synchronization of the peripheral clocks in muscles (and other tissues) together with the central clock is crucial to ensure temporally coordinated physiology across all organ systems. By virtue of its mass, human skeletal muscle contains the largest collection of peripheral clocks, but within muscle resides a local stem cell population, satellite cells (SCs), which have their own functional molecular clock, independent of the numerous muscle clocks. Skeletal muscle has a daily turnover rate of 1%-2%, so the regenerative capacity of this tissue is important for whole body homeostasis/repair and depends on successful SC myogenic progression (i.e., proliferation, differentiation, and fusion). Emerging evidence suggests that SC-mediated muscle regeneration may, in part, be regulated by molecular clocks involved in SC-specific diurnal transcription. Here we provide insights on molecular clock regulation of muscle regeneration/repair and provide a novel perspective on the interplay between SC-specific molecular clocks, myogenic programs, and cell cycle kinetics that underpin myogenic progression.
Collapse
Affiliation(s)
- Ryan E Kahn
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, The Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Giraldo-Vallejo JE, Cardona-Guzmán MÁ, Rodríguez-Alcivar EJ, Kočí J, Petro JL, Kreider RB, Cannataro R, Bonilla DA. Nutritional Strategies in the Rehabilitation of Musculoskeletal Injuries in Athletes: A Systematic Integrative Review. Nutrients 2023; 15:819. [PMID: 36839176 PMCID: PMC9965375 DOI: 10.3390/nu15040819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
It is estimated that three to five million sports injuries occur worldwide each year. The highest incidence is reported during competition periods with mainly affectation of the musculoskeletal tissue. For appropriate nutritional management and correct use of nutritional supplements, it is important to individualize based on clinical effects and know the adaptive response during the rehabilitation phase after a sports injury in athletes. Therefore, the aim of this PRISMA in Exercise, Rehabilitation, Sport Medicine and Sports Science PERSiST-based systematic integrative review was to perform an update on nutritional strategies during the rehabilitation phase of musculoskeletal injuries in elite athletes. After searching the following databases: PubMed/Medline, Scopus, PEDro, and Google Scholar, a total of 18 studies met the inclusion criteria (Price Index: 66.6%). The risk of bias assessment for randomized controlled trials was performed using the RoB 2.0 tool while review articles were evaluated using the AMSTAR 2.0 items. Based on the main findings of the selected studies, nutritional strategies that benefit the rehabilitation process in injured athletes include balanced energy intake, and a high-protein and carbohydrate-rich diet. Supportive supervision should be provided to avoid low energy availability. The potential of supplementation with collagen, creatine monohydrate, omega-3 (fish oils), and vitamin D requires further research although the effects are quite promising. It is worth noting the lack of clinical research in injured athletes and the higher number of reviews in the last 10 years. After analyzing the current quantitative and non-quantitative evidence, we encourage researchers to conduct further clinical research studies evaluating doses of the discussed nutrients during the rehabilitation process to confirm findings, but also follow international guidelines at the time to review scientific literature.
Collapse
Affiliation(s)
- John E. Giraldo-Vallejo
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
| | - Miguel Á. Cardona-Guzmán
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
| | - Ericka J. Rodríguez-Alcivar
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
| | - Jana Kočí
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA
| | - Roberto Cannataro
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Galascreen Laboratories, Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Diego A. Bonilla
- Grupo de Investigación NUTRAL, Facultad de Ciencias de Nutrición y Alimentos, Universidad CES, Medellín 050021, Colombia
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia
- Department of Education, Faculty of Education, Charles University, 11636 Prague, Czech Republic
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
5
|
Liu Y, Hu Y, Li S. Protein O-GlcNAcylation in Metabolic Modulation of Skeletal Muscle: A Bright but Long Way to Go. Metabolites 2022; 12:888. [PMID: 36295790 PMCID: PMC9610910 DOI: 10.3390/metabo12100888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 09/07/2024] Open
Abstract
O-GlcNAcylation is an atypical, dynamic and reversible O-glycosylation that is critical and abundant in metazoan. O-GlcNAcylation coordinates and receives various signaling inputs such as nutrients and stresses, thus spatiotemporally regulating the activity, stability, localization and interaction of target proteins to participate in cellular physiological functions. Our review discusses in depth the involvement of O-GlcNAcylation in the precise regulation of skeletal muscle metabolism, such as glucose homeostasis, insulin sensitivity, tricarboxylic acid cycle and mitochondrial biogenesis. The complex interaction and precise modulation of O-GlcNAcylation in these nutritional pathways of skeletal muscle also provide emerging mechanical information on how nutrients affect health, exercise and disease. Meanwhile, we explored the potential role of O-GlcNAcylation in skeletal muscle pathology and focused on its benefits in maintaining proteostasis under atrophy. In general, these understandings of O-GlcNAcylation are conducive to providing new insights into skeletal muscle (patho) physiology.
Collapse
Affiliation(s)
| | | | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
6
|
Puca F, Fedele M, Rasio D, Battista S. Role of Diet in Stem and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms23158108. [PMID: 35897685 PMCID: PMC9330301 DOI: 10.3390/ijms23158108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Diet and lifestyle factors greatly affect health and susceptibility to diseases, including cancer. Stem cells’ functions, including their ability to divide asymmetrically, set the rules for tissue homeostasis, contribute to health maintenance, and represent the entry point of cancer occurrence. Stem cell properties result from the complex integration of intrinsic, extrinsic, and systemic factors. In this context, diet-induced metabolic changes can have a profound impact on stem cell fate determination, lineage specification and differentiation. The purpose of this review is to provide a comprehensive description of the multiple “non-metabolic” effects of diet on stem cell functions, including little-known effects such as those on liquid-liquid phase separation and on non-random chromosome segregation (asymmetric division). A deep understanding of the specific dietetic requirements of normal and cancer stem cells may pave the way for the development of nutrition-based targeted therapeutic approaches to improve regenerative and anticancer therapies.
Collapse
Affiliation(s)
- Francesca Puca
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 78705, USA;
- Department of Oncology, IRBM Science Park SpA, 00071 Pomezia, Italy
| | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
| | - Debora Rasio
- Department of Clinical and Molecular Medicine, La Sapienza University, 00185 Rome, Italy;
| | - Sabrina Battista
- Institute for Experimental Endocrinology and Oncology (IEOS), National Research Council (CNR), 80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
7
|
Collao N, Akohene-Mensah P, Nallabelli J, Binet ER, Askarian A, Lloyd J, Niemiro GM, Beals JW, van Vliet S, Rajgara R, Saleh A, Wiper-Bergeron N, Paluska SA, Burd NA, De Lisio M. The Role of L-type Amino Acid Transporter 1 (Slc7a5) During In Vitro Myogenesis. Am J Physiol Cell Physiol 2022; 323:C595-C605. [PMID: 35848618 DOI: 10.1152/ajpcell.00162.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Satellite cells are required for muscle regeneration, remodeling, and repair through their activation, proliferation, and differentiation; however, how dietary factors regulate this process remains poorly understood. The L-Type amino acid transporter 1 (LAT1) transports amino acids, such as leucine, into mature myofibers, which then stimulates protein synthesis and anabolic signaling. However, whether LAT1 is expressed on myoblasts and is involved in regulating myogenesis is unknown. The aim of this study was to characterize the expression and functional relevance of LAT1 during different stages of myogenesis and in response to growth and atrophic conditions in vitro. We determined that LAT1 is expressed by C2C12 and human primary myoblasts, and its gene expression is lower during differentiation (p<0.05). Pharmacological inhibition and genetic knockdown of LAT1 impaired myoblast viability, differentiation, and fusion (all p<0.05). LAT1 protein content in C2C12 myoblasts was not significantly altered in response to different leucine concentrations in cell culture media or in two in vitro atrophy models. However, LAT1 content was decreased in myotubes under atrophic conditions in vitro (p<0.05). These findings indicate that LAT1 is stable throughout myogenesis and in response to several in vitro conditions that induce muscle remodeling. Further, amino acid transport through LAT1 is required for normal myogenesis in vitro.
Collapse
Affiliation(s)
- Nicolas Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | | | - Julian Nallabelli
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Emileigh R Binet
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Ali Askarian
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Jessica Lloyd
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Grace M Niemiro
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph W Beals
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stephan van Vliet
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rashida Rajgara
- Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Aisha Saleh
- Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| | - Scott A Paluska
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nicholas A Burd
- Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.,Departments of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Cellular and Molecular Medicine and Centre on Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
8
|
Beaudry KM, Binet ER, Collao N, De Lisio M. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front Physiol 2022; 13:915390. [PMID: 35874517 PMCID: PMC9301335 DOI: 10.3389/fphys.2022.915390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Human skeletal muscle is a remarkedly plastic tissue that has a high capacity to adapt in response to various stimuli. These adaptations are due in part to the function of muscle-resident stem/progenitor cells. Skeletal muscle regeneration and adaptation is facilitated by the activation and expansion of muscle stem cells (MuSCs). MuSC fate is regulated by signals released from cells in their niche, such as fibro-adipogenic progenitors (FAPs), as well as a variety of non-cellular niche components. Sufficient dietary protein consumption is critical for maximizing skeletal muscle adaptation to exercise and maintaining skeletal muscle in disease; however, the role of dietary protein in altering MuSC and FAP responses to exercise in healthy populations and skeletal muscle disease states requires more research. The present review provides an overview of this emerging field and suggestions for future directions. The current literature suggests that in response to resistance exercise, protein supplementation has been shown to increase MuSC content and the MuSC response to acute exercise. Similarly, protein supplementation augments the increase in MuSC content following resistance training. Endurance exercise, conversely, is an area of research that is sparse with respect to the interaction of protein supplementation and exercise on muscle stem/progenitor cell fate. Initial evidence suggests that protein supplementation augments the early myogenic response to acute endurance exercise but does not enhance the MuSC response to endurance training. Resistance training increases the number of proliferating FAPs with no additional effect of protein supplementation. Future research should continue to focus on the nutritional regulation of skeletal muscle stem/progenitor cell fate paired with studies examining the effects of exercise on a variety of human populations.
Collapse
Affiliation(s)
| | | | - Nicolás Collao
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Myogenic Precursor Cells Show Faster Activation and Enhanced Differentiation in a Male Mouse Model Selected for Advanced Endurance Exercise Performance. Cells 2022; 11:cells11061001. [PMID: 35326452 PMCID: PMC8947336 DOI: 10.3390/cells11061001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 01/21/2023] Open
Abstract
Satellite cells (SATC), the most abundant skeletal muscle stem cells, play a main role in muscle plasticity, including the adaptive response following physical activity. Thus, we investigated how long-term phenotype selection of male mice for high running performance (Dummerstorf high Treadmill Performance; DUhTP) affects abundance, creatine kinase activity, myogenic marker expression (Pax7, MyoD), and functionality (growth kinetics, differentiation) of SATC and their progeny. SATC were isolated from sedentary male DUhTP and control (Dummerstorf Control; DUC) mice at days 12, 43, and 73 of life and after voluntary wheel running for three weeks (day 73). Marked line differences occur at days 43 and 73 (after activity). At both ages, analysis of SATC growth via xCELLigence system revealed faster activation accompanied by a higher proliferation rate and lower proportion of Pax7+ cells in DUhTP mice, indicating reduced reserve cell formation and faster transition into differentiation. Cultures from sedentary DUhTP mice contain an elevated proportion of actively proliferating Pax7+/MyoD+ cells and have a higher fusion index leading to the formation of more large and very large myotubes at day 43. This robust hypertrophic response occurs without any functional load in the donor mice. Thus, our selection model seems to recruit myogenic precursor cells/SATC with a lower activation threshold that respond more rapidly to external stimuli and are more primed for differentiation at the expense of more primitive cells.
Collapse
|
10
|
Lemon Myrtle ( Backhousia citriodora) Extract and Its Active Compound, Casuarinin, Activate Skeletal Muscle Satellite Cells In Vitro and In Vivo. Nutrients 2022; 14:nu14051078. [PMID: 35268053 PMCID: PMC8912364 DOI: 10.3390/nu14051078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023] Open
Abstract
Sarcopenia is an age-related skeletal muscle atrophy. Exercise is effective in improving sarcopenia via two mechanisms: activation of skeletal muscle satellite cells (SCs) and stimulation of muscle protein synthesis. In contrast, most nutritional approaches for improving sarcopenia focus mainly on muscle protein synthesis, and little is known about SC activation. Here, we investigated the effect of lemon myrtle extract (LM) on SC activation both in vitro and in vivo. Primary SCs or myoblast cell lines were treated with LM or its derived compounds, and incorporation of 5-bromo-2′-deoxyuridine, an indicator of cell cycle progression, was detected by immunocytochemistry. We found that LM significantly activated SCs (p < 0.05), but not myoblasts. We also identified casuarinin, an ellagitannin, as the active compound in LM involved in SC activation. The structure−activity relationship analysis showed that rather than the structure of each functional group of casuarinin, its overall structure is crucial for SC activation. Furthermore, SC activation by LM and casuarinin was associated with upregulation of interleukin-6 mRNA expression, which is essential for SC activation and proliferation. Finally, oral administration of LM or casuarinin to rats showed significant activation of SCs in skeletal muscle (p < 0.05), suggesting that LM and casuarinin may serve as novel nutritional interventions for improving sarcopenia through activating SCs.
Collapse
|
11
|
Panda V, Deshmukh A, Hare A, Singh S, Hingorani L, Sudhamani S. Effect of Withania somnifera hydroalcoholic extract and other dietary interventions in improving muscle strength in aging rats. J Ayurveda Integr Med 2021; 12:623-632. [PMID: 34772586 PMCID: PMC8642717 DOI: 10.1016/j.jaim.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/16/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background Aging leads to loss of skeletal muscle, diminished muscle strength, and decline in physical functions. Objective This study evaluates Withania somnifera and some dietary interventions to combat muscle weakness in aging rats. Materials and methods Rats (12–13 months old) corresponding to a human age of 60–65 years were assigned to various groups and given orally a standardized W. somnifera extract (WSE, 500 mg/kg) or a protein cocktail comprising soybean (1.5 g/kg) and quinoa (1 g/kg) or a combination of WSE and the protein cocktail or whey protein (1 g/kg) as a reference standard or only resistance exercise for 60 days. Grip strength and blood glucose levels were monitored weekly. At the end of the treatment, total protein, inflammatory markers (CRP, IL-6 and TNF-α), AMPK, malondialdehyde, glutathione, antioxidant enzymes and apoptotic regulator genes (Bax and Bcl-2) were assayed. The biceps brachii muscle of all animals was subjected to histomorphological study. Results All treatments successfully attenuated aging-elevated glucose, CRP, IL-6, TNF-α, AMPK, malondialdehyde, and Bax levels. A significant restoration of the aging-depleted total protein levels, glutathione, superoxide dismutase, catalase, and Bcl-2 was noted in the treatment groups. An increase in grip strength and greater biceps mass with all treatments indicated regaining of the frail aging muscle's strength and functionality. The WSE + protein treatment elicited the best results among all treatment groups to optimize muscle strength. Conclusion All the interventions curbed muscle loss and strengthened the skeletal muscle by reducing inflammation, oxidative stress and apoptosis, and increasing ATP availability to the muscle.
Collapse
Affiliation(s)
- Vandana Panda
- Department of Pharmacology & Toxicology, Prin. K. M. Kundnani College of Pharmacy, Jote Joy Building, Rambhau Salgaonkar Marg, Cuffe Parade, Colaba, Mumbai, 400005, India
| | - Amol Deshmukh
- Research and Development Department, Pharmanza Herbals Pvt. Ltd, Plot No. 214, Near Vadadla Patiya, Borsad-Tarapur Road, Kaniya, Anand, GJ, 388435, India.
| | - Asawari Hare
- Department of Pharmacology & Toxicology, Prin. K. M. Kundnani College of Pharmacy, Jote Joy Building, Rambhau Salgaonkar Marg, Cuffe Parade, Colaba, Mumbai, 400005, India
| | - Sneha Singh
- Department of Pharmacology & Toxicology, Prin. K. M. Kundnani College of Pharmacy, Jote Joy Building, Rambhau Salgaonkar Marg, Cuffe Parade, Colaba, Mumbai, 400005, India
| | - Lal Hingorani
- Research and Development Department, Pharmanza Herbals Pvt. Ltd, Plot No. 214, Near Vadadla Patiya, Borsad-Tarapur Road, Kaniya, Anand, GJ, 388435, India
| | - S Sudhamani
- Department of Pathology, Dr. D.Y. Patil Medical College, Sector 5, Nerul, Navi, Mumbai, India
| |
Collapse
|
12
|
van Doorslaer de Ten Ryen S, Warnier G, Gnimassou O, Belhaj MR, Benoit N, Naslain D, Brook MS, Smith K, Wilkinson DJ, Nielens H, Atherton PJ, Francaux M, Deldicque L. Higher strength gain after hypoxic vs normoxic resistance training despite no changes in muscle thickness and fractional protein synthetic rate. FASEB J 2021; 35:e21773. [PMID: 34324735 DOI: 10.1096/fj.202100654rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022]
Abstract
Acute hypoxia has previously been suggested to potentiate resistance training-induced hypertrophy by activating satellite cell-dependent myogenesis rather than an improvement in protein balance in human. Here, we tested this hypothesis after a 4-week hypoxic vs normoxic resistance training protocol. For that purpose, 19 physically active male subjects were recruited to perform 6 sets of 10 repetitions of a one-leg knee extension exercise at 80% 1-RM 3 times/week for 4 weeks in normoxia (FiO2 : 0.21; n = 9) or in hypoxia (FiO2 : 0.135, n = 10). Blood and skeletal muscle samples were taken before and after the training period. Muscle fractional protein synthetic rate was measured over the whole period by deuterium incorporation into the protein pool and muscle thickness by ultrasound. At the end of the training protocol, the strength gain was higher in the hypoxic vs the normoxic group despite no changes in muscle thickness and in the fractional protein synthetic rate. Only early myogenesis, as assessed by higher MyoD and Myf5 mRNA levels, appeared to be enhanced by hypoxia compared to normoxia. No effects were found on myosin heavy chain expression, markers of oxidative metabolism and lactate transport in the skeletal muscle. Though the present study failed to unravel clearly the mechanisms by which hypoxic resistance training is particularly potent to increase muscle strength, it is important message to keep in mind that this training strategy could be effective for all athletes looking at developing and optimizing their maximal muscle strength.
Collapse
Affiliation(s)
| | | | | | - Mehdi R Belhaj
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | - Nicolas Benoit
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Naslain
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | - Matthew S Brook
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Kenneth Smith
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Daniel J Wilkinson
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Henri Nielens
- Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Philip J Atherton
- MRC/ARUK Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), School of Medicine, University of Nottingham, Nottingham, UK
| | - Marc Francaux
- Institute of Neuroscience, UCLouvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
13
|
Zhao Y, Albrecht E, Stange K, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Glutamine supplementation stimulates cell proliferation in skeletal muscle and cultivated myogenic cells of low birth weight piglets. Sci Rep 2021; 11:13432. [PMID: 34183762 PMCID: PMC8239033 DOI: 10.1038/s41598-021-92959-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
Muscle growth of low birth weight (LBW) piglets may be improved with adapted nutrition. This study elucidated effects of glutamine (Gln) supplementation on the cellular muscle development of LBW and normal birth weight (NBW) piglets. Male piglets (n = 144) were either supplemented with 1 g Gln/kg body weight or an isonitrogeneous amount of alanine (Ala) between postnatal day 1 and 12 (dpn). Twelve piglets per group were slaughtered at 5, 12 and 26 dpn, one hour after injection with Bromodeoxyuridine (BrdU, 12 mg/kg). Muscle samples were collected and myogenic cells were isolated and cultivated. Expression of muscle growth related genes was quantified with qPCR. Proliferating, BrdU-positive cells in muscle sections were detected with immunohistochemistry indicating different cell types and decreasing proliferation with age. More proliferation was observed in muscle tissue of LBW-GLN than LBW-ALA piglets at 5 dpn, but there was no clear effect of supplementation on related gene expression. Cell culture experiments indicated that Gln could promote cell proliferation in a dose dependent manner, but expression of myogenesis regulatory genes was not altered. Overall, Gln supplementation stimulated cell proliferation in muscle tissue and in vitro in myogenic cell culture, whereas muscle growth regulatory genes were barely altered.
Collapse
Affiliation(s)
- Yaolu Zhao
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Elke Albrecht
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany.
| | - Katja Stange
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| | - Zeyang Li
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Johannes Schregel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Quentin L Sciascia
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Cornelia C Metges
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology "Oskar Kellner", 18196, Dummerstorf, Germany
| | - Steffen Maak
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, 18196, Dummerstorf, Germany
| |
Collapse
|
14
|
Shamim B, Camera DM, Whitfield J. Myofibre Hypertrophy in the Absence of Changes to Satellite Cell Content Following Concurrent Exercise Training in Young Healthy Men. Front Physiol 2021; 12:625044. [PMID: 34149439 PMCID: PMC8213074 DOI: 10.3389/fphys.2021.625044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Concurrent exercise training has been suggested to create an ‘interference effect,’ attenuating resistance training-based skeletal muscle adaptations, including myofibre hypertrophy. Satellite cells support myofibre hypertrophy and are influenced by exercise mode. To determine whether satellite cells contribute to the ‘interference effect’ changes in satellite cell and myonuclear content were assessed following a period of training in 32 recreationally active males (age: 25 ± 5 year; body mass index: 24 ± 3 kg⋅m–2; mean ± SD) who undertook 12-week of either isolated (3 d⋅w–1) resistance (RES; n = 10), endurance (END; n = 10), or alternate day (6 d⋅w–1) concurrent (CET, n = 12) training. Skeletal muscle biopsies were obtained pre-intervention and after 2, 8, and 12 weeks of training to determine fibre type-specific cross-sectional area (CSA), satellite cell content (Pax7+DAPI+), and myonuclei (DAPI+) using immunofluorescence microscopy. After 12 weeks, myofibre CSA increased in all training conditions in type II (P = 0.0149) and mixed fibres (P = 0.0102), with no difference between conditions. Satellite cell content remained unchanged after training in both type I and type II fibres. Significant correlations were observed between increases in fibre type-specific myonuclear content and CSA of Type I (r = 0.63, P < 0.0001), Type II (r = 0.69, P < 0.0001), and mixed fibres (r = 0.72, P < 0.0001). Resistance, endurance, and concurrent training induce similar myofibre hypertrophy in the absence of satellite cell and myonuclear pool expansion. These findings suggest that myonuclear accretion via satellite cell fusion is positively correlated with hypertrophy after 12 weeks of concurrent training, and that individuals with more myonuclear content displayed greater myofibre hypertrophy.
Collapse
Affiliation(s)
- Baubak Shamim
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Donny M Camera
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| | - Jamie Whitfield
- Exercise and Nutrition Research Programme, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Horwath O, Moberg M, Larsen FJ, Philp A, Apró W, Ekblom B. Influence of sex and fiber type on the satellite cell pool in human skeletal muscle. Scand J Med Sci Sports 2020; 31:303-312. [DOI: 10.1111/sms.13848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Oscar Horwath
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Marcus Moberg
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Filip J. Larsen
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| | - Andrew Philp
- Diabetes and Metabolism Division Garvan Institute of Medical Research Darlinghurst, Sydney NSW Australia
- St Vincent’s Medical School UNSW Medicine UNSW Sydney Sydney Australia
| | - William Apró
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
- Department of Clinical Science, Intervention and Technology Karolinska Institutet Stockholm Sweden
| | - Björn Ekblom
- Department of Physiology, Nutrition and Biomechanics Åstrand Laboratory Swedish School of Sport and Health Sciences Stockholm Sweden
| |
Collapse
|
16
|
Avian Satellite Cell Plasticity. Animals (Basel) 2020; 10:ani10081322. [PMID: 32751789 PMCID: PMC7459542 DOI: 10.3390/ani10081322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Adult muscle regeneration and reconstruction is dependent on a population of adult stem cells, known as satellite cells. These cells were suggested to exhibit a certain degree of plasticity, being able to differentiate into lineages unassociated with muscle cells. In this study, we have used a range of visualization methods, as well as PCR, to identify a population of satellite cells obtained from samples of chicken muscles. Then, the cells, expressing a previously introduced detectable transgene, were introduced into chicken embryos and detected after three and eighteen days of their development. The traces of cell populations derived from the introduced satellite cells were detected in a range of embryonic tissues in both of the studied timeframes. The results of this study give further proof of the plasticity of muscle satellite cells, showing the potential locations of their migration during embryonic development. Abstract Adult myogenesis is dependent on a population of precursor cells, located between the sarcolemma and the basal lamina of the muscle fiber. These satellite cells, usually present in a quiescent state, become activated in response to mechanical muscle strain, differentiating and fusing to add new nuclei to enlarging muscles. As their myogenic lineage commitment is induced on demand, muscle satellite cells exhibit a certain amount of plasticity, possibly being able to be directed to differentiate into non-myogenic fates. In this study, myosatellite cells were isolated from chicken muscle samples, characterized in vitro and introduced into developing blastoderms. They were further investigated using fluorescence microscopy, immunohistochemistry and PCR, to determine their location in embryos after three and eighteen days. The results of the in vitro analysis confirmed that the cells obtained from the Pectoralis thoracicus are highly myogenic, based on the expression of Pax7, Myogenin, MyoD, Desmin and the myotube assay. Furthermore, the investigation of satellite cells within the embryo showed their migration to the regions of Pectoralis thoracicus, heart, liver, gizzard, proventriculus, intestine and brain. Overall, the results of the study proved the high myogenicity of chicken Pectoralis thoracicus cell isolates, as well as provided new information about their migration pathways following introduction into the blastocyst. The presence of the introduced LacZ or eGFP transgenes across the embryo, even 20 days after myosatellite cell injection, further supports the notion that satellite cells exhibit significant plasticity, potentially transdifferentiating into non-muscle lineages.
Collapse
|
17
|
Protein Intake and Exercise-Induced Skeletal Muscle Hypertrophy: An Update. Nutrients 2020; 12:nu12072023. [PMID: 32646013 PMCID: PMC7400877 DOI: 10.3390/nu12072023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/29/2022] Open
Abstract
Skeletal muscle mass is critical for sport performance and in many pathological conditions. The combination of protein intake and resistance exercise is the most efficient strategy to promote skeletal muscle hypertrophy and remodeling. However, to be really efficient, certain conditions need to be considered. The amount, type and source of proteins do all matter as well as the timing of ingestion and spreading over the whole day. Optimizing those conditions favor a positive net protein balance, which in the long term, may result in muscle mass accretion. Last but not least, it is also essential to take the nutritional status and the exercise training load into consideration when looking for maintenance or gain of skeletal muscle mass.
Collapse
|
18
|
A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise. Eur J Appl Physiol 2020; 120:941-959. [PMID: 32144492 DOI: 10.1007/s00421-020-04337-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Resistance exercise induces muscle growth and is an important treatment for age-related losses in muscle mass and strength. Myokines are hypothesized as a signal conveying physiological information to skeletal muscle, possibly to "fine-tune" other regulatory pathways. While myokines are released from skeletal muscle following contraction, their role in increasing muscle mass and strength in response to resistance exercise or training is not established. Recent research identified both local and systemic release of myokines after an acute bout of resistance exercise. However, it is not known whether myokines with putative anabolic function are mechanistically involved in producing muscle hypertrophy after resistance exercise. Further, nitric oxide (NO), an important mediator of muscle stem cell activation, upregulates the expression of certain myokine genes in skeletal muscle. METHOD In the systemic context of complex hypertrophic signaling, this review: (1) summarizes literature on several well-recognized, representative myokines with anabolic potential; (2) explores the potential mechanistic role of myokines in skeletal muscle hypertrophy; and (3) identifies future research required to advance our understanding of myokine anabolism specifically in skeletal muscle. RESULT This review establishes a link between myokines and NO production, and emphasizes the importance of considering systemic release of potential anabolic myokines during resistance exercise as complementary to other signals that promote hypertrophy. CONCLUSION Investigating adaptations to resistance exercise in aging opens a novel avenue of interdisciplinary research into myokines and NO metabolites during resistance exercise, with the longer-term goal to improve muscle health in daily living, aging, and rehabilitation.
Collapse
|
19
|
O’Sullivan TF, Smith AC, Watson EL. Satellite cell function, intramuscular inflammation and exercise in chronic kidney disease. Clin Kidney J 2018; 11:810-821. [PMID: 30524716 PMCID: PMC6275451 DOI: 10.1093/ckj/sfy052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/18/2018] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle wasting is a common feature of chronic kidney disease (CKD) and is clinically relevant due to associations with quality of life, physical functioning, mortality and a number of comorbidities. Satellite cells (SCs) are a population of skeletal muscle progenitor cells responsible for accrual and maintenance of muscle mass by providing new nuclei to myofibres. Recent evidence from animal models and human studies indicates CKD may negatively affect SC abundance and function in response to stimuli such as exercise and damage. The aim of this review is to collate recent literature on the effect of CKD on SCs, with a particular focus on the myogenic response to exercise in this population. Exercise is widely recognized as important for the maintenance of healthy skeletal muscle mass and is increasingly advocated in the care of a number of chronic conditions. Therefore a greater understanding of the impact of uraemia upon SCs and the possible altered myogenic response in CKD is required to inform strategies to prevent uraemic cachexia.
Collapse
Affiliation(s)
- Tom F O’Sullivan
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Alice C Smith
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
- John Walls Renal Unit, University Hospitals of Leicester Trust, Leicester, UK
| | - Emma L Watson
- Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| |
Collapse
|
20
|
Exercise and the control of muscle mass in human. Pflugers Arch 2018; 471:397-411. [DOI: 10.1007/s00424-018-2217-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
|
21
|
Lim CH, Gil JH, Quan H, Viet DH, Kim CK. Effect of 8-week leucine supplementation and resistance exercise training on muscle hypertrophy and satellite cell activation in rats. Physiol Rep 2018; 6:e13725. [PMID: 29952091 PMCID: PMC6021278 DOI: 10.14814/phy2.13725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/09/2018] [Indexed: 12/30/2022] Open
Abstract
We investigated the effects of regular leucine intake and/or resistance exercise training on skeletal muscle hypertrophy and satellite cell activity after the administration of different doses of leucine. Ten-week-old Sprague-Dawley rats were assigned to six groups (n = 7 per group): a control group (Con), two groups receiving either 10% (0.135 g/kg.wt) (Leu10) or 50% (0.675 g/kg.wt) (Leu50) leucine supplementation, and three exercise groups receiving 0% (Ex), 10% (Leu10Ex), and 50% (Leu50Ex) leucine supplementation. The rats performed ladder climbing exercises thrice per week for 8 weeks, and received leucine supplements at the same time daily. Muscle phenotypes were assessed by immunohistochemistry. MyoD, myogenin, and IGF1 protein levels were determined by western blot. The Leu50Ex group displayed significantly higher numbers of positive embryonic myosin fibers (0.35 ± 0.08, 250%) and myonuclei (3.29 ± 0.3, 118.7%) than all other groups. And exercise training groups increased the cross-sectional area, the number of satellite cells and protein expression of MyoD, myogenin, and IGF1alpha relative to the Control group (P < 0.05). However, Only leucine supplementation group did not increase skeletal muscle hypertrophy and satellite cell activity, regardless of the dose (P > 0.05). Leucine intake accompanied by regular exercise training may increase satellite cell activation in skeletal muscles, and improve muscle quality more effectively than continuous leucine ingestion alone.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Combined Modality Therapy
- Dietary Supplements
- Dose-Response Relationship, Drug
- Hypertrophy/metabolism
- Hypertrophy/pathology
- Hypertrophy/prevention & control
- Leucine/administration & dosage
- Leucine/pharmacology
- Leucine/therapeutic use
- Male
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/pathology
- Muscle Proteins/metabolism
- Muscle Strength/physiology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Physical Conditioning, Animal/physiology
- Rats, Sprague-Dawley
- Resistance Training/methods
- Satellite Cells, Skeletal Muscle/drug effects
- Satellite Cells, Skeletal Muscle/pathology
- Weight Gain/drug effects
- Weight Gain/physiology
- Weight-Bearing/physiology
Collapse
Affiliation(s)
- Chang Hyun Lim
- Human physiology, KoreaNational Sport UniversitySeoulKorea
- Exercise and Metabolism Research CenterZhejiang Normal UniversityJinhuaChina
| | - Ju Hyun Gil
- Human physiology, KoreaNational Sport UniversitySeoulKorea
| | - Helong Quan
- Exercise and Metabolism Research CenterZhejiang Normal UniversityJinhuaChina
- College of Physical Education and Health ScienceZhejiang Normal UniversityJinhuaChina
| | - Dang Ha Viet
- Sport Science and Technology InstituteHochiminh City University of SportHochiminh CityVietnam
| | - Chang Keun Kim
- Human physiology, KoreaNational Sport UniversitySeoulKorea
- Exercise and Metabolism Research CenterZhejiang Normal UniversityJinhuaChina
| |
Collapse
|