1
|
MAEO SUMIAKI, BALSHAW THOMASG, NIN DARRENZ, MC DERMOTT EMMETJ, OSBORNE THOMAS, COOPER NAOMIB, MASSEY GARRYJ, KONG PUIW, PAIN MATTHEWTG, FOLLAND JONATHANP. Hamstrings Hypertrophy Is Specific to the Training Exercise: Nordic Hamstring versus Lengthened State Eccentric Training. Med Sci Sports Exerc 2024; 56:1893-1905. [PMID: 38857522 PMCID: PMC11419281 DOI: 10.1249/mss.0000000000003490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
INTRODUCTION The hamstring muscles play a crucial role in sprint running but are also highly susceptible to strain injuries, particularly within the biceps femoris long head (BFlh). This study compared the adaptations in muscle size and strength of the knee flexors, as well as BFlh muscle and aponeurosis size, after two eccentrically focused knee flexion training regimes: Nordic hamstring training (NHT) vs lengthened state eccentric training (LSET, isoinertial weight stack resistance in an accentuated hip-flexed position) vs habitual activity (no training controls: CON). METHODS Forty-two healthy young males completed 34 sessions of NHT or LSET over 12 wk or served as CON ( n = 14/group). Magnetic resonance imaging-measured muscle volume of seven individual knee flexors and BFlh aponeurosis area, and maximum knee flexion torque during eccentric, concentric, and isometric contractions were assessed pre- and post-training. RESULTS LSET induced greater increases in hamstrings (+18% vs +11%) and BFlh (+19% vs +5%) muscle volumes and BFlh aponeurosis area (+9% vs +3%) than NHT (all P ≤ 0.001), with no changes after CON. There were distinctly different patterns of hypertrophy between the two training regimes, largely due to the functional role of the muscles; LSET was more effective for increasing the size of knee flexors that also extend the hip (2.2-fold vs NHT), whereas NHT increased the size of knee flexors that do not extend the hip (1.9-fold vs LSET; both P ≤ 0.001). Changes in maximum eccentric torque differed only between LSET and CON (+17% vs +4%; P = 0.009), with NHT (+11%) inbetween. CONCLUSIONS These results suggest that LSET is superior to NHT in inducing overall hamstrings and BFlh hypertrophy, potentially contributing to better sprint performance improvements and protection against hamstring strain injuries than NHT.
Collapse
Affiliation(s)
- SUMIAKI MAEO
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, JAPAN
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - THOMAS G. BALSHAW
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Loughborough, UNITED KINGDOM
| | - DARREN Z. NIN
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- National Institute of Education, Nanyang Technological University, SINGAPORE
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - EMMET J. MC DERMOTT
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- Department of Physical Education and Sport Sciences, University of Limerick, Limerick, IRELAND
| | - THOMAS OSBORNE
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UNITED KINGDOM
| | - NAOMI B. COOPER
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - GARRY J. MASSEY
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- School of Sport and Health Sciences, University of Exeter, Devon, UNITED KINGDOM
| | - PUI W. KONG
- National Institute of Education, Nanyang Technological University, SINGAPORE
| | - MATTHEW T. G. PAIN
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
| | - JONATHAN P. FOLLAND
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UNITED KINGDOM
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Loughborough University, Loughborough, UNITED KINGDOM
- National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, Leicester, UNITED KINGDOM
| |
Collapse
|
2
|
Sadeghi M, Alizadeh MH, Minoonejad H. Acute effects of Nordic hamstring exercise on hip and knee joints proprioception. J Bodyw Mov Ther 2024; 39:382-389. [PMID: 38876656 DOI: 10.1016/j.jbmt.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/27/2023] [Accepted: 03/03/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Nordic Hamstring Exercise (NHE) is one of the best exercises proposed for injury prevention of hamstring muscles. However, its effects on lower extremity proprioception are unclear. The aim of this study was to investigate the immediate effects of a single bout of NHE on hip and knee joints' proprioception. METHODS Forty collegiate male soccer players participated in this study with a mean age of 22.85 ± 1.82 years and were randomized into either control (n = 20) or experimental (n = 20) groups. Each subject participated in pre-test measurements in which hip and knee active joints position sense (JPS) were assessed in standing and lying tasks using the image-capturing method. The experimental group then performed three sets of NHE with 10 repetitions in each set, while the control group rested for 10 min. Paired and independent t-tests were used for calculating the differences within and between groups on SPSS software, respectively. The level of significance was P ≤ 0.05. RESULTS Hip JPS in the lying task and knee JPS in both of the standing and lying tasks were impaired significantly after performing a single bout of NHE (P ≤ 0.05). However, the effects of this exercise on hip JPS in the standing task were not significant (P ≥ 0.05). CONCLUSIONS NHE performing with three sets of 10 repetitions can significantly impair hip and knee JPS immediately after exercise and reduce the proprioception acuity of the lower limbs. It is recommended to perform this exercise at a time rather than before training or match sessions.
Collapse
Affiliation(s)
- Mohsen Sadeghi
- Department of Health and Sport Medicine, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Mohammad H Alizadeh
- Department of Health and Sport Medicine, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Hooman Minoonejad
- Department of Health and Sport Medicine, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Firmino T, Mendes B, Oliveira R, Vaz J, Radaelli R, Freitas S. Semitendinosus and biceps femoris long head activity during the single leg bridge test in healthy individuals. J Bodyw Mov Ther 2024; 39:435-440. [PMID: 38876665 DOI: 10.1016/j.jbmt.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION The single leg bridge test (SLBT) has been suggested as a clinical test to examine function, screen injury risk, and monitor the effectiveness of rehabilitation programes targeting the hamstring. This study aimed to determine the inter-day reliability and repeatability of both SLBT performance, semitendinosus (ST), and biceps femoris long head (BFlh) surface electromyography (sEMG) responses and characterise the BFlh and ST electrical activity during the SLBT performed until exhaustion in healthy individuals. METHODS Twelve physically active young men without previous hamstring injury were tested for the number of repetitions attained, and sEMG signal median frequency and amplitude in both ST and BFlh of each lower limb, randomly in two sessions, with a seven-day interval between sessions. RESULTS High reliability [ICC = 0.85] was found for the number of SLBT repetitions attained. Reliability of sEMG outcomes showed better results for ST (ICC = 0.62-0.91) than for BFlh (ICC = 0.39-0.81), and a high to very-high repeatability was found for both ST (ICC = 0.91-0.84) and BFlh (ICC = 0.91-0.85). sEMG median frequency decreased and amplitude increased for both BFlh (p ≤ 0.001) and ST (p ≤ 0.039) at the end of SLBT, suggesting localised fatigue. CONCLUSIONS The SLBT performed by healthy individuals until exhaustion proved to be reliable and to induce fatigue in both BFlh and ST, where the sEMG median frequency and amplitude can be measured on different days with acceptable reliability and high repeatability, suggesting its potential future use in both practical and clinical settings.
Collapse
Affiliation(s)
- Telmo Firmino
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal; Sport Lisboa e Benfica SAD, Human Performance Department - Health Performance, Av. Eusébio da Silva Ferreira, 1500-313, Lisboa, Portugal; Escola Superior de Saúde do Alcoitão, Rua Conde Barão, 2649-506, Alcabideche, Cascais, Portugal.
| | - Bruno Mendes
- Fulham Football Club, Training Ground, Motspur Park, Surrey, KT3 6PT, England, UK; Instituto Superior de Lisboa e Vale do Tejo, Rua Bento de Jesus Caraça 12, 2620-379, Ramada, Odivelas, Portugal
| | - Raul Oliveira
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal; CIPER, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal
| | - João Vaz
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal; CIPER, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz - Cooperativa de Ensino Superior, Monte da Caparica, Portugal
| | - Régis Radaelli
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal; CIPER, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal
| | - Sandro Freitas
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisboa, Cruz Quebrada Dafundo, Portugal
| |
Collapse
|
4
|
Pimenta R, Correia JP, Vaz JR, Veloso AP, Herzog W. Hamstrings passive and active shear modulus: Implications of conventional static stretching and warmup. J Sci Med Sport 2024; 27:415-421. [PMID: 38448345 DOI: 10.1016/j.jsams.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024]
Abstract
PURPOSE This study compares the acute effects of a static stretching and a warmup protocol on the active and passive shear modulus of the hamstring muscles. METHODS Muscle shear modulus was assessed at rest and during isometric contractions at 20 % of maximal voluntary isometric contraction (MVIC). RESULTS After stretching, the passive shear modulus pattern was not altered, while at 20 % MVIC the biceps femoris short head (BFsh) and semimembranosus showed a shear modulus increase and decrease, respectively, which resulted on BFsh-SM pair differences (pre: 3.8 ± 16.8 vs. post: 39.3 ± 25.1 kPa; p < 0.001; d = 1.66) which was accompanied by a decrease of 18.3 % on MVIC. Following the warmup protocol, passive shear modulus remained unchanged, while active shear modulus was decreased for the semitendinosus (pre: 65.3 ± 13.5 vs. post: 60.3 ± 12.3 kPa; p = 0.035; d = 0.4). However, this difference was within the standard error of measurement (10.54 kPa), and did not impact the force production, since it increased only 1.4 % after the warmup. CONCLUSIONS The results of this study suggest that the passive and active shear modulus responses of the individual hamstring muscles to static stretching are muscle-specific and that passive and active hamstring shear modulus are not changed by a standard warmup intervention.
Collapse
Affiliation(s)
- Ricardo Pimenta
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal; Research Center of the Polytechnic Institute of Maia (N2i), Maia Polytechnic Institute (IPMAIA), Portugal; Futebol Clube Famalicão - Futebol SAD, Department of Rehabilitation and Performance, Portugal.
| | - José P Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal; Egas Moniz - Cooperativa de Ensino Superior, Portugal
| | - António P Veloso
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Portugal
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Canada
| |
Collapse
|
5
|
Shan X, Otsuka S, Okubo T, Takeuchi T, Fukushige K, Naito M. Assessing site-specificity of the biomechanical properties of hamstring aponeuroses using MyotonPRO: A cadaveric study. Clin Biomech (Bristol, Avon) 2024; 114:106230. [PMID: 38493724 DOI: 10.1016/j.clinbiomech.2024.106230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Hamstring muscles are the most frequently reported sites of muscle strain injuries, especially near the bi-articular muscles' myotendinous junction, where aponeurosis provides a connective tissue network linking muscle fibers to the tendon. This study aimed to investigate the reliability and site-specific differences of hamstring aponeuroses under different conditions (formalin and urea) using MyotonPRO. METHODS Eight hamstring muscle groups were dissected from four human cadavers (two males and two females) aged 83-93 years. Measurements of the mechanical properties of the aponeuroses from the superficial and deep regions of biceps femoris long head, semitendinosus, and semimembranosus (after formalin solution immersion) were done using MyotonPRO (intra-rater reliability was examined within a 24-h interval), following which the hamstring aponeuroses were measured using a similar procedure after urea solution immersion. FINDINGS Test-retest (intra-rater) results revealed that the MyotonPRO measurement of tone, stiffness, relaxation, and creep of cadaveric aponeuroses presented good to excellent reliability (ICC: 0.86 to 0.98). There were no significant differences in tone, stiffness, elasticity, relaxation, and creep among the six sites of hamstring aponeuroses under both formalin and urea conditions. Significant differences between formalin and urea conditions were found in the tone, stiffness, relaxation, and creep of hamstring aponeuroses (P < 0.05). INTERPRETATION These results suggested that the biomechanical properties of hamstring aponeuroses showed homogeneity between the sites using MyotonPRO. Urea solution could potentially neutralize the effect of formalin on the biomechanical properties of cadaveric muscle-aponeurosis-tendon units. The present findings might influence the design of subsequent cadaveric studies on hamstring muscle strains.
Collapse
Affiliation(s)
- Xiyao Shan
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Shun Otsuka
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomohito Okubo
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Takao Takeuchi
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kaori Fukushige
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| | - Munekazu Naito
- Department of Anatomy, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
6
|
Abstract
Hamstring muscle injuries (HMI) are a common and recurrent issue in the sport of athletics, particularly in sprinting and jumping disciplines. This review summarizes the latest literature on hamstring muscle injuries in athletics from a clinical perspective. The considerable heterogeneity in injury definitions and reporting methodologies among studies still needs to be addressed for greater clarity. Expert teams have recently developed evidence-based muscle injury classification systems whose application could guide clinical decision-making; however, no system has been adopted universally in clinical practice, yet.The most common risk factor for HMI is a previously sustained injury, particularly early after return-to-sport. Other modifiable (e.g. weakness of thigh muscles, high-speed running exposure) and non-modifiable (e.g. older age) risk factors have limited evidence linking them to injury. Reducing injury may be achieved through exercise-based programs, but their specific components and their practical applicability remain unclear.Post-injury management follows similar recommendations to other soft tissue injuries, with a graded progression through stages of rehabilitation to full return to training and then competition, based on symptoms and clinical signs to guide the individual speed of the recovery journey. Evidence favoring surgical repair is conflicting and limited to specific injury sub-types (e.g. proximal avulsions). Further research is needed on specific rehabilitation components and progression criteria, where more individualized approaches could address the high rates of recurrent HMI. Prognostically, a combination of physical examination and magnetic resonance imaging (MRI) seems superior to imaging alone when predicting 'recovery duration,' particularly at the individual level.
Collapse
Affiliation(s)
- Spyridon A Iatropoulos
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Patrick C Wheeler
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- National Centre of Sport and Exercise Medicine, Loughborough, UK
- Department of Sport & Exercise Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
7
|
Sahinis C, Kellis E. Distal hamstrings tendons mechanical properties at rest and contraction using free-hand 3-D ultrasonography. Scand J Med Sci Sports 2024; 34:e14621. [PMID: 38597348 DOI: 10.1111/sms.14621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 04/11/2024]
Abstract
Tendon properties impact human locomotion, influencing sports performance, and injury prevention. Hamstrings play a crucial role in sprinting, particularly the biceps femoris long head (BFlh), which is prone to frequent injuries. It remains uncertain if BFlh exhibits distinct mechanical properties compared to other hamstring muscles. This study utilized free-hand three-dimensional ultrasound to assess morphological and mechanical properties of distal hamstrings tendons in 15 men. Scans were taken in prone position, with hip and knee extended, at rest and during 20%, 40%, 60%, and 80% of maximal voluntary isometric contraction of the knee flexors. Tendon length, volume, cross-sectional area (CSA), and anteroposterior (AP) and mediolateral (ML) widths were quantified at three locations. Longitudinal and transverse deformations, stiffness, strain, and stress were estimated. The ST had the greatest tendon strain and the lowest stiffness as well as the highest CSA and AP and ML width strain compared to other tendons. Biceps femoris short head (BFsh) exhibited the least strain, AP and ML deformation. Further, BFlh displayed the highest stiffness and stress, and BFsh had the lowest stress. Additionally, deformation varied by region, with the proximal site showing generally the lowest CSA strain. Distal tendon mechanical properties differed among the hamstring muscles during isometric knee flexions. In contrast to other bi-articular hamstrings, the BFlh high stiffness and stress may result in greater energy absorption by its muscle fascicles, rather than the distal tendon, during late swing in sprinting. This could partly account for the increased incidence of hamstring injuries in this muscle.
Collapse
Affiliation(s)
- Chrysostomos Sahinis
- Department of Physical Education and Sport Sciences at Serres, Laboratory of Neuromechanics, Aristotle University of Thessaloniki, Serres, Greece
| | - Eleftherios Kellis
- Department of Physical Education and Sport Sciences at Serres, Laboratory of Neuromechanics, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
8
|
Pimenta R, Antunes H, Bruno P, Veloso AP. Hamstrings mechanical properties profiling in football players of different competitive levels and positions after a repeated sprint protocol. Front Physiol 2024; 14:1315564. [PMID: 38239882 PMCID: PMC10794661 DOI: 10.3389/fphys.2023.1315564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Purpose: This study compares the average speed, knee flexor peak torque and shear modulus of the hamstrings after a repeated sprint task, in football players of different competitive levels and playing positions. Methods: Fifty-four football field players without hamstring strain injury history participated, 15 being categorized as professional (2nd league) and 39 as semi-professional (17 in 3rd and 22 in 4th league). Muscle shear modulus was assessed using ultrasound-based shear wave elastography at rest and at 20% of maximal voluntary isometric effort before and immediately after the repeated sprint protocol. Results: No significant differences were seen in average sprint speed between competitive levels (p = 0.07; η2p = 0.28) and positions (p = 0.052; η2p = 0.29). Moreover, the sprint fatigue index showed no significant differences between competitive levels (p = 0.14; η2p = 0.08) and playing positions (p = 0.89; η2p = 0.05). No significant differences were observed in hamstring shear modulus changes between competitive levels (p = 0.94; η2p = 0.03) and positions (p = 0.92; η2p = 0.03). Peak torque changes also showed non-significant association with competitive levels (p = 0.46; η2p = 0.03) and positions (p = 0.60; η2p = 0.02). Conclusion: The results of this study suggest that the average sprint speed performance parameter and mechanical parameters are not able to distinguish football players of different competitive levels and positions.
Collapse
Affiliation(s)
- Ricardo Pimenta
- CIPER, Centro Interdisciplinar de Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
- Research Center of the Polytechnic Institute of Maia (N2i), Maia Polytechnic Institute (IPMAIA), Maia, Portugal
- Futebol Clube Famalicão—Futebol SAD, Department of Rehabilitation and Performance, Famalicão, Portugal
| | - Hugo Antunes
- CIPER, Centro Interdisciplinar de Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Paula Bruno
- CIPER, Centro Interdisciplinar de Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - A. P. Veloso
- CIPER, Centro Interdisciplinar de Performance Humana, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Zhang Y, Chen M, Liu H, He Y, Li Y, Shen P, Chen Y, Huang J, Liu C. Effect of different isometric trunk extension intensities on the muscle stiffness of the lumbar and lower limbs. Front Physiol 2024; 14:1337170. [PMID: 38239887 PMCID: PMC10794496 DOI: 10.3389/fphys.2023.1337170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024] Open
Abstract
Purpose: To investigate the effect of isometric prone trunk extension (IPTE) contraction intensity on the stiffness of erector spinae (ES), semitendinosus (ST), biceps femoris (BF), and gastrocnemius muscles to understand the overall muscle mechanical behavior during IPTE and to explore the mechanisms of oordinated contraction of the body kinetic chain. Methods: Twenty healthy females were recruited, and participants underwent IPTE at three contraction intensities, i.e., 0% maximum voluntary isometric contraction (MVIC), 30% MVIC, and 60% MVIC, and muscle stiffness was measured using MyotonPRO. Results: Muscle stiffness was moderately to strongly positively correlated with contraction intensity (r = 0.408-0.655, p < 0.001). The percentage increase in stiffness at low intensity was much greater in ES than in lower limb muscles and greater in ST and BF than in gastrocnemius, whereas at moderate intensity, the percentage increase in stiffness decreased in all muscles, and the percentage increase in stiffness in ES was lower than that in ST. There was a moderate to strong positive correlation between ES stiffness variation and ST (r = 0.758-0.902, p < 0.001), BF (r = 0.454-0.515, p < 0.05), MG (r = 0.643-0.652, p < 0.01), LG (r = 0.659-0.897, p < 0.01). Conclusion: IPTE significantly affected the stiffness of lumbar and lower limb muscles, and low-intensity IPTE activated the ES more efficiently. There were significant coordinated muscle contractions between ES, ST, and LG. This provides preliminary evidence for exploring the overall modulation pattern of the lumbar and lower limb muscles' kinetic chains. In future studies, we will combine other stiffness assessment methods (such as Magnetic Resonance Elastography, Shear Wave Elastography, or electromyography) to corroborate our findings.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiapeng Huang
- Clinical Medical College of Acupuncture, Moxibustion, and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chunlong Liu
- Clinical Medical College of Acupuncture, Moxibustion, and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Edouard P, Reurink G, Mackey AL, Lieber RL, Pizzari T, Järvinen TAH, Gronwald T, Hollander K. Traumatic muscle injury. Nat Rev Dis Primers 2023; 9:56. [PMID: 37857686 DOI: 10.1038/s41572-023-00469-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Traumatic muscle injury represents a collection of skeletal muscle pathologies caused by trauma to the muscle tissue and is defined as damage to the muscle tissue that can result in a functional deficit. Traumatic muscle injury can affect people across the lifespan and can result from high stresses and strains to skeletal muscle tissue, often due to muscle activation while the muscle is lengthening, resulting in indirect and non-contact muscle injuries (strains or ruptures), or from external impact, resulting in direct muscle injuries (contusion or laceration). At a microscopic level, muscle fibres can repair focal damage but must be completely regenerated after full myofibre necrosis. The diagnosis of muscle injury is based on patient history and physical examination. Imaging may be indicated to eliminate differential diagnoses. The management of muscle injury has changed within the past 5 years from initial rest, immobilization and (over)protection to early activation and progressive loading using an active approach. One challenge of muscle injury management is that numerous medical treatment options, such as medications and injections, are often used or proposed to try to accelerate muscle recovery despite very limited efficacy evidence. Another challenge is the prevention of muscle injury owing to the multifactorial and complex nature of this injury.
Collapse
Affiliation(s)
- Pascal Edouard
- Université Jean Monnet, Lyon 1, Université Savoie Mont-Blanc, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France.
- Department of Clinical and Exercise Physiology, Sports Medicine Unit, University Hospital of Saint-Etienne, Faculty of Medicine, Saint-Etienne, France.
| | - Gustaaf Reurink
- Department of Orthopedic Surgery and Sports Medicine, Academic Medical Center, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
- Academic Center for Evidence-based Sports Medicine (ACES), Academic Medical Center, Amsterdam, Netherlands
- The Sports Physicians Group, Onze Lieve Vrouwe Gasthuis, Amsterdam, Netherlands
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopaedic Surgery M, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Richard L Lieber
- Shirley Ryan AbilityLab, Chicago, IL, USA
- Departments of Physical Medicine and Rehabilitation and Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Hines VA Medical Center, Maywood, IL, USA
| | - Tania Pizzari
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Tero A H Järvinen
- Tampere University and Tampere University Hospital, Tampere, Finland
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
11
|
Li C, Liu Y. Regional differences in behaviors of fascicle and tendinous tissue of the biceps femoris long head during hamstring exercises. J Electromyogr Kinesiol 2023; 72:102812. [PMID: 37639900 DOI: 10.1016/j.jelekin.2023.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
The biceps femoris long head (BFLH) gains its properties from internal elements (fascicles and tendinous tissues) which behaviors remain poorly understood across BFLH regions and dynamic tasks. The aim of this study was to assess the in vivo behaviors of fascicles and tendinous tissue in the proximal and distal regions of BFLH during different dynamic knee and hip tasks. Twenty males performed the Nordic hamstring exercise (NHE) (n = 9) and Romanian deadlift (RDL) (n = 11). Activation of the BFLH was assessed using surface electromyography signals. Ultrasound images of BFLH and kinematic data were used to estimate the interaction between fascicle and tendinous tissue. The fascicles changed less in length (p < 0.05) and contributed less to BFLH length change (p < 0.05) in NHE with higher activation (p < 0.05) relative to RDL. The higher pennation angle changes of BFLH were found in distal region compared to proximal region in both tasks (p < 0.05), while the activation of distal region was higher than activation of proximal region in NHE (p < 0.05). The BFLH length change was primarily contributed by the tendinous tissue during dynamic resistance tasks, and was contributed less by fascicles which operated more isometrically in knee-dominant NHE with higher activation relative to hip-dominant RDL. Regional differences in pennation angle change and activation during dynamic tasks suggest potential regional differences in the mechanical function of BFLH, warranting further investigation.
Collapse
Affiliation(s)
- Chen Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Ye Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
12
|
Crawford SK, Kliethermes SA, Heiderscheit BC, Bashford GR. Influence of ultrasound machine settings on quantitative measures derived from spatial frequency analysis of muscle tissue. BMC Musculoskelet Disord 2023; 24:664. [PMID: 37608370 PMCID: PMC10463672 DOI: 10.1186/s12891-023-06790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Ultrasound is a powerful tool for diagnostic purposes and provides insight into both normal and pathologic tissue structure. Spatial frequency analysis (SFA) methods characterize musculoskeletal tissue organization from ultrasound images. Both sonographers in clinical imaging and researchers may alter a minimized range of ultrasound settings to optimize image quality, and it is important to know how these small adjustments of these settings affect SFA parameters. The purpose of this study was to investigate the effects of making small adjustments in a typical default ultrasound machine setting on extracted spatial frequency parameters (peak spatial frequency radius (PSFR), Mmax, Mmax%, and Sum) in the biceps femoris muscle. METHODS Longitudinal B-mode images were collected from the biceps femoris muscle in 36 participants. The window depth, foci locations, and gain were systematically adjusted consistent with clinical imaging procedures for a total of 27 images per participant. Images were analyzed by identifying a region of interest (ROI) in the middle portion of the muscle belly in a template image and using a normalized two-dimensional cross-correlation technique between the template image and subsequent images. The ROI was analyzed in the frequency domain using conventional SFA methods. Separate linear mixed effects models were run for each extracted parameter. RESULTS PSFR was affected by modifications in focus location only (p < 0.001) with differences noted between all locations. Mmax% was influenced by the interaction of gain and focus location (p < 0.001) but was also independently affected by increasing window depth (p < 0.001). Both Mmax and Sum parameters were sensitive to small changes in machine settings with the interaction of focus location and window depth (p < 0.001 for both parameters) as well as window depth and gain (p < 0.001 for both) influencing the extracted values. CONCLUSIONS Frequently adjusted imaging settings influence some SFA statistics. PSFR and Mmax% appear to be most robust to small changes in image settings, making them best suited for comparison across individuals and between studies, which is appealing for the clinical utility of the SFA method.
Collapse
Affiliation(s)
- Scott K Crawford
- Department of Kinesiology, University of Wisconsin-Madison, 1300 University Ave, Madison, WI, 53706, USA.
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Stephanie A Kliethermes
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Bryan C Heiderscheit
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
- Badger Athletic Performance Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Greg R Bashford
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
13
|
Muanjai P, Namsawang J. Hamstrings fascicle length and physical performance changes after a single bout of dynamic stretching or neurodynamic gliding in healthy young and older adults. J Bodyw Mov Ther 2023; 35:99-107. [PMID: 37330810 DOI: 10.1016/j.jbmt.2023.04.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION The physiological and structural alterations have been less reported in response to dynamic stretching (DS) or neurodynamic nerve gliding (NG). Accordingly, this study investigated the changes in fascicle lengths (FL), popliteal artery velocity, and physical fitness in response to a single bout of DS or NG. METHODS The study included 15 healthy young adults (20.9 ± 0.7 yrs) and 15 older adults (66.6 ± 4.2 yrs) who randomly performed three different interventions (DS, NG, and rest control) for 10 min and 3 days apart. The biceps femoris and semitendinosus FL, popliteal artery velocity, sit and reach (S&R), straight leg raise (SLR), and fast walking speed were measured before and immediately after the intervention. RESULTS After NG intervention, S&R was largely greater by 2 cm (1.2, 2.8 cm) and 3.4 cm (2.1, 4.7 cm) with largely increased SLR angles of 4.9° (3.7°, 6.1°) and 4.6° (3.0°, 6.2°) with all p < 0.001 for the older adults and young groups, respectively. A similar magnitude improvement in the S&R and SLR testing was also seen for both groups after DS (p < 0.05). Moreover, no changes were seen in FL, popliteal artery velocity, fast gait speed, and age effect following all three intervention occasions. CONCLUSION Stretching with DS or NG immediately increased flexibility, which appeared to be largely due to changes in stretch tolerance rather than an increase in fascicle length. Furthermore, age dependency in response to stretching exercise was not seen in the present study.
Collapse
Affiliation(s)
- Pornpimol Muanjai
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand; Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand.
| | - Juntip Namsawang
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand; Exercise and Nutrition Innovation and Sciences Research Unit, Burapha University, Chonburi, Thailand
| |
Collapse
|
14
|
Frouin A, Guenanten H, Le Sant G, Lacourpaille L, Liebard M, Sarcher A, McNair PJ, Ellis R, Nordez A. Validity and Reliability of 3-D Ultrasound Imaging to Measure Hamstring Muscle and Tendon Volumes. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1457-1464. [PMID: 36948893 DOI: 10.1016/j.ultrasmedbio.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The validity and reliability of 3-D ultrasound (US) in estimation of muscle and tendon volume was assessed in a very limited number of muscles that can be easily immersed. The objective of the present study was to assess the validity and reliability of muscle volume measurements for all hamstring muscle heads and gracilis (GR), as well as tendon volume for the semitendinosus (ST) and GR using freehand 3-D US. METHODS Three-dimensional US acquisitions were performed for 13 participants in two distinct sessions on separate days, in addition to one session dedicated to magnetic resonance imaging (MRI). Volumes of ST, semimembranosus (SM), biceps femoris short (BFsh) and long (BFlh) heads, and GR muscles and from the tendon from semitendinosus (STtd) and gracilis (GRtd) were collected. RESULTS The bias and the 95% confidence intervals of 3-D US compared with MRI ranged from -1.9 mL (-0.8%) to 1.2 mL (1.0%) for muscle volume and from 0.01 mL (0.2%) to -0.03 mL (-2.6%) for tendon volume. For muscle volume assessed using 3-D US, intraclass correlation coefficients (ICCs) ranged from 0.98 (GR) to 1.00, and coefficients of variation (CV) from 1.1% (SM) to 3.4% (BFsh). For tendon volume, ICCs were 0.99, and CVs between 3.2% (STtd) and 3.4% (GRtd). CONCLUSION Three-dimensional US can provide a valid and reliable inter-day measurement of hamstrings and GR for both muscle and tendon volumes. In the future, this technique could be used as an outcome for strengthening interventions and potentially in clinical environments.
Collapse
Affiliation(s)
- Antoine Frouin
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; Institut Sport Atlantique (ISA), Nantes, France
| | - Hugo Guenanten
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Guillaume Le Sant
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; School of Physiotherapy, IFM3R, Nantes, France
| | - Lilian Lacourpaille
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Martin Liebard
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; School of Physiotherapy, IFM3R, Nantes, France
| | - Aurélie Sarcher
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France
| | - Peter J McNair
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Richard Ellis
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; Active Living and Rehabilitation: Aotearoa, Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Antoine Nordez
- Nantes Université, Movement - Interactions - Performance, MIP, UR 4334, F-44000 Nantes, France; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
15
|
Ashir A, Jerban S, Barrère V, Wu Y, Shah SB, Andre MP, Chang EY. Skeletal Muscle Assessment Using Quantitative Ultrasound: A Narrative Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4763. [PMID: 37430678 PMCID: PMC10222479 DOI: 10.3390/s23104763] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Ultrasound (US) is an important imaging tool for skeletal muscle analysis. The advantages of US include point-of-care access, real-time imaging, cost-effectiveness, and absence of ionizing radiation. However, US can be highly dependent on the operator and/or US system, and a portion of the potentially useful information carried by raw sonographic data is discarded in image formation for routine qualitative US. Quantitative ultrasound (QUS) methods provide analysis of the raw or post-processed data, revealing additional information about normal tissue structure and disease status. There are four QUS categories that can be used on muscle and are important to review. First, quantitative data derived from B-mode images can help determine the macrostructural anatomy and microstructural morphology of muscle tissues. Second, US elastography can provide information about muscle elasticity or stiffness through strain elastography or shear wave elastography (SWE). Strain elastography measures the induced tissue strain caused either by internal or external compression by tracking tissue displacement with detectable speckle in B-mode images of the examined tissue. SWE measures the speed of induced shear waves traveling through the tissue to estimate the tissue elasticity. These shear waves may be produced using external mechanical vibrations or internal "push pulse" ultrasound stimuli. Third, raw radiofrequency signal analyses provide estimates of fundamental tissue parameters, such as the speed of sound, attenuation coefficient, and backscatter coefficient, which correspond to information about muscle tissue microstructure and composition. Lastly, envelope statistical analyses apply various probability distributions to estimate the number density of scatterers and quantify coherent to incoherent signals, thus providing information about microstructural properties of muscle tissue. This review will examine these QUS techniques, published results on QUS evaluation of skeletal muscles, and the strengths and limitations of QUS in skeletal muscle analysis.
Collapse
Affiliation(s)
- Aria Ashir
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Radiology, Santa Barbara Cottage Hospital, Santa Barbara, CA 93105, USA
| | - Saeed Jerban
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Victor Barrère
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
| | - Yuanshan Wu
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Sameer B. Shah
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
- Department of Orthopaedic Surgery, University of California, San Diego, CA 92093, USA;
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
| | - Michael P. Andre
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| | - Eric Y. Chang
- Department of Radiology, University of California, San Diego, CA 92093, USA; (S.J.); (M.P.A.); (E.Y.C.)
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; (V.B.); (S.B.S.)
| |
Collapse
|
16
|
Brown M, Buchheit M, Lacome M, Hader K, Guilhem G. Correlations Between Hamstring Muscle Architecture, Maturation, and Anthropometric Measures in Academy Soccer Players. Int J Sports Physiol Perform 2023; 18:615-624. [PMID: 37059426 DOI: 10.1123/ijspp.2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE Muscle architecture is associated with motor performance and muscle injury. While muscle architecture and knee-flexor eccentric strength change with growth, the influence of anthropometric measures on these properties is rarely considered. This study aimed to investigate the relationship between hamstring muscle architecture and knee-flexor eccentric strength with anthropometric measurements. METHODS Sixty male footballers (16.6 [1.05] y) from the U16, U17, and U19 teams of an elite soccer club were included in this study. Fascicle length, pennation angle, and muscle thickness of the biceps femoris long head (BFlh) and semimembranosus muscles were measured in both legs using ultrasound. Knee-flexor eccentric strength, height, body mass, leg length, femur length, and peak height velocity (PHV) were measured within 1 week of the ultrasound images. A stepwise regression and 1-way analysis of variance tests were used to evaluate the effects of age, maturity, and anthropometric measurements on muscle properties. RESULTS Variance within BFlh and semimembranosus muscle thickness (r < .61), semimembranosus pennation angle (r < .58), and knee-flexor eccentric strength (r = .50) were highly related to body mass. We observed no significant correlations between muscle architecture and age (P > .29). However, moderately greater BFlh muscle thickness was shown for the post-PHV compared with the PHV group (effect size ± 90% CI: 0.72 ± 0.49). CONCLUSIONS In conclusion, weak correlations between muscle architecture and anthropometric measurements suggest that other factors (ie, genetics, training regimen) influence muscle architecture. The moderate effect of maturity on BFlh muscle thickness strongly suggests post-PHV hypertrophy of the BFlh muscle. Our results confirmed previous findings that eccentric knee-flexor strength is influenced by body mass.
Collapse
Affiliation(s)
- Matthew Brown
- Performance Department, Paris Saint Germain Football Club, Saint Germain-en-Laye,France
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
- Playermaker, London,United Kingdom
| | - Martin Buchheit
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
- Kitman Labs, Performance Research Intelligence Initiative, Dublin,Ireland
| | - Mathieu Lacome
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
- Performance and Analytics Department, Parma Calcio 1913, Parma,Italy
| | - Karim Hader
- Kitman Labs, Performance Research Intelligence Initiative, Dublin,Ireland
| | - Gaël Guilhem
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| |
Collapse
|
17
|
Paton BM, Court N, Giakoumis M, Head P, Kayani B, Kelly S, Kerkhoffs GMMJ, Moore J, Moriarty P, Murphy S, Plastow R, Pollock N, Read P, Stirling B, Tulloch L, van Dyk N, Wilson MG, Wood D, Haddad F. London International Consensus and Delphi study on hamstring injuries part 1: classification. Br J Sports Med 2023; 57:254-265. [PMID: 36650035 DOI: 10.1136/bjsports-2021-105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 01/19/2023]
Abstract
Muscle injury classification systems for hamstring injuries have evolved to use anatomy and imaging information to aid management and prognosis. However, classification systems lack reliability and validity data and are not specific to individual hamstring muscles, potentially missing parameters vital for sport-specific and activity-specific decision making. A narrative evidence review was conducted followed by a modified Delphi study to build an international consensus on best-practice decision-making for the classification of hamstring injuries. This comprised a digital information gathering survey to a cohort of 46 international hamstring experts (sports medicine physicians, physiotherapists, surgeons, trainers and sports scientists) who were also invited to a face-to-face consensus group meeting in London . Fifteen of these expert clinicians attended to synthesise and refine statements around the management of hamstring injury. A second digital survey was sent to a wider group of 112 international experts. Acceptance was set at 70% agreement. Rounds 1 and 2 survey response rates were 35/46 (76%) and 99/112 (88.4%) of experts responding. Most commonly, experts used the British Athletics Muscle Injury Classification (BAMIC) (58%), Munich (12%) and Barcelona (6%) classification systems for hamstring injury. Issues identified to advance imaging classifications systems include: detailing individual hamstring muscles, establishing optimal use of imaging in diagnosis and classification, and testing the validity and reliability of classification systems. The most used hamstring injury classification system is the BAMIC. This consensus panel recommends hamstring injury classification systems evolve to integrate imaging and clinical parameters around: individual muscles, injury mechanism, sporting demand, functional criteria and patient-reported outcome measures. More research is needed on surgical referral and effectiveness criteria, and validity and reliability of classification systems to guide management.
Collapse
Affiliation(s)
- Bruce M Paton
- Institute of Sport Exercise and Health, University College London, London, UK .,Physiotherapy Department, University College London Hospitals NHS Foundation Trust, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK
| | | | | | - Paul Head
- School of Sport, Health and Applied Science, St. Mary's University, London, UK
| | - Babar Kayani
- Trauma and Orthopaedics, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Gino M M J Kerkhoffs
- Orthopaedic Surgery and Sports Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Amsterdam Collaboration for Health and Safety in Sports (ACHSS), Amsterdam IOC Research Center, Amsterdam, The Netherlands
| | - James Moore
- Centre for Human Health and Performance, London, UK
| | - Peter Moriarty
- Trauma and Orthopaedics, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Ricci Plastow
- Trauma and Orthopaedics, University College London Hospitals NHS Foundation Trust, London, UK
| | - Noel Pollock
- Institute of Sport Exercise and Health, University College London, London, UK.,British Athletics, London, UK
| | - Paul Read
- Institute of Sport Exercise and Health, University College London, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK.,School of Sport and Exercise, University of Goucester, Gloucester, UK
| | | | | | - Nicol van Dyk
- High Performance Unit, Irish Rugby Football Union, Dublin, Ireland.,Section Sports Medicine, University of Pretoria, Pretoria, South Africa
| | - Mathew G Wilson
- Division of Surgery and Intervention Science, University College London, London, UK.,Princess Grace Hospital, London, UK
| | - David Wood
- Trauma & Orthopaedic Surgery, North Sydney Orthopaedic and Sports Medicine Centre, Sydney, New South Wales, Australia
| | - Fares Haddad
- Institute of Sport Exercise and Health, University College London, London, UK.,Division of Surgery and Intervention Science, University College London, London, UK.,Trauma and Orthopaedics, University College London Hospitals NHS Foundation Trust, London, UK.,Princess Grace Hospital, London, UK
| |
Collapse
|
18
|
Sahinis C, Kellis E. Hamstring Muscle Quality Properties Using Texture Analysis of Ultrasound Images. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:431-440. [PMID: 36319531 DOI: 10.1016/j.ultrasmedbio.2022.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to examine the intra- and inter-muscular differences of the hamstring muscles using textural analysis of ultrasound (US) images, and the relationship between textural indicators with hamstring torque. Transverse US scans were obtained from 10 young males from four different measurement sites along the thigh of each individual hamstring muscle at rest. Maximum-knee-flexion isometric torque measurements were also obtained. Texture analysis was applied to US images, and five gray-level co-occurrence matrix (GLCM) features were quantified: entropy (ENT), angular second moment (ASM), inverse difference moment (IDM), contrast (CON) and correlation (COR). The intraclass correlation coefficients ranged from 0.77 to 0.99, and the standard error of measurement ranged from 0.06 to 10.05%, indicating high test-retest reliability. Analysis of the variance indicated significant differences between measurement sites and individual muscles, with the proximal measurement sites having greater values for ASM, IDM and COR and lower values for ENT and CON compared with the distal sites. Additionally, only the COR at the proximal measurement site exhibited a significant relationship (r = -0.66) with strength. The present study indicated significant differences among hamstrings and measurement locations with respect to the textural analysis and may provide a novel indicator of hamstring functional properties.
Collapse
Affiliation(s)
- Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
19
|
Activity Distribution Among the Hamstring Muscles During the Nordic Hamstring Exercise: A Multichannel Surface Electromyography Study. J Appl Biomech 2023; 39:69-79. [PMID: 36791725 DOI: 10.1123/jab.2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 02/17/2023]
Abstract
This study assessed activity distribution among the hamstring muscles during the Nordic hamstring exercise (NHE). The objective was to compare muscle activity between and within muscles during the NHE to add insights in its underlying protective mechanism. Through multichannel electromyography, we measured muscle activity in male basketball players during the NHE. Electromyography was assessed at 15 locations: 5 for biceps femoris long head, 4 for semitendinosus, and 6 for semimembranosus. For each percent of the eccentric phase of the NHE, muscle activity was calculated for each electrode location within each hamstring muscle individually. To quantify whole muscle head activity, means and variances across electrodes within each muscle were calculated. Thirty-five noninjured participants were included (mean age, 18 [2] y; mass, 87 [12] kg; height, 192 [9] cm). Heterogeneous muscle activity was found between 38% and 62% and over the whole eccentric contraction phase within the semitendinosus and the semimembranosus, respectively. Muscle activity of the semitendinosus was significantly higher than that of the biceps femoris long head. During the NHE, the relative contribution of the semitendinosus is the highest among hamstring muscles. Its strong contribution may compensate for the biceps femoris long head, the most commonly injured hamstring muscle head.
Collapse
|
20
|
Brusco CM, Pinto RS, Blazevich AJ. Reliability and Comparison of Sonographic Methods for In Vivo Measurement of Human Biceps Femoris Long-Head Architecture. Med Sci Sports Exerc 2022; 54:2216-2226. [PMID: 35941523 DOI: 10.1249/mss.0000000000003015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Biceps femoris long-head fascicle length ( Lf ), fascicle angle (FA), and muscle thickness (MT) estimates obtained across 2 d from extended field-of-view (EFOV) sonographic images were compared with those measured from a collage of single ultrasound images (to visualize entire fascicles) as well as a range of geometric equations and extrapolation methods used on single images. Both test validity and intraday reliability were determined. METHODS Twenty healthy adults (10 men and 10 women) were tested on two occasions (day 1 and day 2), 7 d apart at the same time of day for test-retest measurements. Ultrasound imaging was performed using EFOV and static image acquisition sequences; in the latter, four single images were acquired in-series along the muscle. From these images, Lf was assessed using seven methods: EFOV, collage, manual linear extrapolation, and four different trigonometric equations (termed equations A, B, C, and D), and FA and MT were measured in EFOV, collage, and single images. RESULTS Lf , FA, and MT measured on days 1 and 2 were not different ( P > 0.05) for any method, reliabilities were very high (intraclass correlation coefficient, 0.91-0.98), and correlations were strong (≥0.84). Significant correlations ( P < 0.05; r = 0.67-0.98) were found between EFOV and the other measurement techniques for Lf , FA, and MT. The collage method had the highest reliability for Lf , and highest rank order and correlation with EFOV. CONCLUSIONS Although the six different techniques used to estimate Lf provided values similar to EFOV, higher between-subject measurement variability was observed with trigonometric equations, and the collage method described herein provided the most accurate and reliable results and is therefore recommended for biceps femoris long-head architectural analysis when EFOV is not available.
Collapse
Affiliation(s)
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, BRAZIL
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research, School of Exercise and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| |
Collapse
|
21
|
Kellis E, Blazevich AJ. Hamstrings force-length relationships and their implications for angle-specific joint torques: a narrative review. BMC Sports Sci Med Rehabil 2022; 14:166. [PMID: 36064431 PMCID: PMC9446565 DOI: 10.1186/s13102-022-00555-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Temporal biomechanical and physiological responses to physical activity vary between individual hamstrings components as well as between exercises, suggesting that hamstring muscles operate differently, and over different lengths, between tasks. Nevertheless, the force-length properties of these muscles have not been thoroughly investigated. The present review examines the factors influencing the hamstrings’ force-length properties and relates them to in vivo function. A search in four databases was performed for studies that examined relations between muscle length and force, torque, activation, or moment arm of hamstring muscles. Evidence was collated in relation to force-length relationships at a sarcomere/fiber level and then moment arm-length, activation-length, and torque-joint angle relations. Five forward simulation models were also used to predict force-length and torque-length relations of hamstring muscles. The results show that, due to architectural differences alone, semitendinosus (ST) produces less peak force and has a flatter active (contractile) fiber force-length relation than both biceps femoris long head (BFlh) and semimembranosus (SM), however BFlh and SM contribute greater forces through much of the hip and knee joint ranges of motion. The hamstrings’ maximum moment arms are greater at the hip than knee, so the muscles tend to act more as force producers at the hip but generate greater joint rotation and angular velocity at the knee for a given muscle shortening length and speed. However, SM moment arm is longer than SM and BFlh, partially alleviating its reduced force capacity but also reducing its otherwise substantial excursion potential. The current evidence, bound by the limitations of electromyography techniques, suggests that joint angle-dependent activation variations have minimal impact on force-length or torque-angle relations. During daily activities such as walking or sitting down, the hamstrings appear to operate on the ascending limbs of their force-length relations while knee flexion exercises performed with hip angles 45–90° promote more optimal force generation. Exercises requiring hip flexion at 45–120° and knee extension 45–0° (e.g. sprint running) may therefore evoke greater muscle forces and, speculatively, provide a more optimum adaptive stimulus. Finally, increases in resistance to stretch during hip flexion beyond 45° result mainly from SM and BFlh muscles.
Collapse
Affiliation(s)
- Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, TEFAA Serres, 62100, Serres, Greece.
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, 6027, Australia
| |
Collapse
|
22
|
Goreau V, Pigne R, Bernier N, Nordez A, Hug F, Lacourpaille L. Hamstring muscle activation strategies during eccentric contractions are related to the distribution of muscle damage. Scand J Med Sci Sports 2022; 32:1335-1345. [PMID: 35611628 PMCID: PMC9541962 DOI: 10.1111/sms.14191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023]
Abstract
Large inter‐individual variability of activation strategies is observed during hamstring strengthening exercises but their consequences remain unexplored. The objective of this study was to determine whether individual activation strategies are related to the distribution of damage across the hamstring muscle heads semimembranosus (SM), semitendinosus (ST), and biceps femoris (BF) after eccentric contractions. 24 participants performed 5 sets of 15 maximal eccentric contractions of knee flexors on a dynamometer, while activation of each muscle head was assessed using surface electromyography. Knee flexion maximal isometric strength was assessed before exercise and 48 h afterward. Shear modulus was measured using shear wave elastography before exercise and 30 min afterward to quantify the distribution of damage across the hamstring muscle heads. At 48 h, maximal knee flexion torque had decreased by 15.9% ± 16.9% (p < 0.001). Although no differences between activation ratios of each muscle were found during the eccentric exercise (all p > 0.364), we reported a heterogeneous distribution of damage, with a larger change in shear modulus of ST/Hams than SM/Hams (+70.8%, p < 0.001) or BF/Hams (+50.3%, p < 0.001). A large correlation was found between the distribution of activation and the distribution of damage for ST/Hams (r = 0.69; p < 001). This study provides evidence that the distribution of activation during maximal eccentric contractions has mechanical consequences for synergist muscles. Further studies are needed to understand whether individual activation strategies influence the distribution of structural adaptations after a training program.
Collapse
Affiliation(s)
- Valentin Goreau
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, Nantes, France
| | - Robin Pigne
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, Nantes, France
| | - Nathan Bernier
- CIAMS, Université d'Orléans, Orléans, France.,CIAMS, Université Paris-Saclay, Orsay, France
| | - Antoine Nordez
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, Nantes, France.,Institut Universitaire de France (IUF), Paris, France
| | - François Hug
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, Nantes, France.,Institut Universitaire de France (IUF), Paris, France.,LAMHESS, Université Côte d'Azur, Nice, France
| | - Lilian Lacourpaille
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, Nantes, France
| |
Collapse
|
23
|
Widodo AF, Tien CW, Chen CW, Lai SC. Isotonic and Isometric Exercise Interventions Improve the Hamstring Muscles’ Strength and Flexibility: A Narrative Review. Healthcare (Basel) 2022; 10:healthcare10050811. [PMID: 35627948 PMCID: PMC9140507 DOI: 10.3390/healthcare10050811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Hamstring weakness has been associated with an increased risk of hamstring strain, a common sports injury that occurs when athletes perform actions such as quick sprints. The hamstring complex comprises three distinct muscles: the long and short heads of the bicep femoris, the semimembranosus, and the semitendinosus. Methods: The researchers collected the data from different electronic databases: PubMed, Google Scholar, and the Web of Science. Results: Many studies have been conducted on the numerous benefits of hamstring strength, in terms of athletic performance and injury prevention. Isotonic and isometric exercises are commonly used to improve hamstring strength, with each exercise type having a unique effect on the hamstring muscles. Isotonic exercise improves the muscles’ strength, increasing their ability to resist any force, while isometric training increases strength and the muscles’ ability to produce power by changing the muscle length. Conclusions: These exercises, when performed at low intensity, but with high repetition, can be used by the healthy general population to prepare for training and daily exercise. This can improve hamstring muscle strength and flexibility, leading to enhanced performance and reduced injury risk.
Collapse
Affiliation(s)
- Akhmad Fajri Widodo
- International Sport Science Master’s Program, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Cheng-Wen Tien
- Physical Education Office, General Education Centre, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| | - Chien-Wei Chen
- International Sport Science Master’s Program, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
- Department of Exercise and Health Science, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
- Correspondence:
| | - Shih-Chiung Lai
- Department of Exercise and Health Science, College of Human Development and Health, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan;
| |
Collapse
|
24
|
Is Muscle Architecture Different in Athletes with a Previous Hamstring Strain? A Systematic Review and Meta-Analysis. J Funct Morphol Kinesiol 2022; 7:jfmk7010016. [PMID: 35225902 PMCID: PMC8884017 DOI: 10.3390/jfmk7010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hamstring strains are a frequent injury in sports and are characterized by a high recurrence rate. The aim of this review was to examine the muscle and tendon architecture in individuals with hamstring injury. A systematic literature search in four databases yielded eleven studies on architecture following injury. Differences in the fascicle length (FL), pennation angle (PA) and muscle size measures (volume, thickness and physiological cross-sectional area) at rest were not significantly different between the previously injured limb and the contralateral limb (p > 0.05). There was moderate evidence that biceps femoris long head (BFlh) FL shortening was greater during contraction in the injured compared to the contralateral limb. The BFlh FL was smaller in athletes with a previous injury compared to uninjured individuals (p = 0.0015) but no differences in the FL and PA of other muscles as well as in the aponeurosis/tendon size were observed (p > 0.05). An examination of the FL of both leg muscles in individuals with a previous hamstring strain may be necessary before and after return to sport. Exercises that promote fascicle lengthening of both injured and uninjured leg muscles may be beneficial for athletes who recover from a hamstring injury.
Collapse
|
25
|
Pincheira PA, Boswell MA, Franchi MV, Delp SL, Lichtwark GA. Biceps femoris long head sarcomere and fascicle length adaptations after 3 weeks of eccentric exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:43-49. [PMID: 34509714 PMCID: PMC8847943 DOI: 10.1016/j.jshs.2021.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/25/2021] [Accepted: 08/05/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Eccentric exercise increases muscle fascicle lengths; however, the mechanisms behind this adaptation are still unknown. This study aimed to determine whether biceps femoris long head (BFlh) fascicle length increases in response to 3 weeks of eccentric exercise training are the result of an in-series addition of sarcomeres within the muscle fibers. METHODS Ten recreationally active participants (age = 27 ± 3 years; mass = 70 ± 14 kg; height = 174 ± 9 cm; mean ± SD) completed 3 weeks of Nordic hamstring exercise (NHE) training on a custom exercise device that was instrumented with load cells. We collected in vivo sarcomere and muscle fascicle images of the BFlh in 2 regions (central and distal) by using microendoscopy and 3 dimension ultrasonography. We then estimated sarcomere length, sarcomere number, and fascicle length before and after the training intervention. RESULTS Eccentric knee flexion strength increased after the training (15%; p < 0.001; ηp2 = 0.75). Further, we found a significant increase in fascicle length (21%; p < 0.001; ηp2 = 0.81) and sarcomere length (17%; p < 0.001; ηp2 = 0.90) in the distal but not in the central portion of the muscle. The estimated number of sarcomeres in series did not change in either region. CONCLUSION Fascicle length adaptations appear to be heterogeneous in the BFlh in response to 3 weeks of NHE training. An increase in sarcomere length, rather than the addition of sarcomeres in series, appears to underlie increases in fascicle length in the distal region of the BFlh. The mechanism driving regional increases in fascicle and sarcomere length remains unknown, but we speculate that it may be driven by regional changes in the passive tension of muscle or connective tissue adaptations.
Collapse
Affiliation(s)
- Patricio A Pincheira
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Melissa A Boswell
- Department of Bioengineering and Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova 35122, Italy
| | - Scott L Delp
- Department of Bioengineering and Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Glen A Lichtwark
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
26
|
Gronwald T, Klein C, Hoenig T, Pietzonka M, Bloch H, Edouard P, Hollander K. Hamstring injury patterns in professional male football (soccer): a systematic video analysis of 52 cases. Br J Sports Med 2021; 56:165-171. [PMID: 34876406 DOI: 10.1136/bjsports-2021-104769] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To closely describe the injury inciting events of acute hamstring injuries in professional male football (soccer) using systematic video analysis. METHODS Video footage from four seasons (2014-2019) of the two highest divisions in German male football was searched for moderate and severe (ie, time loss of >7 days) acute non-contact and indirect contact match hamstring injuries. Two raters independently categorised inciting events using a standardised procedure to determine specific injury patterns and kinematics. RESULTS 52 cases of hamstring injuries were included for specific pattern analysis. The pattern analysis revealed 25 sprint-related (48%) and 27 stretch-related hamstring injuries (52%). All sprint-related hamstring injuries occured during linear acceleration or high-speed running. Stretch-related hamstring injuries were connected with closed chain movements like braking or stopping with a lunging or landing action and open chain movements like kicking. The kinematic analysis of stretch-related injuries revealed a change of movement involving knee flexion to knee extension and a knee angle of <45° at the assumed injury frame in all open and closed chain movements. Biceps femoris was the most affected muscle (79%) of all included cases. CONCLUSION Despite the variety of inciting events, rapid movements with high eccentric demands of the posterior thigh are likely the main hamstring injury mechanism. This study provides important data about how hamstring injuries occur in professional male football and supports the need for demand-specific multicomponent risk reduction programmes.
Collapse
Affiliation(s)
- Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Christian Klein
- Department of Sports Injury Prevention, VBG, German Statutory Accident Insurance for the Administrative Sector, Hamburg, Germany
| | - Tim Hoenig
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Micha Pietzonka
- Department of Sports Injury Prevention, VBG, German Statutory Accident Insurance for the Administrative Sector, Hamburg, Germany
| | - Hendrik Bloch
- Department of Sports Injury Prevention, VBG, German Statutory Accident Insurance for the Administrative Sector, Hamburg, Germany
| | - Pascal Edouard
- Inter-university Laboratory of Human Movement Sciences (LIBM EA 7424), University of Lyon, University Jean Monnet, Saint Etienne, France.,Department of Clinical and Exercise Physiology, Sports Medicine Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Karsten Hollander
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
27
|
Effect of knee joint angle on individual hamstrings morphology quantified using free-hand 3D ultrasonography. J Electromyogr Kinesiol 2021; 62:102619. [PMID: 34839143 DOI: 10.1016/j.jelekin.2021.102619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/23/2022] Open
Abstract
Exercise responses and injury rates differ between individual hamstrings and this may be linked with their morphology. The aim of this study was to compare muscle length and tendon dimensions between the individual hamstrings at two knee joint angles using free hand three-dimensional ultrasound (3D US). Muscle-tendon length and distal tendon cross-sectional area (CSA), volume, length and echogenicity of biceps femoris long (BFlh) and short (BFsh) head, semimembranosus (SM) and semitendinosus (ST) of 16 individuals were measured using free-hand 3D US at 0° (full extension) and 45° of knee flexion. ST showed the greatest length than all muscles and BFsh the lowest (p < 0.05). No difference was observed between SM and BFlh length (p > 0.05). Of the four muscles, ST tendon was longer, with less volume and CSA but greater echogenicity than the other tendons. In contrast, SM and BFlh showed shorter tendons and lower echogenicity but a greater volume and CSA than ST (p < 0.05). Muscle and tendon lengthened from 45° to 0° knee flexion angle (p < 0.05) but this change was not statistically different between individual hamstrings (p > 0.05). Freehand 3D US indicated that hamstring muscle length and distal tendon dimensions differ between individual hamstrings. All muscles and tendons lengthened as the knee was extended but this change was similar for all individual hamstrings.
Collapse
|
28
|
Sahinis C, Kellis E, Dafkou K, Ellinoudis A. Reliability of Distal Hamstring Tendon Length and Cross-sectional Area Using 3-D Freehand Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2579-2588. [PMID: 34246531 DOI: 10.1016/j.ultrasmedbio.2021.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study was to investigate the reliability of distal hamstring tendon morphology using freehand 3-D ultrasound (US). Freehand 3-D US scans were acquired for 16 young males and females, in two sessions, spaced a week apart. The length, volume, cross-sectional area (CSA) and echo intensity (EI) of the semitendinosus (ST), biceps femoris long and short head and semimembranosus (SM) tendons were acquired. Measurements of the CSA and EI were obtained from three sites along each tendon. The intra-class correlation coefficients ranged from 0.88-0.99 of the examined variables, indicating high test-retest reliability. In addition, the minimal detectable change (MDC) ranged from 0.255-3.766 mm (MDC% of the mean: 0.406%-12.558%) for hamstring tendon length, from 0.036-0.077 mL (MDC%: 1.548%-3.178%) for tendon volume, from 0.512-1.948 mm2 (MDC%: 0.702%-3.586%) for CSA and from 0.898-2.586 au (MDC%: 1.145%-3.325%) for EI. Of the four hamstring tendons, ST had the greatest length (141.587 ± 10.701 mm) and EI (94.637 ± 5.536 au), while SM had the greatest volume (3.056 ± 0.421 mL) and CSA (115.277 ± 16.442 mm2) relative to other tendons. Freehand 3-D US appears to be a reliable tool for the evaluation of hamstring distal tendon morphology; hence, its use for in vivo evaluation of tendon properties is promising.
Collapse
Affiliation(s)
- Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Konstantinos Dafkou
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Athanasios Ellinoudis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
29
|
Afonso J, Rocha-Rodrigues S, Clemente FM, Aquino M, Nikolaidis PT, Sarmento H, Fílter A, Olivares-Jabalera J, Ramirez-Campillo R. The Hamstrings: Anatomic and Physiologic Variations and Their Potential Relationships With Injury Risk. Front Physiol 2021; 12:694604. [PMID: 34305648 PMCID: PMC8294189 DOI: 10.3389/fphys.2021.694604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/16/2021] [Indexed: 01/11/2023] Open
Abstract
The incidence and recurrence of hamstrings injuries are very high in sports, posing elevated performance and financial-related costs. Attempts to identify the risk factors involved in predicting vulnerability to hamstrings injury is important for designing exercise-based programs that aim to mitigate the rate and severity of hamstrings injuries and improve rehabilitation strategies. However, research has shown that non-modifiable risk factors may play a greater role than modifiable risk factors. Recognizing non-modifiable risk factors and understanding their implications will afford the prescription of better suited exercise programs, i.e., that are more respectful of the individual characteristics. In a nutshell, non-modifiable risk factors can still be acted upon, even if indirectly. In this context, an underexplored topic is how intra and inter- individual anatomic and physiologic variations in hamstrings (e.g., muscle bellies, fiber types, tendon length, aponeurosis width, attachment sites, sex- and age-related differences) concur to alter hamstrings injuries risk. Some anatomic and physiologic variations may be modifiable through exercise interventions (e.g., cross-sectional area), while others may not (e.g., supernumerary muscle bellies). This apparent dichotomy may hide a greater complexity, i.e., there may be risk factors that are partially modifiable. Therefore, we explored the available information on the anatomic variations of the hamstrings, providing a deeper insight into the individual risk factors for hamstrings injuries and contributing with better knowledge and potential applications toward a more individualized exercise prescription.
Collapse
Affiliation(s)
- José Afonso
- Centre for Research, Education, Innovation and Intervention in Sport, Faculty of Sport of the University of Porto, Porto, Portugal
| | - Sílvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Filipe M. Clemente
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Instituto de Telecomunicações, Delegação da Covilhã, Covilhã, Portugal
| | - Michele Aquino
- Department of Health and Sport Sciences, Adelphi University, New York, NY, United States
| | | | - Hugo Sarmento
- Research Unit for Sport and Physical Activity, Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal
| | - Alberto Fílter
- FSI Sport Research Lab, Football Science Institute, Granada, Spain
- Research Group Physical Activity, Health and Sport CTS-948, University of Pablo de Olavide, Seville, Spain
| | - Jesús Olivares-Jabalera
- FSI Sport Research Lab, Football Science Institute, Granada, Spain
- Sport and Health University Research Institute, Department of Physical and Sports Education, University of Granada, Granada, Spain
| | - Rodrigo Ramirez-Campillo
- Department of Physical Activity Sciences, Universidad de Los Lagos, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| |
Collapse
|
30
|
M. Biceps Femoris Long Head Architecture and Sprint Ability in Youth Soccer Players. Int J Sports Physiol Perform 2021; 16:1616-1624. [PMID: 33952715 DOI: 10.1123/ijspp.2020-0726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/01/2020] [Accepted: 12/17/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Hamstring muscle architecture may be associated with sprint performance and the risk of sustaining a muscle injury, both of which increase during puberty. In this study, we investigated the m. biceps femoris long head (BFlh) cross-sectional area (ACSA), fascicle length (FL) and pennation angle (PA), and sprint performance as well as their relationship in under 13 to 15 youth soccer players. METHODS We measured 85 players in under-13 (n = 29, age = 12.5 [0.1] y, height = 155.3 [6.2] cm, weight = 43.9 [7.6] kg), under-14 (n = 25, age = 13.5 [0.3] y, height = 160.6 [7.7] cm, weight = 47.0 [6.8] kg), and under-15 (n = 31, age = 14.4 [0.3] y, height = 170.0 [7.7] cm, weight = 58.1 [8.8] kg) teams. We used ultrasound to measure BFlh ACSA, FL and PA, and sprint tests to assess 10- and 30-m sprint time, maximal velocity (vmax), and maximal acceleration (αmax). We calculated Pearson r to assess the relationship between sprint ability and architectural parameters. RESULTS All muscle architectural parameters increased from the under-13 to the under-15 age group (BFlh ACSA = 37%, BFlh FL = 11%, BFlh PA = 8%). All sprint performance parameters improved from the under-13 to under-15 age categories (30-m time = 7%, 10-m time = 4%, vmax = 9%, αmax = 7%). The BFlh ACSA was correlated with 30-m sprint time (r = -.61 (95% compatibility interval [CI] [-.73, -.45]) and vmax (r = .61, 95% CI [.45, .72]). A combination of BFlh ACSA and age best predicted 30-m time (R² = .47 [.33, .62]) and 10-m time (R² = .23 [.08, .38]). CONCLUSIONS Muscle architectural as well as sprint performance parameters increase from the under-13 to under-15 age groups. Even though we found correlations for all assessed architectural parameters, BFlh ACSA was best related to the assessed sprint parameters.
Collapse
|
31
|
Pollock N, Kelly S, Lee J, Stone B, Giakoumis M, Polglass G, Brown J, MacDonald B. A 4-year study of hamstring injury outcomes in elite track and field using the British Athletics rehabilitation approach. Br J Sports Med 2021; 56:257-263. [PMID: 33853835 DOI: 10.1136/bjsports-2020-103791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The British Athletics Muscle Injury Classification (BAMIC) correlates with return to play in muscle injury. The aim of this study was to examine hamstring injury diagnoses and outcomes within elite track and field athletes following implementation of the British Athletics hamstring rehabilitation approach. METHODS All hamstring injuries sustained by elite track and field athletes on the British Athletics World Class Programme between December 2015 and November 2019 that underwent an MRI and had British Athletics medical team prescribed rehabilitation were included. Athlete demographics and specific injury details, including mechanism of injury, self-reported gait phase, MRI characteristics and time to return to full training (TRFT) were contemporaneously recorded. RESULTS 70 hamstring injuries in 46 athletes (24 women and 22 men, 24.6±3.7 years) were included. BAMIC grade and the intratendon c classification correlated with increased TRFT. Mean TRFT was 18.6 days for the entire cohort. Mean TRFT for intratendon classifications was 34±7 days (2c) and 48±17 days (3c). The overall reinjury rate was 2.9% and no reinjuries were sustained in the intratendon classifications. MRI variables of length and cross-sectional (CSA) area of muscle oedema, CSA of tendon injury and loss of tendon tension were associated with TRFT. Longitudinal length of tendon injury, in the intratendon classes, was not associated with TRFT. CONCLUSION The application of BAMIC to inform hamstring rehabilitation in British Athletics results in low reinjury rates and favourable TRFT following hamstring injury. The key MRI variables associated with longer recovery are length and CSA of muscle oedema, CSA of tendon injury and loss of tendon tension.
Collapse
Affiliation(s)
- Noel Pollock
- Institute of Sport, Exercise and Health, University College London, London, UK .,National Performance Institute, British Athletics Science and Medicine Team, Loughborough, UK
| | - Shane Kelly
- National Performance Institute, British Athletics Science and Medicine Team, Loughborough, UK.,Ballet Healthcare, The Royal Ballet, London, UK
| | - Justin Lee
- Radiology Department, Fortius Clinic, London, UK
| | - Ben Stone
- National Performance Institute, British Athletics Science and Medicine Team, Loughborough, UK
| | - Michael Giakoumis
- National Performance Institute, British Athletics Science and Medicine Team, Loughborough, UK
| | - George Polglass
- National Performance Institute, British Athletics Science and Medicine Team, Loughborough, UK
| | - James Brown
- National Performance Institute, British Athletics Science and Medicine Team, Loughborough, UK
| | | |
Collapse
|
32
|
Kellis E, Konstantinidou A, Ellinoudis A. Muscle Length of the Hamstrings Using Ultrasonography Versus Musculoskeletal Modelling. J Funct Morphol Kinesiol 2021; 6:jfmk6010026. [PMID: 33809069 PMCID: PMC8006252 DOI: 10.3390/jfmk6010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Muscle morphology is an important contributor to hamstring muscle injury and malfunction. The aim of this study was to examine if hamstring muscle-tendon lengths differ between various measurement methods as well as if passive length changes differ between individual hamstrings. The lengths of biceps femoris long head (BFlh), semimembranosus (SM), and semitendinosus (ST) of 12 healthy males were determined using three methods: Firstly, by identifying the muscle attachments using ultrasound (US) and then measuring the distance on the skin using a flexible ultrasound tape (TAPE-US). Secondly, by scanning each muscle using extended-field-of view US (EFOV-US) and, thirdly, by estimating length using modelling equations (MODEL). Measurements were performed with the participant relaxed at six combinations of hip (0°, 90°) and knee (0°, 45°, and 90°) flexion angles. The MODEL method showed greater BFlh and SM lengths as well as changes in length than US methods. EFOV-US showed greater ST and SM lengths than TAPE-US (p < 0.05). SM length change across all joint positions was greater than BFlh and ST (p < 0.05). Hamstring length predicted using regression equations is greater compared with those measured using US-based methods. The EFOV-US method yielded greater ST and SM length than the TAPE-US method. SM showed the highest change in length at different hip and knee joint positions.
Collapse
|
33
|
Crawford SK, Lee KS, Bashford GR, Heiderscheit BC. Spatial-frequency Analysis of the Anatomical Differences in Hamstring Muscles. ULTRASONIC IMAGING 2021; 43:100-108. [PMID: 33563139 PMCID: PMC7952215 DOI: 10.1177/0161734621990707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spatial frequency analysis (SFA) is a quantitative ultrasound method that characterizes tissue organization. SFA has been used for research involving tendon injury, but may prove useful in similar research involving skeletal muscle. As a first step, we investigated if SFA could detect known architectural differences within hamstring muscles. Ultrasound B-mode images were collected bilaterally at locations corresponding to proximal, mid-belly, and distal thirds along the hamstrings from 10 healthy participants. Images were analyzed in the spatial frequency domain by applying a two-dimensional Fourier Transform in all 6.5 × 6.5 mm kernels in a region of interest corresponding to the central portion of the muscle. SFA parameters (peak spatial frequency radius [PSFR], maximum frequency amplitude [Mmax], sum of frequencies [Sum], and ratio of Mmax to Sum [Mmax%]) were extracted from each muscle location and analyzed by separate linear mixed effects models. Significant differences were observed proximo-distally in PSFR (p = .039), Mmax (p < .0001), and Sum (p < .0001), consistent with architectural descriptions of the hamstring muscles. These results suggest that SFA can detect regional differences of healthy tissue structure within the hamstrings-an important finding for future research in regional muscle structure and mechanics.
Collapse
Affiliation(s)
- Scott K. Crawford
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth S. Lee
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Greg R. Bashford
- Department of Biological Systems Engineering, University of Nebraska, Lincoln, NE, USA
| | - Bryan C. Heiderscheit
- Department of Orthopedics & Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Maximal and submaximal isometric torque is elevated immediately following highly controlled active stretches of the hamstrings. J Electromyogr Kinesiol 2021; 56:102500. [DOI: 10.1016/j.jelekin.2020.102500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
|
35
|
Huygaerts S, Cos F, Cohen DD, Calleja-González J, Pruna R, Alcaraz PE, Blazevich AJ. Does Muscle-Tendon Unit Structure Predispose to Hamstring Strain Injury During Running? A Critical Review. Sports Med 2020; 51:215-224. [PMID: 33368028 DOI: 10.1007/s40279-020-01385-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Hamstring strain injury (HSI) remains the most common muscle injury in high-intensity running in humans. The majority of acute HSI occur specifically within the proximal region of the long head of biceps femoris and there is a sustained interest among researchers in understanding the factors that predispose to HSI. The present critical review describes the current understanding of biceps femoris long head (BFlh) structural features that might influence strain injury risk. Inter-individual differences in muscle-tendon architecture and interactions, muscle fiber type and region-specific innervation are likely to influence biceps femoris long head injury risk and might inform why some individuals are at an increased risk of sustaining a HSI during running. However, more research is needed, with future studies focusing on prospective data acquisition, improved computer simulations and direct imaging techniques to better understand the relationship between structural features, hamstring muscle function, and injury risk.
Collapse
Affiliation(s)
- Shaun Huygaerts
- UCAM Research Center for High Performance Sport, Catholic University San Antonio, 30830, Murcia, Spain.,Royal Antwerp Football Club, Oude Bosuilbaan 54A, 2100, Deurne, Belgium
| | - Francesc Cos
- Manchester City Football Club, Etihad Stadium, Manchester, M11 3 FF, UK.,National Institute of Physical Education of Catalonia (INEFC), Barcelona Center, University of Barcelona, Barcelona, Spain
| | - Daniel D Cohen
- Masira Institute, University of Santander (UDES), Bucaramanga, Colombia.,Sports Science Center (CCD), Colombian Ministry of Sport (Mindeporte), Bogotá, Colombia
| | - Julio Calleja-González
- Department of Physical Education and Sport, Faculty of Education and Sport, University of the Basque Country, 01007, Vitoria, Spain
| | - Ricard Pruna
- Physician of Football Club Barcelona, Arístides Maillol s/n, 08028, Barcelona, Spain
| | - Pedro E Alcaraz
- UCAM Research Center for High Performance Sport, Catholic University San Antonio, 30830, Murcia, Spain
| | - Anthony J Blazevich
- Centre for Exercise and Sports Science Research (CESSR), School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.
| |
Collapse
|
36
|
Ehiogu UD, Stephens G, Jones G, Schöffl V. Acute Hamstring Muscle Tears in Climbers-Current Rehabilitation Concepts. Wilderness Environ Med 2020; 31:441-453. [PMID: 33189522 DOI: 10.1016/j.wem.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Acute hamstring injuries are often caused by the heel hook technique. This technique is unique to climbing and causes injury to muscular and inert tissues of the posterior thigh. The heel hook is used by climbers during strenuous ascent on overhanging walls and when crossing difficult terrain. The technique reduces the amount of upper body strength required during strenuous climbing because the climber's center of mass is retained within the base of support. The heel hook is stressful collectively for the hamstring muscle group and musculotendinous junction. Depending on injury severity, both conservative and surgical methods exist for the management of hamstring injuries. Contemporary approaches to rehabilitation primarily advocate the use of eccentric muscle strengthening strategies because of high rates of elongation stress associated with sprinting and team sports. However, there is reason to doubt whether this alone is sufficient to rehabilitate the climbing athlete in light of the high degree of concentric muscle strength required in the heel hook maneuver. This review examines the contemporary rehabilitation and strength and conditioning literature in relation to the management of acute hamstring musculotendinous injuries for the climbing athlete. The review provides a comprehensive approach for the rehabilitation and athletic preparation of the climbing athlete from the initial injury to full return to sports participation.
Collapse
Affiliation(s)
- Uzo Dimma Ehiogu
- Birmingham Royal Orthopaedic Hospital, Research and Training Department, Birmingham, United Kingdom; Birmingham Medical School, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom; School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom.
| | - Gareth Stephens
- Birmingham Royal Orthopaedic Hospital, Research and Training Department, Birmingham, United Kingdom
| | - Gareth Jones
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom
| | - Volker Schöffl
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, United Kingdom; Department of Orthopedic and Trauma Surgery, Klinikum Bamberg, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany; Section of Sports Medicine, Department of Orthopedic Surgery, Klinikum Bamberg, Germany; Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
37
|
Effects of knee flexor submaximal isometric contraction until exhaustion on semitendinosus and biceps femoris long head shear modulus in healthy individuals. Sci Rep 2020; 10:16433. [PMID: 33009453 PMCID: PMC7532170 DOI: 10.1038/s41598-020-73433-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
This study examined whether a knee flexor isometric contraction at 20% of maximal voluntary isometric contraction until exhaustion would alter the biceps femoris long head (BFlh) and semitendinosus (ST) active stiffness, assessed using ultrasound-based shear wave elastography. Twelve healthy individuals participated in 2 sessions separated by 7 days. Time to exhaustion was similar in both sessions (day 1: 443.8 ± 192.5 s; day 2: 474.6 ± 131.7 s; p = 0.323). At the start of the fatigue task, the ST showed greater active stiffness than the BFlh (p < 0.001), with no differences between days (p = 0.08). The ST active stiffness then decreased from 40% of the task time to exhaustion (− 2.2 to − 13.3%, p = 0.027) until the end of the task (− 16.1 to − 22.9%, p = 0.012), while no significant changes were noted in the BFlh (p = 0.771). Immediately after the fatigue task, a decrease in active stiffness was observed in the ST (− 11.8 to − 17.8%, p < 0.001), but not in the BFlh (p = 0.551). Results were consistent between the 2 testing sessions (p = 0.07–0.959). The present results indicate that fatigue alters the hamstring active stiffness pattern.
Collapse
|
38
|
Kellis E, Sahinis C, Dafkou K, Ellinoudis A, Galanis N. Hamstring to quadriceps strength ratio and cross-sectional area of the quadriceps and hamstrings muscles assessed using extended field-of-view ultrasonography. Res Sports Med 2020; 29:25-42. [DOI: 10.1080/15438627.2020.1770250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eleftherios Kellis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysostomos Sahinis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Dafkou
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Ellinoudis
- Laboratory of Neuromechanics, Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikiforos Galanis
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
39
|
Avrillon S, Lacourpaille L, Hug F, Le Sant G, Frey A, Nordez A, Guilhem G. Hamstring muscle elasticity differs in specialized high‐performance athletes. Scand J Med Sci Sports 2019; 30:83-91. [DOI: 10.1111/sms.13564] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Simon Avrillon
- Laboratory Sport, Expertise and Performance (EA 7370) French Institute of Sport (INSEP) Paris France
- Nantes Université, Movement, Interactions, Performance, MIP, EA 4334 Nantes France
| | - Lilian Lacourpaille
- Nantes Université, Movement, Interactions, Performance, MIP, EA 4334 Nantes France
| | - François Hug
- Nantes Université, Movement, Interactions, Performance, MIP, EA 4334 Nantes France
- Institut Universitaire de France (IUF) Paris France
- School of Health and Rehabilitation Sciences Centre for Clinical Research Excellence in Spinal Pain, Injury and Health The University of Queensland Brisbane Qld Australia
| | - Guillaume Le Sant
- Nantes Université, Movement, Interactions, Performance, MIP, EA 4334 Nantes France
- School of Physiotherapy, IFM3R Nantes France
| | - Alain Frey
- Medical Department French Institute of Sport (INSEP) Paris France
- Service de Médecine du sport CHI Poissy/St Germain Saint Germain en Laye France
| | - Antoine Nordez
- Nantes Université, Movement, Interactions, Performance, MIP, EA 4334 Nantes France
- Faculty of Health and Environmental Sciences Health and Rehabilitation Research InstituteAuckland University of Technology Auckland New Zealand
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (EA 7370) French Institute of Sport (INSEP) Paris France
| |
Collapse
|