1
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
2
|
Goedecke JH, Pheiffer C, Mendham AE. Environmental exposures are important for type 2 diabetes pathophysiology in sub-Saharan African populations. Reply to Christensen D, Hjort L, Mpagama S et al [letter]. Diabetologia 2023; 66:780-782. [PMID: 36692507 DOI: 10.1007/s00125-022-05859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/25/2023]
Affiliation(s)
- Julia H Goedecke
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa.
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Amy E Mendham
- South African Medical Research Council/WITS Developmental Pathways for Health Research Unit (DPHRU), Department of Paediatrics, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Health through Physical Activity, Lifestyle and Sport Research Centre (HPALS), FIMS International Collaborating Centre of Sports Medicine, Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Coetzee A, Hall DR, Conradie M. Hyperglycemia First Detected in Pregnancy in South Africa: Facts, Gaps, and Opportunities. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:895743. [PMID: 36992779 PMCID: PMC10012101 DOI: 10.3389/fcdhc.2022.895743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/01/2022] [Indexed: 06/19/2023]
Abstract
This review contextualizes hyperglycemia in pregnancy from a South-African perspective. It aims to create awareness of the importance of hyperglycemia in pregnancy in low-middle-income countries. We address unanswered questions to guide future research on sub-Saharan African women with hyperglycemia first detected in pregnancy (HFDP). South African women of childbearing age have the highest prevalence of obesity in sub-Saharan Africa. They are predisposed to Type 2 diabetes (T2DM), the leading cause of death in South African women. T2DM remains undiagnosed in many African countries, with two-thirds of people living with diabetes unaware. With the South African health policy's increased focus on improving antenatal care, women often gain access to screening for non-communicable diseases for the first time in pregnancy. While screening practices and diagnostic criteria for gestational diabetes mellitus (GDM) differ amongst geographical areas in South Africa (SA), hyperglycemia of varying degrees is often first detected in pregnancy. This is often erroneously ascribed to GDM, irrespective of the degree of hyperglycemia and not overt diabetes. T2DM and GDM convey a graded increased risk for the mother and fetus during and after pregnancy, with cardiometabolic risk accumulating across the lifespan. Resource limitations and high patient burden have hampered the opportunity to implement accessible preventative care in young women at increased risk of developing T2DM in the broader public health system in SA. All women with HFDP, including those with true GDM, should be followed and undergo glucose assessment postpartum. In SA, studies conducted early postpartum have noted persistent hyperglycemia in a third of women after GDM. Interpregnancy care is advantageous and may attain a favourable metabolic legacy in these young women, but the yield of return following delivery is suboptimal. We review the current best evidence regarding HFDP and contextualize the applicability in SA and other African or low-middle-income countries. The review identifies gaps and shares pragmatic solutions regarding clinical factors that may improve awareness, identification, diagnosis, and management of women with HFDP.
Collapse
Affiliation(s)
- Ankia Coetzee
- Department of Medicine, Division of Endocrinology Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - David R. Hall
- Department of Obstetrics and Gynecology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | - Magda Conradie
- Department of Medicine, Division of Endocrinology Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
4
|
Castro-Leyva V, Arenas-Huertero F, Espejel-Núñez A, Giono Cerezo S, Flores-Pliego A, Espino Y Sosa S, Reyes-Muñoz E, Vadillo-Ortega F, Borboa-Olivares H, Camacho-Arroyo I, Estrada-Gutierrez G. miR-21 differentially regulates IL-1β and IL-10 expression in human decidual cells infected with streptococcus B. Reprod Biol 2022; 22:100604. [PMID: 35033900 DOI: 10.1016/j.repbio.2022.100604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/09/2021] [Accepted: 01/02/2022] [Indexed: 11/16/2022]
Abstract
Intrauterine infections caused by bacteria like group B streptococcus (GBS) and the subsequent activation of the maternal inflammatory response have been long suspected to be the underlying cause of preterm labor. The inflammatory network triggered by maternal decidua has been widely described and includes the secretion of pro- and anti-inflammatory cytokines as IL-1β and IL-10; however, the mechanisms that regulate their secretion have not been completely elucidated. MicroRNAs (miRNAs) are critical modulators of the inflammatory response by regulating cytokine expression in several cell types. Here, we explored the role of miR-21 in the expression of IL-1β and IL-10 in human decidual stromal cells (DSCs) exposed in vitro to GBS. We observed that IL1B and IL10 expression at the mRNA level was increased in DSCs after GBS infection. IL-10 but not IL-1β secretion was detected in the culture supernatants. We found a higher miR-21 expression (22-fold) in infected DSCs as compared with non-infected cells. miR-21 functional analysis revealed that DSCs transfected with an antagomiR vs. miR-21 significantly increased the secretion of IL-1β but decreased that of IL-10 in DSCs cells infected with GBS. Our results suggest that miR-21 participates in balancing the inflammatory response in infected decidua through at least IL-1β and IL-10 regulation. This is the first study attributing a functional role of miR-21 in the regulation of key molecules involved in the inflammatory response in infected DSCs, providing new insights into the epigenetic control of human decidual inflammation.
Collapse
Affiliation(s)
- Violeta Castro-Leyva
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico; Posgrado en Ciencias Químico-Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Francisco Arenas-Huertero
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Aurora Espejel-Núñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Giono Cerezo
- Posgrado en Ciencias Químico-Biológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, 11340, Mexico
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatología, Mexico City, Mexico
| | | | - Enrique Reyes-Muñoz
- Coordination of Gynecologic and Perinatal Endocrinology, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- UNAM School of Medicine Branch, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Héctor Borboa-Olivares
- Community Interventions Research Branch, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
5
|
Masete M, Dias S, Malaza N, Adam S, Pheiffer C. A Big Role for microRNAs in Gestational Diabetes Mellitus. Front Endocrinol (Lausanne) 2022; 13:892587. [PMID: 35957839 PMCID: PMC9357936 DOI: 10.3389/fendo.2022.892587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/24/2022] [Indexed: 12/16/2022] Open
Abstract
Maternal diabetes is associated with pregnancy complications and poses a serious health risk to both mother and child. Growing evidence suggests that pregnancy complications are more frequent and severe in pregnant women with pregestational type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) compared to women with gestational diabetes mellitus (GDM). Elucidating the pathophysiological mechanisms that underlie the different types of maternal diabetes may lead to targeted strategies to prevent or reduce pregnancy complications. In recent years, microRNAs (miRNAs), one of the most common epigenetic mechanisms, have emerged as key players in the pathophysiology of pregnancy-related disorders including diabetes. This review aims to provide an update on the status of miRNA profiling in pregnancies complicated by maternal diabetes. Four databases, Pubmed, Web of Science, EBSCOhost, and Scopus were searched to identify studies that profiled miRNAs during maternal diabetes. A total of 1800 articles were identified, of which 53 are included in this review. All studies profiled miRNAs during GDM, with no studies on miRNA profiling during pregestational T1DM and T2DM identified. Studies on GDM were mainly focused on the potential of miRNAs to serve as predictive or diagnostic biomarkers. This review highlights the lack of miRNA profiling in pregnancies complicated by T1DM and T2DM and identifies the need for miRNA profiling in all types of maternal diabetes. Such studies could contribute to our understanding of the mechanisms that link maternal diabetes type with pregnancy complications.
Collapse
Affiliation(s)
- Matladi Masete
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
| | - Nompumelelo Malaza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Center for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
- *Correspondence: Carmen Pheiffer,
| |
Collapse
|
6
|
Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus. Biosci Rep 2021; 41:228450. [PMID: 33890634 PMCID: PMC8145272 DOI: 10.1042/bsr20210617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/08/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the metabolic disorder that appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non-GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein–protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA–hub gene network and TF–hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up-regulated and 430 down-regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3 and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.
Collapse
|
7
|
Adiponectin DNA methylation in South African women with gestational diabetes mellitus: Effects of HIV infection. PLoS One 2021; 16:e0248694. [PMID: 33750967 PMCID: PMC7984613 DOI: 10.1371/journal.pone.0248694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
DNA methylation is increasingly recognized as a potential biomarker of metabolic disease. However, there is limited information on the impact of human immunodeficiency virus (HIV) infection on the candidacy of DNA methylation to serve as molecular biomarkers. This study investigated the effect of HIV infection on DNA methylation patterns in the peripheral blood of South African women with (n = 95) or without (n = 191) gestational diabetes mellitus (GDM). DNA methylation levels at eight CpG sites in the adiponectin gene (ADIPOQ) promoter were measured using bisulfite conversion and pyrosequencing. Differences between HIV negative (-) and positive (+) women were observed. In HIV- women, methylation at CpG -3400 was lower in GDM+ women compared to those with normoglycemia (8.5-fold; p = 0.004), and was associated with higher fasting glucose (β-co-efficient = 0.973; p = 0.006) and lower adiponectin (β-co-efficient = -0.057; p = 0.014) concentrations. These associations were not observed in HIV+ women. In silico analysis showed that Transcription Factor AP2-alpha is able to bind to the altered CpG site, suggesting that CpG -3400 may play a functional role in the regulation of ADIPOQ expression. Our findings show that DNA methylation differs by HIV status, suggesting that HIV infection needs to be taken into consideration in studies exploring DNA methylation as a biomarker of GDM in high HIV prevalence settings.
Collapse
|
8
|
Zheng J, Xu J, Zhang Y, Zhou N. Effects of insulin combined with metformin on serum cystatin C, homocysteine and maternal and neonatal outcomes in pregnant women with gestational diabetes mellitus. Exp Ther Med 2019; 19:467-472. [PMID: 31853319 PMCID: PMC6909788 DOI: 10.3892/etm.2019.8224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/02/2019] [Indexed: 12/30/2022] Open
Abstract
Effects of insulin combined with metformin on serum cystatin C (Cys C), homocysteine (Hcy) and maternal and neonatal outcomes in pregnant women with gestational diabetes mellitus (GDM) were investigated. In total, 80 cases of pregnant women diagnosed with GDM in the Department of Obstetrics and Gynecology of Liaocheng Third People's Hospital from July 2015 to July 2017 were selected and divided into a study group (42 cases) and a control group (38 cases). The study group was treated with insulin combined with metformin, and the control group was treated with insulin. Fasting blood glucose (FBG) and postprandial blood glucose after 2 h (2hPG) of the two groups were compared before and after treatment. Levels of serum Cys C, Hcy, urinary protein (UmAlb), postpartum maternal outcomes and adverse reactions during pregnancy were compared in the two groups before and after treatment. After treatment, the level of FBG and 2hPG in the control group was higher than that in the treatment group (P<0.05). After treatment, the level of serum Cys C and Hcy in both groups were lower than that before the treatment, and the level in the study group was lower than that in the control group (P<0.05). The total incidence of neonatal adverse outcomes and the number of adverse pregnancies in GDM patients in the study group were significantly lower than those in the control group (P<0.05). There were no significant differences in adverse reactions during pregnancy between the two groups (P>0.05). In conclusion, insulin combined with metformin is more effective than insulin alone in reducing serum Cys C and Hcy levels, with significant effect on the improvement of maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Jizeng Zheng
- Department of Obstetrics and Gynecology, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Juan Xu
- Department of Obstetrics, Tengzhou Central People's Hospital, Tengzhou, Shandong 277500, P.R. China
| | - Yin Zhang
- Department of Obstetrics and Gynecology, Liaocheng Third People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Nan Zhou
- Department of Health Care, Jinan Central Hospital, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
9
|
Zhao H, Tao S. MiRNA-221 protects islet β cell function in gestational diabetes mellitus by targeting PAK1. Biochem Biophys Res Commun 2019; 520:218-224. [PMID: 31587871 DOI: 10.1016/j.bbrc.2019.09.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
To elucidate the potential function of miRNA-221 in gestational diabetes mellitus (GDM) and the underlying mechanism. MiRNA-221 level was analyzed in the microarray containing placental tissues of GDM rats. After constructing GDM model in rats, miRNA-221 level in placental tissues of GDM rats or controls was determined as well. The relationship between miRNA-221 level and blood glucose in GDM rats was analyzed by Spearman correlation test. Regulatory effects of miRNA-221 on proliferation, apoptosis and insulin secretion in INS-1 cells were assessed. Through dual-luciferase reporter gene assay, the direct target of miRNA-221, PAK1 was identified. At last, potential influences of miRNA-221/PAK1 axis on INS-1 cell phenotypes were determined. MiRNA-221 was downregulated in placental tissues of GDM rats, and its level was negatively correlated to that of blood glucose level in GDM rats. Overexpression of miRNA-221 stimulated insulin secretion, cell proliferation and suppressed apoptosis in INS-1 cells. Knockdown of miRNA-221 achieved the opposite results. PAK1 was proved as the direct target of miRNA-221. Notably, PAK1 was able to reverse regulatory effects of miRNA-221 on INS-1 cell phenotypes. MiRNA-221 regulates proliferation, apoptosis and insulin secretion in islet β cells through targeting PAK1, thus protecting GDM-induced islet dysfunction.
Collapse
Affiliation(s)
- Hongqiang Zhao
- Department of Gerontology, Jinan People's Hospital of Shandong Province, Jinan, China.
| | - Shujuan Tao
- Department of Obstetrics, Jinan Second Maternal and Child Health Hospital of Shandong Province, Jinan, China
| |
Collapse
|