1
|
Zhu A, Jiang Y, Pan L, Li J, Huang Y, Shi M, Di L, Wang L, Wang R. Cell inspired delivery system equipped with natural membrane structures in applications for rescuing ischemic stroke. J Control Release 2025; 377:54-80. [PMID: 39547421 DOI: 10.1016/j.jconrel.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Ischemic stroke (IS), accounting for 87 % of stroke incidences, constitutes a paramount health challenge owing to neurological impairments and irreversible tissue damage arising from cerebral ischemia. Chief among therapeutic obstacles are the restrictive penetration of the blood-brain barrier (BBB) and insufficient targeting precision, hindering the accumulation of drugs in ischemic brain areas. Motivated by the remarkable capabilities of natural membrane-based delivery vehicles in achieving targeted delivery and traversing the BBB, thanks to their biocompatible architecture and bioactive components, numerous membrane-engineered systems such as cells, cell membranes and extracellular vesicles have emerged as promising platforms to augment IS treatment efficacy with the help of nanotechnology. This review consolidates the primary pathological manifestations following IS, elucidates the unique functionalities of natural membrane drug delivery systems (DDSs) with nanotechnology, as well as delineates the structural characteristics of various natural membranes alongside rational design strategies employed. The review illuminates both the potential and challenges encountered when employing natural membrane DDSs in IS drug therapy, offering fresh perspectives and insights for devising efficacious and practical delivery systems tailored to IS intervention.
Collapse
Affiliation(s)
- Anran Zhu
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingyu Jiang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Longxiang Pan
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiale Li
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao Huang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minghui Shi
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liuqing Di
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Ruoning Wang
- School of Pharmacy, Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Bhomia M, Feng Y, Deleon P, Robertson CS, Kobeissy F, Wang KK, Knollmann-Ritschel B. Transcriptomic Signatures of Neuronally Derived Extracellular Vesicles Reveal the Presence of Olfactory Receptors in Clinical Samples from Traumatic Brain Injury Patients. Int J Mol Sci 2024; 25:2777. [PMID: 38474024 PMCID: PMC10931597 DOI: 10.3390/ijms25052777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) is defined as an injury to the brain by external forces which can lead to cellular damage and the disruption of normal central nervous system functions. The recently approved blood-based biomarkers GFAP and UCH-L1 can only detect injuries which are detectable on CT, and are not sensitive enough to diagnose milder injuries or concussion. Exosomes are small microvesicles which are released from the cell as a part of extracellular communication in normal as well as diseased states. The objective of this study was to identify the messenger RNA content of the exosomes released by injured neurons to identify new potential blood-based biomarkers for TBI. Human severe traumatic brain injury samples were used for this study. RNA was isolated from neuronal exosomes and total transcriptomic sequencing was performed. RNA sequencing data from neuronal exosomes isolated from serum showed mRNA transcripts of several neuronal genes. In particular, mRNAs of several olfactory receptor genes were present at elevated concentrations in the neuronal exosomes. Some of these genes were OR10A6, OR14A2, OR6F1, OR1B1, and OR1L1. RNA sequencing data from exosomes isolated from CSF showed a similar elevation of these olfactory receptors. We further validated the expression of these samples in serum samples of mild TBI patients, and a similar up-regulation of these olfactory receptors was observed. The data from these experiments suggest that damage to the neurons in the olfactory neuroepithelium as well as in the brain following a TBI may cause the release of mRNA from these receptors in the exosomes. Hence, olfactory receptors can be further explored as biomarkers for the diagnosis of TBI.
Collapse
Affiliation(s)
- Manish Bhomia
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (Y.F.); (P.D.); (B.K.-R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Yanru Feng
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (Y.F.); (P.D.); (B.K.-R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Piper Deleon
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (Y.F.); (P.D.); (B.K.-R.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | | | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (F.K.); (K.K.W.)
| | - Kevin K. Wang
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (F.K.); (K.K.W.)
| | - Barbara Knollmann-Ritschel
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (Y.F.); (P.D.); (B.K.-R.)
| |
Collapse
|
4
|
Gao X, Gao H, Yue K, Cao X, Yang E, Zhang Z, Huang Y, Li X, Ding D, Luo P, Jiang X. Observing Extracellular Vesicles Originating from Endothelial Cells in Vivo Demonstrates Improved Astrocyte Function Following Ischemic Stroke via Aggregation-Induced Emission Luminogens. ACS NANO 2023; 17:16174-16191. [PMID: 37535897 PMCID: PMC10448755 DOI: 10.1021/acsnano.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Extracellular vesicles (EVs) obtained from endothelial cells (ECs) have significant therapeutic potential in the clinical management of individuals with ischemic stroke (IS) because they effectively treat ischemic stroke in animal models. However, because molecular probes with both high labeling efficiency and tracer stability are lacking, monitoring the actions of EC-EVs in the brain remains difficult. The specific intracellular targets in the brain that EC-EVs act on to produce their protective effects are still unknown, greatly impeding their use in clinical settings. For this research, we created a probe that possessed aggregation-induced emission (AIE) traits (namely, TTCP), enabling the effective labeling of EC-EVs while preserving their physiological properties. In vitro, TTCP simultaneously had a higher EC-EV labeling efficiency and better tracer stability than the commercial EV tags PKH-67 and DiI. In vivo, TTCP precisely tracked the actions of EC-EVs in a mouse IS model without influencing their protective effects. Furthermore, through the utilization of TTCP, it was determined that astrocytes were the specific cells affected by EC-EVs and that EC-EVs exhibited a safeguarding impact on astrocytes following cerebral ischemia-reperfusion (I/R) injury. These protective effects encompassed the reduction of the inflammatory reaction and apoptosis as well as the enhancement of cell proliferation. Further analysis showed that miRNA-155-5p carried by EC-EVs is responsible for these protective effects via regulation of the c-Fos/AP-1 pathway; this information provided a strategy for IS therapy. In conclusion, TTCP has a high EC-EV labeling efficiency and favorable in vivo tracer stability during IS therapy. Moreover, EC-EVs are absorbed by astrocytes during cerebral I/R injury and promote the restoration of neurological function through the regulation of the c-Fos/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Heqi Gao
- The
Key Laboratory of Bioactive Materials, Ministry of Education, The
College of Life Sciences, Nankai University, Tianjin 300071, China
- Center
for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology,
Guangdong Research Center for Interfacial Engineering of Functional
Materials, College of Materials Science and Engineering, College of
Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Kangyi Yue
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiuli Cao
- Department
of Medical Genetics and Developmental Biology, Fourth Military Medical University Xi’an 710032, China
| | - Erwan Yang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Zhuoyuan Zhang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- School
of Life Science, Northwest University, Xi’an 710032, China
| | - Yutao Huang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xin Li
- Department
of Anesthesiology, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Dan Ding
- The
Key Laboratory of Bioactive Materials, Ministry of Education, The
College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peng Luo
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiaofan Jiang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
5
|
Sharafeldin M, Yan S, Jiang C, Tofaris GK, Davis JJ. Alternating Magnetic Field-Promoted Nanoparticle Mixing: The On-Chip Immunocapture of Serum Neuronal Exosomes for Parkinson's Disease Diagnostics. Anal Chem 2023; 95:7906-7913. [PMID: 37167073 DOI: 10.1021/acs.analchem.3c00357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The analysis of cargo proteins in exosome subpopulations has considerable value in diagnostics but a translatable impact has been limited by lengthy or complex exosome extraction protocols. We describe herein a scalable, fast, and low-cost exosome extraction using an alternating (AC) magnetic field to support the dynamic mixing of antibody-coated magnetic beads (MBs) with serum samples within 3D-printed microfluidic chips. Zwitterionic polymer-coated MBs are, specifically, magnetically agitated and support ultraclean exosome capture efficiencies >70% from <50 μL of neat serum in 30 min. Applied herein to the immunocapture of neuronal exosomes using anti-L1CAM antibodies, prior to the array-based assaying of α-synuclein (α-syn) content by a standard duplex electrochemical sandwich ELISA, sub pg/mL detection was possible with an excellent coefficient of variation and a sample-to-answer time of ∼75 min. The high performance and semiautomation of this approach hold promise in underpinning low-cost Parkinson's disease diagnostics and is of value in exosomal biomarker analyses more generally.
Collapse
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Shijun Yan
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, U.K
| | - Cheng Jiang
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, U.K
| | - George K Tofaris
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, U.K
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, University of Oxford, Oxford OX1 3QU, U.K
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
6
|
Picciolini S, Mangolini V, Rodà F, Montesano A, Arnaboldi F, Liuzzi P, Mannini A, Bedoni M, Gualerzi A. Multiplexing Biosensor for the Detection of Extracellular Vesicles as Biomarkers of Tissue Damage and Recovery after Ischemic Stroke. Int J Mol Sci 2023; 24:ijms24097937. [PMID: 37175644 PMCID: PMC10177901 DOI: 10.3390/ijms24097937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The inflammatory, reparative and regenerative mechanisms activated in ischemic stroke patients immediately after the event cooperate in the response to injury, in the restoration of functions and in brain remodeling even weeks after the event and can be sustained by the rehabilitation treatment. Nonetheless, patients' response to treatments is difficult to predict because of the lack of specific measurable markers of recovery, which could be complementary to clinical scales in the evaluation of patients. Considering that Extracellular Vesicles (EVs) are carriers of multiple molecules involved in the response to stroke injury, in the present study, we have identified a panel of EV-associated molecules that (i) confirm the crucial involvement of EVs in the processes that follow ischemic stroke, (ii) could possibly profile ischemic stroke patients at the beginning of the rehabilitation program, (iii) could be used in predicting patients' response to treatment. By means of a multiplexing Surface Plasmon Resonance imaging biosensor, subacute ischemic stroke patients were proven to have increased expression of vascular endothelial growth factor receptor 2 (VEGFR2) and translocator protein (TSPO) on the surface of small EVs in blood. Besides, microglia EVs and endothelial EVs were shown to be significantly involved in the intercellular communications that occur more than 10 days after ischemic stroke, thus being potential tools for the profiling of patients in the subacute phase after ischemic stroke and in the prediction of their recovery.
Collapse
Affiliation(s)
| | - Valentina Mangolini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, 25122 Brescia, Italy
| | - Francesca Rodà
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 42100 Modena, Italy
| | | | - Francesca Arnaboldi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milano, Italy
| | - Piergiuseppe Liuzzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy
- Scuola Superiore Sant'Anna, Istituto di BioRobotica, 56025 Pontedera, Italy
| | - Andrea Mannini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Firenze, Italy
| | - Marzia Bedoni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
| | - Alice Gualerzi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milano, Italy
| |
Collapse
|
7
|
Exosomes as biomarkers and therapeutic measures for ischemic stroke. Eur J Pharmacol 2023; 939:175477. [PMID: 36543286 DOI: 10.1016/j.ejphar.2022.175477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ischemic stroke (IS) is the leading cause of long-term disability in the world and characterized by high morbidity, recurrence, complications, and mortality. Due to the lack of early diagnostic indicators, limited therapeutic measures and inadequate prognostic indicators, the diagnosis and treatment of IS remains a particular challenge at present. It has recently been reported that exosomes (EXOs) play a significant role in the pathogenesis and treatment of IS. The purpose of this paper is to probe the role of EXOs in diagnostic biomarkers and therapeutic measures for IS and to provide innovative ideas for improving the prognosis of IS.
Collapse
|
8
|
Mechanisms and Biomarker Potential of Extracellular Vesicles in Stroke. BIOLOGY 2022; 11:biology11081231. [PMID: 36009857 PMCID: PMC9405035 DOI: 10.3390/biology11081231] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/29/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022]
Abstract
Simple Summary A stroke occurs when there is a lack of blood flow to the brain. Stroke injures the brain and can have devastating outcomes depending on the size and location of the brain tissue affected. Currently, there are only a limited number of treatment options for stroke. Extracellular vesicles are small vesicles secreted by cells. Importantly, extracellular vesicles have specific markers indicating the cell they were released from and can pass from the brain into the blood. For these reasons, assessing extracellular vesicles in the blood may create a window into changes occurring in the brain. Assessing changes in extracellular vesicles in the blood during stroke may produce new insight into the cellular changes in the brain causing injury during stroke. This in turn may generate potential targets for the development of future treatments. We summarize what is known about changes in brain-cell-specific extracellular vesicles during stroke and stress the importance of continuing to study these changes. Abstract Stoke is a prevalent and devastating neurologic condition with limited options for therapeutic management. Since brain tissue is rarely accessible clinically, peripheral biomarkers for the central nervous system’s (CNS’s) cellular response to stroke may prove critical for increasing our understanding of stroke pathology and elucidating novel therapeutic targets. Extracellular vesicles (EVs) are cell-derived, membrane-enclosed vesicles secreted by all cell types within the CNS that can freely pass the blood-brain barrier (BBB) and contain unique markers and content linked to their cell of origin. These unique qualities make brain-derived EVs novel candidates for non-invasive blood-based biomarkers of both cell specificity and cell physiological state during the progression of stroke and recovery. While studies are continuously emerging that are assessing the therapeutic potential of EVs and profiling EV cargo, a vast minority of these studies link EV content to specific cell types. A better understanding of cell-specific EV release during the acute, subacute, and chronic stages of stroke is needed to further elucidate the cellular processes responsible for stroke pathophysiology. Herein, we outline what is known about EV release from distinct cell types of the CNS during stroke and the potential of these EVs as peripheral biomarkers for cellular function in the CNS during stroke.
Collapse
|
9
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
10
|
Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool. Bioengineering (Basel) 2022; 9:bioengineering9030105. [PMID: 35324794 PMCID: PMC8945706 DOI: 10.3390/bioengineering9030105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation.
Collapse
|
11
|
Exosomes Derived Neuronal Markers: Immunoaffinity Isolation and Characterization. Neuromolecular Med 2021; 24:339-351. [PMID: 34811658 DOI: 10.1007/s12017-021-08696-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
Neuronal exosomes play a crucial role in intercellular communication in the brain and represent a promising biomarker for neurological diseases, including stroke. However, limited techniques are available for isolating neuronal exosomes due to their small number in the serum exosomes. Thus, the development of efficient tools with brain-specific markers is needed. Here, we show the optimization of an immunoaffinity assay-based isolation protocol for specific exosomes or neuronally derived exosomes (NDE). Our results demonstrated that one-micron functionalized magnetic beads successfully separated CD63+ and L1CAM+ exosomes from serum. The size and shape of exosomes or exosomes pulled by beads were confirmed by Dynamic light scattering and Transmission electron microscopy; also, beads were well resolved in conventional flow cytometry analysis, which revealed that CD63-pulled serum exosomes had 5% expression of L1CAM. Furthermore, transmission electron microscopy showed that exosomes eluted from magnetic beads retained their original size, shape, and form without any damage. Furthermore, we showed isolation of NDE using GluR2/3-capturing antibody (α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor) using an optimized immunoaffinity bead assay utilizing 100 µl serum of stroke patients or age-matched healthy group. GluR2/3-captured exosomes were confirmed by western blot analysis. The western blot analysis showed a significant increase in the 35KDa subunit of GluR2/3 receptor protein in the exosomes of stroke patients compared to the healthy group. In addition, the multimeric GluR2/3 receptor protein in exosomes was further validated by the presence of the GluR2 subunit. Thus, our study shows GluR3/2 may be an effective candidate to isolate neuronal exosomes.
Collapse
|
12
|
Wang P, Xiao T, Li J, Wang D, Sun J, Cheng C, Ma H, Xue J, Li Y, Zhang A, Liu Q. miR-21 in EVs from pulmonary epithelial cells promotes myofibroblast differentiation via glycolysis in arsenic-induced pulmonary fibrosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117259. [PMID: 33965804 DOI: 10.1016/j.envpol.2021.117259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
As an environmental toxicant, arsenic causes damage to various organs and systems of the body and has attracted worldwide attention. It is well-known that exposure to arsenic can induce pulmonary fibrosis, but the molecular mechanisms are elusive. Glycolysis is involved in the process of various diseases, including pulmonary fibrosis. Extracellular vehicles (EVs) are mediators of cell communication through transporting miRNAs. The potential of miRNAs in EVs as liquid biopsy biomarkers for various diseases has been reported, and they have been applied in clinical diagnoses. In the present investigation, we focused on the roles and mechanisms of miR-21 in EVs on arsenic-induced glycolysis and pulmonary fibrosis through experiments with human populations, experimental animals, and cells. The results for arsenicosis populations showed that the serum levels of hydroxyproline, lactate, and EVs-miRNAs were elevated and that EVs-miR-21 levels were positively related to the levels of hydroxyproline and lactate. For mice, chronic exposure to arsenite led to high levels of miR-21, AKT activation, elevated glycolysis, and pulmonary fibrosis; however, these effects were blocked by the depletion of miR-21 in miR-21 knockout (miR-21KO) mice. After MRC-5 cells were co-cultured with arsenite-treated HBE cells, the levels of miR-21, AKT activation, glycolysis, and myofibroblast differentiation were enhanced, effects that were blocked by reducing miR-21 and by inhibiting the EVs in HBE cells. The down-regulation of PTEN in MRC-5 cells and primary lung fibroblasts (PLFs) reversed the blocking effect of inhibiting miR-21 in HBE cells. Thus, miR-21 down-regulates PTEN and promotes glycolysis via activating AKT, which is associated with arsenite-induced myofibroblast differentiation and pulmonary fibrosis. Our results provide a new approach for the construction of clinical diagnosis technology based on analysis of the mechanism of arsenite-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Peiwen Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huimin Ma
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Li
- Department of Toxicology, School of Public Health, Zunyi Medical University, Zunyi, 563000, Guizhou, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; China International Cooperation Center for Environment and Human Health, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021; 10:cells10081959. [PMID: 34440728 PMCID: PMC8393426 DOI: 10.3390/cells10081959] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are a type of extracellular vesicles, produced within multivesicular bodies, that are then released into the extracellular space through a merging of the multivesicular body with the plasma membrane. These vesicles are secreted by almost all cell types to aid in a vast array of cellular functions, including intercellular communication, cell differentiation and proliferation, angiogenesis, stress response, and immune signaling. This ability to contribute to several distinct processes is due to the complexity of exosomes, as they carry a multitude of signaling moieties, including proteins, lipids, cell surface receptors, enzymes, cytokines, transcription factors, and nucleic acids. The favorable biological properties of exosomes including biocompatibility, stability, low toxicity, and proficient exchange of molecular cargos make exosomes prime candidates for tissue engineering and regenerative medicine. Exploring the functions and molecular payloads of exosomes can facilitate tissue regeneration therapies and provide mechanistic insight into paracrine modulation of cellular activities. In this review, we summarize the current knowledge of exosome biogenesis, composition, and isolation methods. We also discuss emerging healing properties of exosomes and exosomal cargos, such as microRNAs, in brain injuries, cardiovascular disease, and COVID-19 amongst others. Overall, this review highlights the burgeoning roles and potential applications of exosomes in regenerative medicine.
Collapse
|