1
|
Zhu Y, Dai Y, Tian Y. The Peptide PROTAC Modality: A New Strategy for Drug Discovery. MedComm (Beijing) 2025; 6:e70133. [PMID: 40135198 PMCID: PMC11933449 DOI: 10.1002/mco2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, proteolysis targeting chimera (PROTAC) technology has made significant progress in the field of drug development. Traditional drugs mainly focus on inhibiting or activating specific proteins, while PROTAC technology provides new ideas for treating various diseases by inducing the degradation of target proteins. Especially for peptide PROTACs, due to their unique structural and functional characteristics, they have become a hot research topic. This review provides a detailed description of the key components, mechanisms, and design principles of peptide PROTACs, elaborates on their applications in skin-related diseases, oncology, and other potential therapeutic fields, analyzes their advantages and challenges, and looks forward to their future development prospects. The development of peptide PROTAC technology not only opens up new paths for drug research and development, but also provides new ideas for solving the resistance and safety issues faced by traditional small-molecule drugs. Compared with small-molecule PROTACs, peptide PROTACs have advantages such as multitargeting, biodegradability, low toxicity, and flexibility in structural design. With the deepening of research and the continuous maturity of technology, peptide PROTACs are expected to become one of the important strategies for future drug discovery, providing new hope for the treatment of more intractable diseases. Peptide PROTACs are ushering in a new era of precision medicine.
Collapse
Affiliation(s)
- Youmin Zhu
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| | - Yu Dai
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
- School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yuncai Tian
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| |
Collapse
|
2
|
Camillo-Andrade AC, Sales LA, Fischer JSG, Duran R, Santos MDM, Carvalho PC. Paired proteomic analysis reveals protein alterations in sun-exposed skin of professional drivers : 1Laboratory for structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Paraná, Brazil. Sci Rep 2025; 15:10955. [PMID: 40164647 PMCID: PMC11958692 DOI: 10.1038/s41598-024-82308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 04/02/2025] Open
Abstract
Professional drivers represent an ideal cohort for investigating the effects of solar radiation on skin due to their unique, asymmetric exposure to sun, a consequence of vehicle window orientations. Consequently, one side of the face is naturally subjected to more solar radiation, resulting in uneven sunlight exposure. This scenario supports a paired experimental design for precise within-individual comparisons, crucial for assessing sun exposure's impact on skin health, including signs of aging. Leveraging this approach, our study reveals sun-induced overexpression of proteins linked to photoaging through paired proteomic analysis, providing novel insights into the skin's adaptive responses to chronic solar exposure. Initially, our research focused on a dataset from ten male professional drivers, identifying a set upregulated proteins in sun-exposed skin compared to the less exposed side of the face. To validate these findings, we extended our investigation to a new cohort of seven female bus drivers. Our motivation in switching genders and utilizing different mass spectrometry equipment and sample preparation techniques was for assessing the robustness of our initial findings, encompassing not just sex differences but also methodological variations, and also for understanding the broader implications of our results for photodermatology. To enable this detailed analysis, we developed specialized software that allows precise paired proteomic analysis, significantly enhancing the robustness and clarity of our findings. Our results shortlisted keratins, S100A14, and F-box proteins-by remaining consistently overexpressed in sun-exposed skin-and hemoglobin subunit beta as downregulated across both cohorts. Our findings underscore the potential of proteomic techniques in advancing our understanding of the molecular dynamics of photoaging and highlight the value of selecting cohorts with specific exposure characteristics.
Collapse
Affiliation(s)
- Amanda C Camillo-Andrade
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Positivo University, Paraná, Brazil
| | - Lucas A Sales
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Juliana S G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil
| | - Rosario Duran
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775, Curitiba, Paraná, Brazil.
- Analytical Biochemistry and Proteomics Unit, Instituto de Investigaciones Biológicas Clemente Estable, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
3
|
Liu S, Yang Y, Li Q, Yu L, Zong Z, Zang R, Ji W, Sun S. Ubiquitin-specific peptidase 10 promotes renal interstitial fibrosis progression through deubiquitinating and stabilizing P53 protein. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167660. [PMID: 39788218 DOI: 10.1016/j.bbadis.2025.167660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/30/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025]
Abstract
Renal interstitial fibrosis is the main factor determining chronic kidney disease (CKD) progression, and renal tubular epithelial cells are the key drivers of this pathological process. Herein, we revealed significantly increased ubiquitin-specific peptidase 10 (USP10) expression in the kidney tissues of both patients with CKD and mice induced by unilateral ureteral obstruction, as well as in transforming growth factor-beta 1 (TGFβ1)-induced renal tubular epithelial cells. In vivo, treatment with the USP10 small molecule inhibitor Spautin-1, which inhibits its deubiquitinating activity, weakened renal interstitial fibrosis progression and alleviated the subsequent inflammatory response and oxidative stress in male mice. In vitro, knocking down USP10 or inhibiting its deubiquitinating activity through Spautin-1 significantly reduced fibronectin expression and ameliorated TGFβ1-induced renal tubular epithelial cell dedifferentiation. Additionally, our results revealed that USP10 directly binds to P53 and removes the K48-linked polyubiquitin chains from P53, thereby affecting its ubiquitination, stability, and nuclear translocation, which subsequently leads to the upregulation of P21 and promotes fibrotic gene expression in injured renal tubular epithelial cells, ultimately exacerbating renal interstitial fibrosis. In conclusion, USP10 is inhibited through the P53 signaling pathway to alleviate the progression of renal interstitial fibrosis and serve as a potential target for treating CKD.
Collapse
Affiliation(s)
- Suwen Liu
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| | - Yunwen Yang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road #72, Nanjing 210008, China; Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qian Li
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lichun Yu
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zihan Zong
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ruixian Zang
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Wentao Ji
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shuzhen Sun
- Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Pediatric Nephrology and Rheumatism and Immunology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China.
| |
Collapse
|
4
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
5
|
Sánchez M, Yarza I, Jorquera C, Aznar JM, de Dicastillo LL, Valente C, Andrade R, Espregueira‐Mendes J, Celorrio D, Aizpurua B, Azofra J, Delgado D. Genetics, sex and the use of platelet-rich plasma influence the development of arthrofibrosis after anterior cruciate ligament reconstruction. J Exp Orthop 2025; 12:e70156. [PMID: 39882103 PMCID: PMC11775413 DOI: 10.1002/jeo2.70156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
Purpose To identify genes and patient factors that are related to the development of arthrofibrosis in patients after anterior cruciate ligament (ACL) reconstruction and to develop a prognostic model. Methods The study included patients diagnosed with ACL injury who underwent ACL reconstruction. Patients were enroled consecutively and divided into non-fibrotic (controls) and fibrotic (cases) groups until a balanced sample of matched case-control was achieved. Arthrofibrosis was considered pathological if the range of motion achieved 3 months after surgery decreased by at least 25% compared to its initial full range of motion. Patient variables and saliva samples were collected from each patient to perform a genetic approach by screening a set of candidate genes implicated in arthrofibrosis. Chi-squared was used to analyze the association between the development of arthrofibrosis and different independent variables. Binary logistic regression was used to develop a prognostic algorithm. Results A total of 45 controls (non-fibrotic patients) (50.1%) and 44 cases (fibrotic patients) (49.9%) were included for analysis. The median age was 34.0 years (95% confidence interval = 29.0-38.0) and the number of women was 32 (35.9%). Seven genetic polymorphisms showed significant association with the development of arthrofibrosis (p < 0.05). After binary regression analysis, the regression model included the polymorphisms rs4343 (ACE), rs1800947 (CRP), rs8032158 (NEDD4) and rs679620 (MMP3). This analysis also indicated that female gender was a risk factor while the use of platelet-rich plasma (PRP) during surgery was a preventive factor (p < 0.05). Conclusion Genetic alterations involved in inflammation and extracellular matrix turnover predispose to the development of arthrofibrosis after ACL reconstruction. Female sex was a risk factor in the development of this condition, while the application of PRP provided a preventive effect. The combination of patient and genetic variants of a patient allows the development of a prognostic algorithm for the risk of post-surgical arthrofibrosis. Level of Evidence level III.
Collapse
Affiliation(s)
- Mikel Sánchez
- Arthroscopic Surgery UnitHospital Vithas VitoriaVitoria‐GasteizSpain
- Advanced Biological Therapy UnitHospital Vithas VitoriaVitoria‐GasteizSpain
| | | | - Cristina Jorquera
- Advanced Biological Therapy UnitHospital Vithas VitoriaVitoria‐GasteizSpain
| | | | | | - Cristina Valente
- Clínica Espregueira‐FIFA Medical Centre of ExcellencePortoPortugal
- Dom Henrique Research CentrePortoPortugal
| | - Renato Andrade
- Clínica Espregueira‐FIFA Medical Centre of ExcellencePortoPortugal
- Dom Henrique Research CentrePortoPortugal
- Porto Biomechanics Laboratory (LABIOMEP)Faculty of Sports, University of PortoPortoPortugal
| | - João Espregueira‐Mendes
- Clínica Espregueira‐FIFA Medical Centre of ExcellencePortoPortugal
- Dom Henrique Research CentrePortoPortugal
- School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- 3B's Research Group—Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoBraga/GuimarãesPortugal
| | | | - Beatriz Aizpurua
- Arthroscopic Surgery UnitHospital Vithas VitoriaVitoria‐GasteizSpain
| | - Juan Azofra
- Arthroscopic Surgery UnitHospital Vithas VitoriaVitoria‐GasteizSpain
| | - Diego Delgado
- Advanced Biological Therapy UnitHospital Vithas VitoriaVitoria‐GasteizSpain
| |
Collapse
|
6
|
Han J, Wu J, Kou WT, Xie LN, Tang YL, Zhi DL, Li P, Chen DQ. New insights into SUMOylation and NEDDylation in fibrosis. Front Pharmacol 2024; 15:1476699. [PMID: 39697538 PMCID: PMC11652140 DOI: 10.3389/fphar.2024.1476699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Fibrosis is the outcome of any abnormal tissue repair process that results in normal tissue replacement with scar tissue, leading to persistent tissue damage and cellular injury. During the process of fibrosis, many cytokines and chemokines are involved, and their activities are controlled by post-translational modifications, especially SUMOylation and NEDDylation. Both these modifications entail a three-step process of activation, conjugation, and ligation that involves three kinds of enzymes, namely, E1 activating, E2 conjugating, and E3 ligase enzymes. SUMOylation participates in organ fibrosis by modulating FXR, PML, TGF-β receptor I, Sirt3, HIF-1α, and Sirt1, while NEDDylation influences organ fibrosis by regulating cullin3, NIK, SRSF3, and UBE2M. Further investigations exhibit the therapeutic potentials of SUMOylation/NEDDylation activators and inhibitors against organ fibrosis, especially ginkgolic acid in SUMOylation and MLN4924 in NEDDylation. These results demonstrate the therapeutic effects of SUMOylation and NEDDylation against organ fibrosis and highlight their activators as well as inhibitors as potential candidates. In the future, deeper investigations of SUMOylation and NEDDylation are needed to identify novel substrates against organ fibrosis; moreover, clinical investigations are needed to determine the therapeutic effects of their activators and inhibitors that can benefit patients. This review highlights that SUMOylation and NEDDylation function as potential therapeutic targets for organ fibrosis.
Collapse
Affiliation(s)
- Jin Han
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Jun Wu
- School of Pharmacy, Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Wen-Tao Kou
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Li-Na Xie
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Ya-Li Tang
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Da-Long Zhi
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Dan-Qian Chen
- Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of Nephrology, Chang An District Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Liu B, Li F, Wang Y, Gao X, Li Y, Wang Y, Zhou H. APP-CD74 axis mediates endothelial cell-macrophage communication to promote kidney injury and fibrosis. Front Pharmacol 2024; 15:1437113. [PMID: 39351084 PMCID: PMC11439715 DOI: 10.3389/fphar.2024.1437113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/26/2024] [Indexed: 10/04/2024] Open
Abstract
Background Kidney injuries often carry a grim prognosis, marked by fibrosis development, renal function loss, and macrophage involvement. Despite extensive research on macrophage polarization and its effects on other cells, like fibroblasts, limited attention has been paid to the influence of non-immune cells on macrophages. This study aims to address this gap by shedding light on the intricate dynamics and diversity of macrophages during renal injury and repair. Methods During the initial research phase, the complexity of intercellular communication in the context of kidney injury was revealed using a publicly available single-cell RNA sequencing library of the unilateral ureteral obstruction (UUO) model. Subsequently, we confirmed our findings using an independent dataset from a renal ischemia-reperfusion injury (IRI) model. We treated two different types of endothelial cells with TGF-β and co-cultured their supernatants with macrophages, establishing an endothelial cell and macrophage co-culture system. We also established a UUO and an IRI mouse model. Western blot analysis, flow cytometry, immunohistochemistry and immunofluorescence staining were used to validate our results at multiple levels. Results Our analysis revealed significant changes in the heterogeneity of macrophage subsets during both injury processes. Amyloid β precursor protein (APP)-CD74 axis mediated endothelial-macrophage intercellular communication plays a dominant role. In the in vitro co-culture system, TGF-β triggers endothelial APP expression, which subsequently enhances CD74 expression in macrophages. Flow cytometry corroborated these findings. Additionally, APP and CD74 expression were significantly increased in the UUO and IRI mouse models. Immunofluorescence techniques demonstrated the co-localization of F4/80 and CD74 in vivo. Conclusion Our study unravels a compelling molecular mechanism, elucidating how endothelium-mediated regulation shapes macrophage function during renal repair. The identified APP-CD74 signaling axis emerges as a promising target for optimizing renal recovery post-injury and preventing the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxiong Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkuo Li
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Chen Y, Dai R, Cheng M, Wang W, Liu C, Cao Z, Ge Y, Wang Y, Zhang L. Status and role of the ubiquitin-proteasome system in renal fibrosis. Biomed Pharmacother 2024; 178:117210. [PMID: 39059348 DOI: 10.1016/j.biopha.2024.117210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) is a basic regulatory mechanism in cells that is essential for maintaining cell homeostasis, stimulating signal transduction, and determining cell fate. These biological processes require coordinated signaling cascades across members of the UPS to achieve substrate ubiquitination and deubiquitination. The role of the UPS in fibrotic diseases has attracted widespread attention, and the aberrant expression of UPS members affects the fibrosis process. In this review, we provide an overview of the UPS and its relevance for fibrotic diseases. Moreover, for the first time, we explore in detail how the UPS promotes or inhibits renal fibrosis by regulating biological processes such as signaling pathways, inflammation, oxidative stress, and the cell cycle, emphasizing the status and role of the UPS in renal fibrosis. Further research on this system may reveal new strategies for preventing renal fibrosis.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Chuanjiao Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Zeping Cao
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yong Ge
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
9
|
Guo C, Liu X, Qiu K, Tu L, Liu D. MALAT1 Knockdown Inhibits the Proliferation, Migration, and Collagen Deposition of Human Hypertrophic Scar Fibroblasts via Targeting miR-29a-3p/Smurf2 Axis. Clin Cosmet Investig Dermatol 2024; 17:1387-1404. [PMID: 38881700 PMCID: PMC11180437 DOI: 10.2147/ccid.s460845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Purpose Hypertrophic scarring (HS) is commonly described as an abnormal post-traumatic tissue repair characterized by excessive hypercellularity and extracellular matrix (ECM) deposition. Mounting evidence suggests that MALAT1 is maladjusted in many fibrotic diseases, but its contribution to HS progression remains poorly understood. Hence, we sought to elucidate the fundamental role of MALAT1 in HS. Methods The expression of MALAT1, miR-29a-3p, and Smurf2 in skin tissues and fibroblasts was assessed by RT-qPCR and Western blotting. Furthermore, lentiviruses, RNAi, or plasmids were utilized to transfect hypertrophic scar fibroblasts (HSFs) for gene overexpression or downregulation. The biological behaviors of HSFs were quantified by the CCK-8 assay, wound healing assay, transwell assay, and flow cytometry. Mechanistically, bioinformatics analysis, dual-luciferase reporter assays, and rescue experiments were performed to verify the relationship between miR-29a-3p and MALAT1 or Smurf2. Results Our data indicate that MALAT1, Smurf2 were overexpressed while miR-29a-3p was suppressed in HS tissues and fibroblasts. Downregulation of MALAT1 may lead to decreased proliferation, migration, and invasion of fibroblasts, accompanied by enhanced apoptosis, reduced TGF-β signal transduction, and ECM accumulation in HSFs, by enhancing miR-29a-3p and suppressing Smurf2 expression. Mechanistically, MALAT1 acted as a sponge for miR-29a-3p, while miR-29a-3p directly targeted Smurf2. More importantly, rescue experiments suggested that MALAT1 downregulation induced impact on the proliferation, migration, and invasion of HSFs could be partially overturned through miR-29a-3p knockdown or Smurf2 overexpression. Conclusion MALAT1 knockdown inhibits the proliferation, migration, invasion, and collagen deposition of HSFs via targeting the miR-29a-3p/Smurf2 axis, which may reveal a promising therapeutic exploitable vulnerability to HS.
Collapse
Affiliation(s)
- Chunyan Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Keqing Qiu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longxiang Tu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
10
|
Sousa LPB, Pinto LFB, Cruz VAR, Oliveira GA, Rojas de Oliveira H, Chud TS, Pedrosa VB, Miglior F, Schenkel FS, Brito LF. Genome-wide association and functional genomic analyses for various hoof health traits in North American Holstein cattle. J Dairy Sci 2024; 107:2207-2230. [PMID: 37939841 DOI: 10.3168/jds.2023-23806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Hoof diseases are a major welfare and economic issue in the global dairy cattle production industry, which can be minimized through improved management and breeding practices. Optimal genetic improvement of hoof health could benefit from a deep understanding of the genetic background and biological underpinning of indicators of hoof health. Therefore, the primary objectives of this study were to perform genome-wide association studies, using imputed high-density genetic markers data from North American Holstein cattle, for 8 hoof-related traits: digital dermatitis, sole ulcer, sole hemorrhage, white line lesion, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, and toe ulcer, and a hoof health index. De-regressed estimated breeding values from 25,580 Holstein animals were used as pseudo-phenotypes for the association analyses. The genomic quality control, genotype phasing, and genotype imputation were performed using the PLINK (version 1.9), Eagle (version 2.4.1), and Minimac4 software, respectively. The functional genomic analyses were performed using the GALLO R package and the DAVID platform. We identified 22, 34, 14, 22, 28, 33, 24, 43, and 15 significant markers for digital dermatitis, heel horn erosion, interdigital dermatitis, interdigital hyperplasia, sole hemorrhage, sole ulcer, toe ulcer, white line lesion disease, and the hoof health index, respectively. The significant markers were located across all autosomes, except BTA10, BTA12, BTA20, BTA26, BTA27, and BTA28. Moreover, the genomic regions identified overlap with various previously reported quantitative trait loci for exterior, health, meat and carcass, milk, production, and reproduction traits. The enrichment analyses identified 44 significant gene ontology terms. These enriched genomic regions harbor various candidate genes previously associated with bone development, metabolism, and infectious and immunological diseases. These findings indicate that hoof health traits are highly polygenic and influenced by a wide range of biological processes.
Collapse
Affiliation(s)
- Luis Paulo B Sousa
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Luis Fernando B Pinto
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Valdecy A R Cruz
- Department of Animal Sciences, Federal University of Bahia, Salvador, BA, 40170-110, Brazil
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Tatiane S Chud
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; PEAK, Madison, WI 53718
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - Flávio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
11
|
Qu Z, Chen Y, Du K, Qiao J, Chen L, Chen J, Wei L. ALA-PDT promotes the death and contractile capacity of hypertrophic scar fibroblasts through inhibiting the TGF-β1/Smad2/3/4 signaling pathway. Photodiagnosis Photodyn Ther 2024; 45:103915. [PMID: 38128289 DOI: 10.1016/j.pdpdt.2023.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hypertrophic scars, an abnormal wound-healing response to burn injuries, are characterized by massive fibroblast proliferation and excessive deposition of extracellular matrix and collagen. 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) is a promising therapy for hypertrophic scar, details of the mechanisms remain to be elucidated. In this study, we aimed to investigate the molecular mechanisms involved in ALA-PDT against hypertrophic scar fibroblasts. METHODS The morphologies of hypertrophic scar fibroblasts (HSFs) treated with ALA-PDT were observed under a light microscopy. The viability of HSFs was detected using the CCK-8 assay. HSFs-populated collagen gel contraction assays were conducted to examine the fibroblast contractility and the cytotoxicity of HSFs in 3D collagen tissues were observed using confocal microscopy. The effect of ALA-PDT on TGF-β1/Smad2/3/4 signaling pathway activation and effector gene expression were verified by immunoprecipitation, western blot and real-time quantitative PCR analysis. RESULTS We observed significant changes in cell morphology after ALA-PDT treatment of HSFs. As ALA concentration and light dose increased, the viability of HSFs significantly decreased. ALA-PDT can significantly alleviate the contractile capacity and promote the death of HSFs induced by TGF-β1 treatment in a three-dimensional collagen culture model. TGF-β1 treatment of HSFs can significantly induce phosphorylation of Smad2/3 (p-Smad2/3) in whole cells, as well as p-Smad2/3 and Smad4 proteins into the nucleus and increase the mRNA levels of collagen 1/3 and α-SMA. ALA-PDT hampers the TGF-β1-Smad2/3/4 signaling pathway activation by inducing K48-linked ubiquitination and degradation of Smad4. CONCLUSIONS Our results provide evidence that ALA-PDT can inhibit fibroblast contraction and promote cell death by inhibiting the activation of the TGF-β1 signaling pathway that mediates hypertrophic scar formation, which may be the basis for the efficacy of ALA-PDT in the treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Zilu Qu
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan 430022, China; Hubei Province & Key Laboratory of Skin Infection And Immunity, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Yao Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan 430022, China; Hubei Province & Key Laboratory of Skin Infection And Immunity, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Kun Du
- Medical Engineering Section, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - JiaXi Qiao
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Liuqing Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan 430022, China; Hubei Province & Key Laboratory of Skin Infection And Immunity, Wuhan No. 1 Hospital, Wuhan 430022, China
| | - Jinbo Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Wuhan 430022, China; Hubei Province & Key Laboratory of Skin Infection And Immunity, Wuhan No. 1 Hospital, Wuhan 430022, China.
| | - Li Wei
- Deans Office,Wuhan No. 1 Hospital, Tongji Medical College, Wuhan 430022, China.
| |
Collapse
|
12
|
Yuan T, Meijia L, Rong C, Jian Y, Lijun H. Identification of novel biomarkers of ferroptosis involved in keloid based on bioinformatics analysis. Int Wound J 2024; 21:e14606. [PMID: 38272797 PMCID: PMC10805535 DOI: 10.1111/iwj.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Keloid is a fibroproliferative disease of unknown aetiology, which has a significant impact the quality of life of patients. Ferroptosis plays an important role in the occurrence and development of fibrosis, but there is still a lack of research related to keloids. The objective of this work was to identify the hub genes related to ferroptosis in keloid to better understand the keloid process. The microarray data (GSE7890 GSE145725, and GSE44270) (23 keloid and 22 normal fibroblast) were analysed via the gene expression comprehensive database (GEO). Only GSE7890 met the FerrDB database. Cell cycle and pathway analysis were performed with gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to differentially expressed genes (DEG). The differential genes were confirmed in other GEO datasets (GSE145725 and GSE44270), and multi-fibrosis-gene correlation analysed. To validate these hub genes, quantitative real-time PCR (qRT-PCR) was conducted. A total of 581 DEGs were screened, with 417 genes down-regulated and 164 genes up-regulated, with 11 ferroptosis genes significantly up-regulated in both keloid and normal tissue, and 6 genes are consistent with our findings and are associated with multiple fibrosis genes. The qRT-PCR results and tissues of normal skin and keloid agreed with our predictions. Our findings provide new evidence for the ferroptosis-related molecular pathways and biomarker of keloid.
Collapse
Affiliation(s)
- Tian Yuan
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Li Meijia
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Cheng Rong
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuan Jian
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Hao Lijun
- Department of Plastic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
13
|
Li X, Qian K, Zhang Y, Zhang Y, Liu Y, Sun C, Jiao Y, Yu D, Geng F, Cao J, Zhang S. Ubiquitin-specific peptidase 47 (USP47) regulates cutaneous oxidative injury through nicotinamide nucleotide transhydrogenase (NNT). Toxicol Appl Pharmacol 2023; 480:116734. [PMID: 37924851 DOI: 10.1016/j.taap.2023.116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.
Collapse
Affiliation(s)
- Xiaoqian Li
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Kun Qian
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Yuehua Zhang
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yulan Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Chuntang Sun
- Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Jiao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China
| | - Daojiang Yu
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China
| | - Fenghao Geng
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Jianping Cao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou 215123, China.
| | - Shuyu Zhang
- Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Laboratory of Radiation Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610051, China; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang 621099, China.
| |
Collapse
|
14
|
Guo C, Liang L, Zheng J, Xie Y, Qiu X, Tan G, Huang J, Wang L. UCHL1 aggravates skin fibrosis through an IGF-1-induced Akt/mTOR/HIF-1α pathway in keloid. FASEB J 2023; 37:e23015. [PMID: 37256780 DOI: 10.1096/fj.202300153rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Keloid is a heterogeneous disease featured by the excessive production of extracellular matrix. It is a great challenge for both clinicians and patients regarding the exaggerated and uncontrolled outgrowth and the therapeutic resistance of the disease. In this study, we verified that UCHL1 was drastically upregulated in keloid fibroblasts. UCHL1 had no effects on cell proliferation and migration, but instead promoted collagen I and α-SMA expression that was inhibited by silencing UCHL1 gene and by adding in LDN-57444, a pharmacological inhibitor for UCHL1 activity as well. The pathological process was mediated by IGF-1 promoted Akt/mTOR/HIF-1α signaling pathway because inhibition of any of them could reduce the expression of collagen I and α-SMA driven by UCHL1 in fibroblasts. Also, we found that UCHL1 expression in keloid fibroblasts was promoted by M2 macrophages via TGF-β1. These findings extend our understanding of the pathogenesis of keloid and provide potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Chipeng Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lizhu Liang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingbin Zheng
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Qiu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingang Huang
- Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liangchun Wang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Zhao Y, Chen X, Lin Y, Li Z, Su X, Fan S, Chen Y, Wang X, Liang G. USP25 inhibits renal fibrosis by regulating TGFβ-SMAD signaling pathway in Ang II-induced hypertensive mice. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166713. [PMID: 37059312 DOI: 10.1016/j.bbadis.2023.166713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 04/16/2023]
Abstract
Renal fibrosis is a crucial pathological feature of hypertensive renal disease (HRD). In-depth analysis of the pathogenesis of fibrosis is of great significance for the development of new drugs for the treatment of HRD. USP25 is a deubiquitinase that can regulate the progression of many diseases, but its function in the kidney remains unclear. We found that USP25 was significantly increased in human and mice HRD kidney tissues. In the HRD model induced by Ang II, USP25-/- mice showed significant aggravation of renal dysfunction and fibrosis compared with the control mice. Consistently, AAV9-mediated overexpression of USP25 significantly improved renal dysfunction and fibrosis. Mechanistically, USP25 inhibited the TGF-β pathway by reducing SMAD4 K63-linked polyubiquitination, thereby suppressing SMAD2 nuclear translocation. In conclusion, this study demonstrates for the first time that the deubiquitinase USP25 plays an important regulatory role in HRD.
Collapse
Affiliation(s)
- Ying Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xi Chen
- Department of Pharmacology, Medical College, Taizhou University, Taizhou, Jiaojiang 318000, Zhejiang, China
| | - Yimin Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongding Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xian Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shijie Fan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanghao Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China.
| |
Collapse
|
16
|
Shi J, Guo Y, Wang H, Xiao Y, Liu W, Lyu L. The ubiquitin-proteasome system in melanin metabolism. J Cosmet Dermatol 2022; 21:6661-6668. [PMID: 36207998 DOI: 10.1111/jocd.15433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The ubiquitin-proteasome system (UPS) is a highly conserved way of regulating intracellular protein balance. UPS mediates proteolysis and disruption of variation or misfolding, while finely regulating proteins involved in differentiation and other biological processes. AIMS The aim of this review is to systematically introduce UPS as a key regulator of melanin metabolism. METHODS Systematic search and retrospective review were performed on the published data. RESULTS Melanocyte-inducing transcription factor (MITF) is a substrate of the ubiquitin ligase VCHL1 and acts as a transcription factor to regulate the expression of key enzymes in melanin synthesis such as tyrosinase (TYR). The rate-limiting enzyme TYR is modified by the ubiquitin ligase Hrd1 during melanosynthesis. Melanin itself is also regulated by multiple ubiquitin ligases including Fbp1 and Vhl. By regulating the ubiquitination modification to target each link of melanin synthesis, it plays an important role in correcting the disorder of melanin metabolism. A number of chemical agents have been proven to inhibit the activity of ubiquitin ligase. CONCLUSIONS Drugs targeting E3 ligase and deubiquitinating enzymes have great potential in the treatment of melanin metabolism disorders.
Collapse
Affiliation(s)
- Jingpei Shi
- Yunnan Key Laboratory of Stomatology, Department of Oral and Maxillofacial Surgery, Kunming Medical University School and Hospital of Stomatology, Kunming, China
| | - Yanfang Guo
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Hanying Wang
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| | - Yun Xiao
- Department of Dermatology, The Third Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Weimin Liu
- Department of Dermatology, the Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Lechun Lyu
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Differentially Expressed microRNAs in Peritoneal Dialysis Effluent-Derived Exosomes from the Patients with Ultrafiltration Failure. Genet Res (Camb) 2022; 2022:2276175. [PMID: 36101746 PMCID: PMC9452989 DOI: 10.1155/2022/2276175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background Ultrafiltration failure remains one of the most severe complications of long-term peritoneal dialysis (PD), which results in death. This study aimed to characterize the circulating exosomal microRNA (miRNA) profiles associated with ultrafiltration failure and explore its underlying mechanisms. Methods Exosomes were isolated from the peritoneal dialysis effluent (PDE) of patients with ultrafiltration failure or success using the ultracentrifugation method, and then transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blot were used for exosome characterization. After that, the isolated exosomes were sent for small RNA sequencing, and eight differentially expressed miRNAs (DE-miRNAs) were chosen for RT-qPCR validation. Results TEM, NTA, and western blot revealed that exosomes were successfully isolated. After sequencing, 70 DE-miRNAs involved in ultrafiltration were identified, including 41 upregulated ones and 29 downregulated ones. Functional analyses revealed that these DE-miRNAs were significantly enriched in pathways of cancer, ubiquitin-mediated proteolysis, axon orientation, and the Rap1 and Ras signaling pathways. In addition, the consistency rate of RT-qPCR and sequencing results was 75%, which indicated the relatively high reliability of the sequencing data. Conclusions Our findings implied that these DE-miRNAs may be potential biomarkers of ultrafiltration failure, which would help us to discover novel therapeutic targets/pathways for ultrafiltration failure in patients with end-stage renal disease.
Collapse
|
18
|
Kuai Q, Jian X. Inhibition of miR-23b-3p Ameliorates Scar-Like Phenotypes of Keloid Fibroblasts by Facilitating A20 Expression. Clin Cosmet Investig Dermatol 2022; 15:1549-1559. [PMID: 35967914 PMCID: PMC9365020 DOI: 10.2147/ccid.s367347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022]
Abstract
Purpose Accumulating evidence has reported that microRNAs (miRNAs) play a critical role in the mechanism of keloid formation, and recent research found that miR-23b-3p was upregulated in keloid fibroblasts (KFs). Herein, we explored the potential effect of miR-23b-3p on fibroblasts in keloid. Materials and Methods Clinical tissues, primary KFs and KEL FIB cells were used to detect the expression of miR-23b-3p by performing qRT-PCR. Gene knockdown was carried out to evaluate the molecular and biological changes of primary KFs and KEL FIB cells by conducting CCK-8 assay, flow cytometry and Western blot. The online databases and luciferase reporter assay were utilized to screen and identify the potential target of miR-23b-3p. Results Upregulation of miR-23b-3p was detected in keloid tissues, primary KFs and KF cell line KEL FIB cells, and inhibition of miR-23b-3p promoted apoptosis and suppressed proliferation and the expression of collagen I, collagen III and fibronectin of primary KFs and KEL FIB cells. Further investigation revealed that TNFAIP3, the ubiquitin-editing enzyme A20, was the direct target of miR-23b-3p, and inhibition of miR-23b-3p promoted the expression of A20 in primary KFs and KEL FIB cells. The in vitro assays indicated that A20 suppression inhibited apoptosis and facilitated proliferation and the expression of collagen I, collagen III and fibronectin of miR-23b-3p inhibitor-transfected primary KFs and KEL FIB cells. Finally, we found that miR-23b-3p inhibitor reduced the expression of receptor interacting serine/threonine protein kinase 1 (RIPK1), which was partially reversed by A20 inhibition. Conclusion These findings suggested that inhibition of miR-23b-3p/A20/RIPK1 axis induced apoptosis, limited proliferation and decreased extracellular matrix of KFs, providing a potential therapeutic target for treatment of keloid.
Collapse
Affiliation(s)
- Quan Kuai
- Department of Plastic Surgery, Guangxi Weimei Cosmetology Hospital, Nanning, People’s Republic of China
| | - Xueping Jian
- Department of Oral and Maxillofacial Surgery and Plastic Surgery, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
- Correspondence: Xueping Jian, Department of Oral and Maxillofacial Surgery and Plastic Surgery, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China, Tel +86-0791-86362541, Email
| |
Collapse
|
19
|
Li Y, Song J, Zhou P, Zhou J, Xie S. Targeting Undruggable Transcription Factors with PROTACs: Advances and Perspectives. J Med Chem 2022; 65:10183-10194. [PMID: 35881047 DOI: 10.1021/acs.jmedchem.2c00691] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of transcription factors has been implicated in a variety of human diseases. However, these proteins have traditionally been regarded as undruggable and only a handful of them have been successfully targeted by conventional small molecules. Moreover, the development of intrinsic and acquired resistance has hampered the clinical use of these agents. Over the past years, proteolysis-targeting chimeras (PROTACs) have shown great promise because of their potential for overcoming drug resistance and their ability to target previously undruggable proteins. Indeed, several small molecule-based PROTACs have demonstrated superior efficacy in therapy-resistant metastatic cancers. Nevertheless, it remains challenging to identify ligands for the majority of transcription factors. Given that transcription factors recognize short DNA motifs in a sequence-specific manner, multiple novel approaches exploit DNA motifs as warheads in PROTAC design for the degradation of aberrant transcription factors. These PROTACs pave the way for targeting undruggable transcription factors with potential therapeutic benefits.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jian Song
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ping Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
20
|
Feng G, Sun H, Piao M. FBXL6 is dysregulated in keloids and promotes keloid fibroblast growth by inducing c-Myc expression. Int Wound J 2022; 20:131-139. [PMID: 35606330 PMCID: PMC9797926 DOI: 10.1111/iwj.13847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 01/07/2023] Open
Abstract
C-MYC-mediated keloid fibroblasts proliferation and collagen deposit may contribute to the development of keloids. F-box and leucine-rich repeat protein 6 (FBXL6) is reported to be involved in tumour progression, while the role of FBXL6 in keloid fibroblasts is not deciphered. Normal control skins, hypertrophic scars and keloid tissues were collected and prepared for FBXL6 detection. FBXL6 short hairpin RNAs (shRNAs) or FBXL6 over-expression plasmids were transfected into keloid fibroblasts, and then c-MYC plasmids were further transfected. Cell viability was assayed with a Cell-Counting Kit-8 kit. The relative expression of FBXL6, Cyclin A1, Cyclin D2, Cyclin E1 and Collagen I was detected with real-time PCR and Western blot. Elevated FBXL6 expression could be observed in keloid tissues and hypertrophic scars. FBXL6 shRNAs transfection could inhibit the viability of keloid fibroblasts with diminished c-MYC expression and down-regulated Cyclin A1, Cyclin D2, Cyclin E1 and Collagen I expression. At the same time, overexpressed FBXL6 could promote the proliferation of keloid fibroblasts. Overexpression of c-MYC could promote the proliferation of keloid fibroblasts reduced by FBXL6 shRNAs with up-regulated Cyclin A1 and Collagen I expression. FBXL6 could promote the growth of keloid fibroblasts by inducing c-MYC expression, which could be targeted in keloids treatment.
Collapse
Affiliation(s)
- Guangdong Feng
- Department of DermatologyThe Affiliated Wuxi No.2 People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Hui Sun
- Department of DermatologyThe Affiliated Wuxi No.2 People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Meishan Piao
- Department of DermatologyThe Affiliated Wuxi No.2 People's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| |
Collapse
|
21
|
Tao L, Liu X, Jiang X, Zhang K, Wang Y, Li X, Jiang S, Han T. USP10 as a Potential Therapeutic Target in Human Cancers. Genes (Basel) 2022; 13:genes13050831. [PMID: 35627217 PMCID: PMC9142050 DOI: 10.3390/genes13050831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Deubiquitination is a major form of post-translational protein modification involved in the regulation of protein homeostasis and various cellular processes. Deubiquitinating enzymes (DUBs), comprising about five subfamily members, are key players in deubiquitination. USP10 is a USP-family DUB featuring the classic USP domain, which performs deubiquitination. Emerging evidence has demonstrated that USP10 is a double-edged sword in human cancers. However, the precise molecular mechanisms underlying its different effects in tumorigenesis remain elusive. A possible reason is dependence on the cell context. In this review, we summarize the downstream substrates and upstream regulators of USP10 as well as its dual role as an oncogene and tumor suppressor in various human cancers. Furthermore, we summarize multiple pharmacological USP10 inhibitors, including small-molecule inhibitors, such as spautin-1, and traditional Chinese medicines. Taken together, the development of specific and efficient USP10 inhibitors based on USP10’s oncogenic role and for different cancer types could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Li Tao
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China;
| | - Xiao Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xinya Jiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Kun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Yijing Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xiumin Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining 272000, China
- Correspondence: (S.J.); (T.H.)
| | - Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
- Correspondence: (S.J.); (T.H.)
| |
Collapse
|
22
|
Zhang S, Ishida Y, Ishigami A, Nosaka M, Kuninaka Y, Hata S, Yamamoto H, Hashizume Y, Matsuki J, Yasuda H, Kimura A, Furukawa F, Kondo T. Forensic Application of Epidermal Ubiquitin Expression to Determination of Wound Vitality in Human Compressed Neck Skin. Front Med (Lausanne) 2022; 9:867365. [PMID: 35492347 PMCID: PMC9045732 DOI: 10.3389/fmed.2022.867365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin is a member of the heat shock protein family and is rapidly induced by various types of stimuli, including ischemic and mechanical stress. However, its significance in determining wound vitality of neck compression skin in forensic pathology remains unclear. We immunohistochemically examined the expression of ubiquitin in the neck skin samples to understand its forensic applicability in determining wound vitality. Skin samples were obtained from 53 cases of neck compression (hanging, 42 cases; strangulation, 11 cases) during forensic autopsies. Intact skin from the same individual was used as the control. Ubiquitin expression was detected in 73.9% of keratinocytes in intact skin samples, but only in 21.2% of keratinocytes in the compression regions, with statistical differences between the control and compression groups. This depletion in the case of neck compression may be caused by the impaired conversion of conjugated to free ubiquitin and failure of de novo ubiquitin synthesis. From a forensic pathological perspective, immunohistochemical examination of ubiquitin expression in the skin of the neck can be regarded as a valuable marker for diagnosing traces of antemortem compression.
Collapse
Affiliation(s)
- Siying Zhang
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Satoshi Hata
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumiko Hashizume
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jumpei Matsuki
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Haruki Yasuda
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Fukumi Furukawa
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
23
|
Ruan X, Zhang R, Li R, Zhu H, Wang Z, Wang C, Cheng Z, Peng H. The Research Progress in Physiological and Pathological Functions of TRAF4. Front Oncol 2022; 12:842072. [PMID: 35242717 PMCID: PMC8885719 DOI: 10.3389/fonc.2022.842072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/26/2022] [Indexed: 11/22/2022] Open
Abstract
Tumour necrosis factor receptor-associated factor 4 (TRAF4) is a member of the TRAF protein family, a cytoplasmic bridging molecule closely associated with various immune functions. The physiological processes of TRAF4 are mainly involved in embryonic development, cell polarity, cell proliferation, apoptosis, regulation of reactive oxygen species production. TRAF4 is overexpressed in a variety of tumors and regulates the formation and development of a variety of tumors. In this review, we summarize the physiological and pathological regulatory functions of TRAF4 and focus on understanding the biological processes involved in this gene, to provide a reference for further studies on the role of this gene in tumorigenesis and development.
Collapse
Affiliation(s)
- Xueqin Ruan
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, National Cancer Center Exploratory Oncology Research & Clinical Trial Center, Chiba, Japan
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhihua Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Canfei Wang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Molecular Hematology, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Li W, Zhou S, Jia M, Li X, Li L, Wang Q, Qi Z, Zhou P, Li Y, Wang Z. Early Biomarkers Associated with P53 Signaling for Acute Radiation Injury. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010099. [PMID: 35054492 PMCID: PMC8778477 DOI: 10.3390/life12010099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 01/18/2023]
Abstract
Accurate dose assessment within 1 day or even 12 h after exposure through current methods of dose estimation remains a challenge, in response to a large number of casualties caused by nuclear or radiation accidents. P53 signaling pathway plays an important role in DNA damage repair and cell apoptosis induced by ionizing radiation. The changes of radiation-induced P53 related genes in the early stage of ionizing radiation should compensate for the deficiency of lymphocyte decline and γ-H2AX analysis as novel biomarkers of radiation damage. Bioinformatic analysis was performed on previous data to find candidate genes from human peripheral blood irradiated in vitro. The expression levels of candidate genes were detected by RT-PCR. The expressions of screened DDB2, AEN, TRIAP1, and TRAF4 were stable in healthy population, but significantly up-regulated by radiation, with time specificity and dose dependence in 2–24 h after irradiation. They are early indicators for medical treatment in acute radiation injury. Their effective combination could achieve a more accurate dose assessment for large-scale wounded patients within 24 h post exposure. The effective combination of p53-related genes DDB2, AEN, TRIAP1, and TRAF4 is a novel biodosimetry for a large number of people exposed to acute nuclear accidents.
Collapse
Affiliation(s)
- Weihong Li
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Shixiang Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Meng Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Xiaoxin Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Lin Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Qi Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Zhenhua Qi
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
| | - Yaqiong Li
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-10-66930294 (Y.L.); +86-10-66930248 (Z.W.)
| | - Zhidong Wang
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Key Laboratory for Radiobiology, Department of Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China; (S.Z.); (M.J.); (X.L.); (L.L.); (Q.W.); (Z.Q.); (P.Z.)
- Correspondence: (Y.L.); (Z.W.); Tel.: +86-10-66930294 (Y.L.); +86-10-66930248 (Z.W.)
| |
Collapse
|
25
|
Zhang Z, Huang X, Yang J, Gu S, Zhao Y, Liu Y, Khoong Y, Wang S, Luo S, Zan T, Li G. Identification and functional analysis of a three-miRNA ceRNA network in hypertrophic scars. J Transl Med 2021; 19:451. [PMID: 34715879 PMCID: PMC8556926 DOI: 10.1186/s12967-021-03091-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hypertrophic scar (HTS) is a fibrotic disorder of skins and may have repercussions on the appearance as well as functions of patients. Recent studies related have shown that competitive endogenous RNA (ceRNA) networks centering around miRNAs may play an influential role in HTS formation. This study aimed to construct and validate a three-miRNA (miR-422a, miR-2116-3p, and miR-3187-3p) ceRNA network, and explore its potential functions. Methods Quantitative real‑time PCR (qRT‑PCR) was used to compare expression levels of miRNAs, lncRNAs, and genes between HTS and normal skin. Target lncRNAs and genes of each miRNA were predicted using starBase as well as TargetScan database to construct a distinct ceRNA network; overlapping target lncRNAs and genes of the three miRNAs were utilized to develop a three-miRNA ceRNA network. For every network, protein–protein interaction (PPI) network analysis was performed to identify its hub genes. For each network and its hub genes, Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to explore their possible functions. Results MiR-422a, miR-2116-3p, and miR-3187-3p were all downregulated in HTS tissues and fibroblasts. MiR-422a-based ceRNA network consisted of 101 lncRNAs with 133 genes; miR-2116-3p-centered ceRNA network comprised 85 lncRNAs and 978 genes; miR-3187-3p-derived ceRNA network encompassed 84 lncRNAs as well as 1128 genes. The three-miRNA ceRNA network included 2 lncRNAs with 9 genes, where MAPK1, FOSL2, ABI2, KPNA6, CBL, lncRNA-KCNQ1OT1, and lncRNA-EBLN3P were upregulated. According to GO and KEGG analysis, these networks were consistently related to ubiquitination. Three ubiquitination-related genes (CBL, SMURF2, and USP4) were upregulated and negatively correlated with the expression levels of the three miRNAs in HTS tissues. Conclusions This study identified a three-miRNA ceRNA network, which might take part in HTS formation and correlate with ubiquitination.
Collapse
Affiliation(s)
- Zewei Zhang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Jiahao Yang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Shuqi Wang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200001, China.
| | - Guangshuai Li
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|