1
|
Su Y, Liu L, Lin C, Deng D, Li Y, Huang M, Wang Y, Ling K, Wang H, Chen Q, Huang G. Enhancing cancer therapy: advanced nanovehicle delivery systems for oridonin. Front Pharmacol 2024; 15:1476739. [PMID: 39691396 PMCID: PMC11649421 DOI: 10.3389/fphar.2024.1476739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Oridonin (ORI), an ent-kaurane diterpenoid derived from Rabdosia rubescens (Hemsl.) H.Hara, serves as the primary bioactive component of this plant. It demonstrates a broad spectrum of therapeutic activities, including moderate to potent anticancer properties, alongside anti-inflammatory, antibacterial, antifibrotic, immunomodulatory, and neuromodulatory effects, thus influencing diverse biological processes. However, its clinical potential is significantly constrained by poor aqueous solubility and limited bioavailability. In alignment with the approach of developing drug candidates from natural compounds, various strategies, such as structural modification and nanocarrier systems, have been employed to address these challenges. This review provides an overview of ORI-based nano-delivery systems, emphasizing their potential to improve the clinical applicability of oridonin in oncology. Although some progress has been made in advancing ORI nano-delivery research, it remains insufficient for clinical implementation, necessitating further investigation.
Collapse
Affiliation(s)
- Yilin Su
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Lisha Liu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Chongyang Lin
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Dashi Deng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yunfei Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Mou Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Yu Wang
- Institute of Pain, The Affiliated Hospital of Southwest Jiaotong University, The Chengdu Third People’s Hospital, Chengdu, China
| | - Kangqiu Ling
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Haobing Wang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Qiyu Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| | - Guixiao Huang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Zhao L, Giacomini KM, van der Graaf PH. Progress in Clinical Pharmacology in China: A Randomized Controlled Study to Advance Genotype-Guided Precision Medicine. Clin Pharmacol Ther 2024; 115:169-172. [PMID: 38252417 DOI: 10.1002/cpt.3126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Affiliation(s)
- Liang Zhao
- Division of Quantitative Methods in Modeling, Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| | | |
Collapse
|
4
|
Montrasio C, Cheli S, Clementi E. Pharmacogenetic Practice of Anticancer Drugs: Multiple Approaches for an Accurate and Comprehensive Genotyping. Pharmgenomics Pers Med 2023; 16:739-746. [PMID: 37534027 PMCID: PMC10390719 DOI: 10.2147/pgpm.s412430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
The application of pharmacogenetics in oncology is part of the routine clinical practice. In particular, genotyping of dihydropyrimidine dehydrogenase (DPYD) and UDP-glucuronosyltransferase (UGT1A1) is crucial to manage the treatment of patients taking fluoropyrimidines and irinotecan. The unique approach of our laboratory to the pharmacogenetic diagnostic service in oncology is to combine two real-time PCR methods, LightSNiP assay (TIB MOLBIOL), and more recently FRET (Fluorescent Resonance Energy Transfer) probes technology (Nuclear Laser Medicine), plus TaqMan assay (Thermo Fisher) for the confirmation of the presence of variant alleles on DNA from a second extraction. We found that both the FRET and LightSNiP assays, where detection occurs by melting curve analysis, offer an advantage over the competing TaqMan technology. Whereas unexpected genetic variants may be missed using a mutation-specific TaqMan assay, the information thus obtained can be useful to adjust the therapy in case of unexpected post-treatment toxicity. The combination of TaqMan and FRET assays helped us to achieve more accurate genotyping and a correct result for the patient. The added value of the DPYD FRET assay is the possibility of detecting, with the same amplification profile of the polymorphisms detailed in the guidelines, also the c.2194G>A (*6 rs1801160), cited in the recommendations as a variant to be investigated in case of severe toxicity. Regarding the UGT1A1 (TA)n promoter polymorphism (rs3064744), the distinctive and positive feature of the FRET assay is to allow clearly identifying all those potential variant alleles, including the (TA)5 and (TA)8 alleles, that are frequent in African Americans. Our clinical practice emphasizes the importance of not only rapid and easy-to-use assays, such as the new FRET ones, but also of accurate and comprehensive genotyping for good pharmacogenetic diagnostic activity.
Collapse
Affiliation(s)
- Cristina Montrasio
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco, L. Sacco University Hospital, Milan, Italy
| | - Stefania Cheli
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco, L. Sacco University Hospital, Milan, Italy
| | - Emilio Clementi
- Clinical Pharmacology Unit, Department of Biomedical and Clinical Sciences, L. Sacco University Hospital, Università degli Studi di Milano, Milan, Italy
- Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
5
|
Peeters SL, Deenen MJ, Thijs AM, Hulshof EC, Mathijssen RH, Gelderblom H, Guchelaar HJ, Swen JJ. UGT1A1 genotype-guided dosing of irinotecan: time to prioritize patient safety. Pharmacogenomics 2023; 24:435-439. [PMID: 37470120 DOI: 10.2217/pgs-2023-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
Tweetable abstract Pretreatment UGT1A1 genotyping and a 70% irinotecan dose intensity in poor metabolizers is safe, feasible, cost-effective and essential for safe irinotecan treatment in cancer patients. It is time to update guidelines to swiftly enable the implementation of UGT1A1 genotype-guided irinotecan dosing in routine oncology care.
Collapse
Affiliation(s)
- Sofía Lj Peeters
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Maarten J Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Anna Mj Thijs
- Department of Medical Oncology, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
| | - Emma C Hulshof
- Department of Clinical Pharmacy, Catharina Hospital, Michelangelolaan 2, 5623 EJ Eindhoven, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Ron Hj Mathijssen
- Department of Medical Oncology, Erasmus University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Centre, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
6
|
Kong L, Rong L, Wang M. Re: UGT1A1 genotype-guided dosing of irinotecan: A prospective safety and cost analysis in poor metaboliser patients: Is it time for everyone treated with irinotecan to be tested for UGT1A1 gene polymorphism? Eur J Cancer 2022; 170:194-195. [PMID: 35660253 DOI: 10.1016/j.ejca.2022.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Lingti Kong
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; School of Pharmacy, Bengbu Medical College, Bengbu, China.
| | - Li Rong
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; School of Pharmacy, Bengbu Medical College, Bengbu, China
| | - Muhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China; School of Pharmacy, Bengbu Medical College, Bengbu, China
| |
Collapse
|