1
|
Alhorani Q, Alkhybari E, Rawashdeh M, Sabarudin A, Latiff RA, Al-Ibraheem A, Vinjamuri S, Mohamad M. Revising and exploring the variations in methodologies for establishing the diagnostic reference levels for paediatric PET/CT imaging. Nucl Med Commun 2023; 44:937-943. [PMID: 37615527 DOI: 10.1097/mnm.0000000000001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
PET-computed tomography (PET/CT) is a hybrid imaging technique that combines anatomical and functional information; to investigate primary cancers, stage tumours, and track treatment response in paediatric oncology patients. However, there is debate in the literature about whether PET/CT could increase the risk of cancer in children, as the machine is utilizing two types of radiation, and paediatric patients have faster cell division and longer life expectancy. Therefore, it is essential to minimize radiation exposure by justifying and optimizing PET/CT examinations and ensure an acceptable image quality. Establishing diagnostic reference levels (DRLs) is a crucial quantitative indicator and effective tool to optimize paediatric imaging procedures. This review aimed to distinguish and acknowledge variations among published DRLs for paediatric patients in PET/CT procedures. A search of relevant articles was conducted using databases, that is, Embase, Scopus, Web of Science, and Medline, using the keywords: PET-computed tomography, computed tomography, PET, radiopharmaceutical, DRL, and their synonyms. Only English and full-text articles were included, with no limitations on the publication year. After the screening, four articles were selected, and the review reveals different DRL approaches for paediatric patients undergoing PET/CT, with primary variations observed in patient selection criteria, reporting of radiation dose values, and PET/CT equipment. The study suggests that future DRL methods for paediatric patients should prioritize data collection in accordance with international guidelines to better understand PET/CT dose discrepancies while also striving to optimize radiation doses without compromising the quality of PET/CT images.
Collapse
Affiliation(s)
- Qays Alhorani
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Essam Alkhybari
- Department of Radiology and Medical Imaging, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Mohammad Rawashdeh
- Radiologic Technology Program, Applied Medical Sciences College, Jordan University of Science and Technology, Irbid
| | - Akmal Sabarudin
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rukiah A Latiff
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Centre, Amman, Jordan
| | - Sobhan Vinjamuri
- Department of Nuclear Medicine, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Mazlyfarina Mohamad
- Center for Diagnostics, Therapeutics and Investigative, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Hu X, Luo S, Leng J, Wang C, Chen Y, Chen J, Li X, Zeng H. Density-discriminating chromatic x-ray imaging based on metal halide nanocrystal scintillators. SCIENCE ADVANCES 2023; 9:eadh5081. [PMID: 37713492 PMCID: PMC10881070 DOI: 10.1126/sciadv.adh5081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
X-ray imaging based on a single gray level shows visual blind parts and affects accurate judgment in some situations. Color-cognized x-ray imaging will boost the recognition capability, which has not yet been reported. Here, we propose a quartz-assisted chromatic x-ray imaging model based on metal halide nanocrystal (NC) stacked scintillators. Mutually inactive (BA)2PbBr4:Mn and Cs3Cu2I5:Tl enable x-ray energy- or density-dependent radioluminescence (RL) color variation. The upper scintillator light yield and the bottom scintillator transmittance are enhanced by elaborate in situ passivation of phenethylamine bromide and NC orientation regulation, respectively. Imaging targets with different densities are distinguished on RL spectra, and the color coordinates shift linearly on CIE 1931. An algorithm balances the image details of different gray areas and enhances the visual perception by color filling. This work provides color recognition between objects with different densities and takes a step toward chromatic x-ray imaging applied to practical scenarios.
Collapse
Affiliation(s)
- Xudong Hu
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Sihan Luo
- School of Computer Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Jing Leng
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Chujie Wang
- Hangzhou TiRay Technology Co. Ltd., 366 Tongyun Street, Hangzhou 311112, P. R. China
| | - Yiyang Chen
- Hangzhou TiRay Technology Co. Ltd., 366 Tongyun Street, Hangzhou 311112, P. R. China
| | - Jun Chen
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Material and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, P. R. China
| |
Collapse
|
3
|
Schelhaas S, Frohwein LJ, Wachsmuth L, Hermann S, Faber C, Schäfers KP, Jacobs AH. Voxel-Based Analysis of the Relation of 3'-Deoxy-3'-[ 18F]fluorothymidine ([ 18F]FLT) PET and Diffusion-Weighted (DW) MR Signals in Subcutaneous Tumor Xenografts Does Not Reveal a Direct Spatial Relation of These Two Parameters. Mol Imaging Biol 2022; 24:359-364. [PMID: 34755247 PMCID: PMC9085704 DOI: 10.1007/s11307-021-01673-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 10/26/2022]
Abstract
PURPOSE Multimodal molecular imaging allows a direct coregistration of different images, facilitating analysis of the spatial relation of various imaging parameters. Here, we further explored the relation of proliferation, as measured by [18F]FLT PET, and water diffusion, as an indicator of cellular density and cell death, as measured by diffusion-weighted (DW) MRI, in preclinical tumor models. We expected these parameters to be negatively related, as highly proliferative tissue should have a higher density of cells, hampering free water diffusion. PROCEDURES Nude mice subcutaneously inoculated with either lung cancer cells (n = 11 A549 tumors, n = 20 H1975 tumors) or colorectal cancer cells (n = 13 Colo205 tumors) were imaged with [18F]FLT PET and DW-MRI using a multimodal bed, which was transferred from one instrument to the other within the same imaging session. Fiducial markers allowed coregistration of the images. An automatic post-processing was developed in MATLAB handling the spatial registration of DW-MRI (measured as apparent diffusion coefficient, ADC) and [18F]FLT image data and subsequent voxel-wise analysis of regions of interest (ROIs) in the tumor. RESULTS Analyses were conducted on a total of 76 datasets, comprising a median of 2890 data points (ranging from 81 to 13,597). Scatterplots showing [18F]FLT vs. ADC values displayed various grades of relations (Pearson correlation coefficient (PCC) varied from - 0.58 to 0.49, median: -0.07). When relating PCC to tumor volume (median: 46 mm3, range: 3 mm3 to 584 mm3), lung tumors tended to have a more pronounced negative spatial relation of [18F]FLT and ADC with increasing tumor size. However, due to the low number of large tumors (> ~ 200 mm3), this conclusion has to be treated with caution. CONCLUSIONS A spatial relation of water diffusion, as measured by DW-MRI, and cellular proliferation, as measured by [18F]FLT PET, cannot be detected in the experimental datasets investigated in this study.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Lynn Johann Frohwein
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Lydia Wachsmuth
- Translational Research Imaging Center, Clinic of Radiology, University Hospital of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Clinic of Radiology, University Hospital of Münster, Münster, Germany
| | - Klaus P Schäfers
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Waldeyerstr. 15, 48149, Münster, Germany
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany
| |
Collapse
|
4
|
Rao F, Wu Z, Han L, Yang B, Han W, Zhu W. Delayed PET imaging using image synthesis network and nonrigid registration without additional CT scan. Med Phys 2022; 49:3233-3245. [PMID: 35218053 DOI: 10.1002/mp.15574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/02/2022] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Attenuation correction is critical for positron emission tomography (PET) image reconstruction. The standard protocol for obtaining attenuation information in a clinical PET scanner is via the coregistered computed tomography (CT) images. Therefore for delayed PET imaging, the CT scan is repeated twice, which increases the radiation dose for the patient. In this paper, we propose a zero-extra-dose delayed PET imaging method which requires no additional CT scans. METHODS A deep learning based synthesis network is designed to convert the PET data into a pseudo CT image for the delayed scan. Then, nonrigid registration is performed between this pseudo CT image and the CT image of the first scan, warping the CT image of the first scan to an estimated CT images for the delayed scan. Finally, the PET image attenuation correction in the delayed scan is obtained from this estimated CT image. Experiments with clinical datasets are implemented to assess the effectiveness of the proposed method with the well-recognized GAN method. The average peak signal-to-noise ratio (PSNR) and the mean absolute percent error (MAPE) are used in comparison. We also use scoring from three experienced radiologists as subjective measurement means, based on the diagnostic consistency of the PET images reconstructed from GAN and the proposed method with respect to the ground truth images. RESULTS The experiments show that the average PSNR is 47.04 dB (the proposed method) v.s. 44.41 dB (the traditional GAN method) for the reconstructed delayed PET images in our evaluation dataset. The average MAPEs are 1.59% for the proposed method and 3.32% for the traditional GAN method across five organ Regions of Interest (ROIs). The scores for the GAN and the proposed method rated by three experienced radiologists are 8.08±0.60 and 9.02±0.52, indicating that the proposed method yields more consistent PET images with the ground truth. CONCLUSIONS This work proposes a novel method for CT-less delayed PET imaging based on image synthesis network and nonrigid image registration. The PET image reconstructed using the proposed method yields delayed PET images with high image quality without artifacts, and is quantitatively more accurate compared with the traditional GAN method. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fan Rao
- Research Center for Healthcare Data Science, Zhejiang Lab, China
| | - Zhuoxuan Wu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, China
| | - Lu Han
- Research Center for Healthcare Data Science, Zhejiang Lab, China
| | - Bao Yang
- Research Center for Healthcare Data Science, Zhejiang Lab, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, China
| | - Wentao Zhu
- Research Center for Healthcare Data Science, Zhejiang Lab, China
| |
Collapse
|
5
|
Vali R, Alessio A, Balza R, Borgwardt L, Bar-Sever Z, Czachowski M, Jehanno N, Kurch L, Pandit-Taskar N, Parisi M, Piccardo A, Seghers V, Shulkin BL, Zucchetta P, Lim R. SNMMI Procedure Standard/EANM Practice Guideline on Pediatric 18F-FDG PET/CT for Oncology 1.0. J Nucl Med 2021; 62:99-110. [PMID: 33334912 PMCID: PMC8679588 DOI: 10.2967/jnumed.120.254110] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote the science, technology, and practical application of nuclear medicine. The European Association of Nuclear Medicine (EANM) is a professional nonprofit medical association founded in 1985 to facilitate communication worldwide among individuals pursuing clinical and academic excellence in nuclear medicine. SNMMI and EANM members are physicians, technologists, and scientists specializing in the research and practice of nuclear medicine. The SNMMI and EANM will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the SNMMI/EANM, has undergone a thorough consensus process, entailing extensive review. The SNMMI and EANM recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents, and are not inflexible rules or requirements of practice. They are not intended, nor should they be used, to establish a legal standard of care. For these reasons and those set forth below, the SNMMI and the EANM cautions against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that action differing from what is laid out in the standards/guidelines, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources, or advances in knowledge or technology subsequent to publication of the standards/guidelines. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation, and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/guidelines will not ensure a successful outcome. All that should be expected is that the practitioner follows a reasonable course of action, based on their level of training, the current knowledge, the available resources, and the needs/context of the particular patient being treated. PET and computerized tomography (CT) have been widely used in oncology. 18F-FDG is the most common radiotracer used for PET imaging. The purpose of this document is to provide imaging specialists and clinicians guidelines for recommending, performing, and interpreting 18F-FDG PET/CT in pediatric patients in oncology. There is not a high level of evidence for all recommendations suggested in this paper. These recommendations represent the expert opinions of experienced leaders in this field. Further studies are needed to have evidence-based recommendations for the application of 18F-FDG PET/CT in pediatric oncology. These recommendations should be viewed in the context of good practice of nuclear medicine and are not intended to be a substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- Reza Vali
- Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Adam Alessio
- Michigan State University, East Lansing, Michigan
| | - Rene Balza
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lise Borgwardt
- Department for Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Zvi Bar-Sever
- Schneider Children's Medical Center, Petach Tikva, Israel
| | | | - Nina Jehanno
- Department of Nuclear Medicine, Institut Curie, Paris, France
| | - Lars Kurch
- University Hospital Leipzig, Department of Nuclear Medicine, Leipzig, Germany
| | | | - Marguerite Parisi
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Washington
| | | | - Victor Seghers
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Barry L Shulkin
- St. Jude Children's Research Hospital, Memphis, Tennessee; and
| | | | - Ruth Lim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Ultra-low dose whole-body CT for attenuation correction in a dual tracer PET/CT protocol for multiple myeloma. Phys Med 2021; 84:1-9. [PMID: 33799056 DOI: 10.1016/j.ejmp.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/22/2021] [Accepted: 03/13/2021] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate within phantoms the minimum CT dose allowed for accurate attenuation correction of PET data and to quantify the effective dose reduction when a CT for this purpose is incorporated in the clinical setting. METHODS The NEMA image quality phantom was scanned within a large parallelepiped container. Twenty-one different CT images were acquired to correct attenuation of PET raw data. Radiation dose and image quality were evaluated. Thirty-one patients with proven multiple myeloma who underwent a dual tracer PET/CT scan were retrospectively reviewed. 18F-fluorodeoxyglucose PET/CT included a diagnostic whole-body low dose CT (WBLDCT: 120 kV-80mAs) and 11C-Methionine PET/CT included a whole-body ultra-low dose CT (WBULDCT) for attenuation correction (100 kV-40mAs). Effective dose and image quality were analysed. RESULTS Only the two lowest radiation dose conditions (80 kV-20mAs and 80 kV-10mAs) produced artifacts in CT images that degraded corrected PET images. For all the other conditions (CTDIvol ≥ 0.43 mGy), PET contrast recovery coefficients varied less than ± 1.2%. Patients received a median dose of 6.4 mSv from diagnostic CT and 2.1 mSv from the attenuation correction CT. Despite the worse image quality of this CT, 94.8% of bone lesions were identifiable. CONCLUSION Phantom experiments showed that an ultra-low dose CT can be implemented in PET/CT procedures without any noticeable degradation in the attenuation corrected PET scan. The replacement of the standard CT for this ultra-low dose CT in clinical PET/CT scans involves a significant radiation dose reduction.
Collapse
|
7
|
Rao F, Yang B, Chen YW, Li J, Wang H, Ye H, Wang Y, Zhao K, Zhu W. A novel supervised learning method to generate CT images for attenuation correction in delayed pet scans. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105764. [PMID: 33010702 DOI: 10.1016/j.cmpb.2020.105764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVES Attenuation correction is important for PET image reconstruction. In clinical PET/CT scans, the attenuation information is usually obtained by CT. However, additional CT scans for delayed PET imaging may increase the risk of cancer. In this paper, we propose a novel CT generation method for attenuation correction in delayed PET imaging that requires no additional CT scans. METHODS As only PET raw data is available for the delayed PET scan, routine image registration methods are difficult to use directly. To solve this problem, a reconstruction network is developed to produce pseudo PET images from raw data first. Then a second network is used to generate the CT image through mapping PET/CT images from the first scan to the delayed scan. The inputs of the second network are the two pseudo PET images from the first and delayed scans, and the CT image from the first scan. The labels are taken from the ground truth CT image in the delayed scan. The loss function contains an image similarity term and a regularization term, which reflect the anatomy matching accuracy and the smoothness of the non-rigid deformation field, respectively. RESULTS We evaluated the proposed method with simulated and clinical PET/CT datasets. Standard Uptake Value was computed and compared with the gold standard (with coregistered CT for attenuation correction). The results show that the proposed supervised learning method can generate PET images with high quality and quantitative accuracy. For the test cases in our study, the average MAE and RMSE of the proposed supervised learning method were 4.61 and 22.75 respectively, and the average PSNR between the reconstructed PET image and the ground truth PET image was 62.13 dB. CONCLUSIONS The proposed method is able to generate accurate CT images for attenuation correction in delayed PET scans. Experiments indicate that the proposed method outperforms traditional methods with respect to quantitative PET image accuracy.
Collapse
Affiliation(s)
- Fan Rao
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Bao Yang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Yen-Wei Chen
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Jingsong Li
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Hongkai Wang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, China
| | - Hongwei Ye
- MinFound Medical Systems Co., Ltd. Hangzhou, China
| | - Yaofa Wang
- MinFound Medical Systems Co., Ltd. Hangzhou, China
| | - Kui Zhao
- PET Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang, China
| | - Wentao Zhu
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
8
|
Imaging for diagnosis, staging and response assessment of Hodgkin lymphoma and non-Hodgkin lymphoma. Pediatr Radiol 2019; 49:1545-1564. [PMID: 31620854 DOI: 10.1007/s00247-019-04529-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/14/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Hodgkin lymphoma and non-Hodgkin lymphoma are common malignancies in children and are now highly treatable. Imaging plays a major role in diagnosis, staging and response using conventional CT and MRI and metabolic imaging with positron emission tomography (PET)/CT and PET/MRI. Cross-sectional imaging has replaced staging laparotomy and splenectomy by demonstrating abdominal nodal groups and organ involvement. [F-18]2-fluoro-2-deoxyglucose (FDG) PET provides information on bone marrow involvement, and MRI elucidates details of cortical bone and confirmation of bone marrow involvement. The staging system for Hodgkin lymphoma is the Ann Arbor system with Cotswald modifications and is based on imaging, whereas the non-Hodgkin staging system is the St. Jude Classification by Murphy or the more recent revised International Pediatric Non-Hodgkin Lymphoma Staging System (IPNHLSS). Because all pediatric lymphomas are metabolically FDG-avid and identify all nodal, solid organ, cortical bone and bone marrow disease, staging evaluations require FDG PET as PET/CT or PET/MRI in both Hodgkin and non-Hodgkin lymphoma. Both diseases have in common issues of airway compromise at presentation demonstrated by imaging. Differences exist in that Hodgkin lymphoma has several independent poor prognostic factors seen by imaging such as large mediastinal adenopathy, Stage IV disease, systemic symptoms, pleural effusion and pericardial effusion. Non-Hodgkin lymphoma includes more organ involvement such as renal, ovary, central nervous system and skin. Early or interim PET-negative scans are a reliable indicator of improved clinical outcome and optimize risk-adapted therapy and patient management; imaging may not, however, predict who will relapse. A recent multicenter trial has concluded that it is usually sufficient for pediatric lymphoma at staging and interim assessment to evaluate children with PET imaging from skull base to mid-thigh. Various systems of assessment of presence of disease or response are used, including the Deauville visual scale, where avidity is compared to liver; Lugano, which includes size change as part of response; or quantitative PET, which uses standardized uptake values to define more accurate response. Newer methods of immunotherapy can produce challenges in FDG PET evaluation because of inflammatory changes that may not represent disease.
Collapse
|