1
|
Maher YA, Fathi A, Sembawa BA, Elkhyat SH, Hafiz HF, Marghalani AA. Effectiveness of Mouthwash-Containing Silver Nanoparticles on Cariogenic Microorganisms, Plaque Index, and Salivary pH in A Group of Saudi Children. Open Dent J 2022. [DOI: 10.2174/18742106-v16-e2209090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objectives:
To compare the effectiveness of Silver nanoparticles (AgNPs) and Chlorhexidine (CHX) mouthwash on Streptococcus mutans (S. mutans), Lactobacillus spp., and Candida albicans (C. albicans) counts O’Leary plaque index (O’Leary PI) scores, and salivary pH levels among children.
Materials and Methods:
The study sample consisted of 117 eligible participants aged 12–18 years. They were divided into control, CHX, and AgNPs groups, with 39 subjects per group. The log10 salivary microbial counts, O’Leary PI, and salivary pH values were recorded and statistically analyzed at baseline and the 28th day. Descriptive statistics were presented as the mean ± standard deviation. In addition, the analyses of variance (ANOVA) and Tukey posthoc test were implemented. The p-value ≤ 0.05 denotes a significant difference between the two points.
Results:
AgNPs and CHX mouthwash were found to have significantly reduced salivary microbial counts and O’Leary PI scores. The salivary pH levels notably increased on the 28th day (p-value < 0.001). All measured outcomes demonstrated notable effects, with the greatest observed for the CHX group, followed by the AgNPs group, and finally, the control group.
Conclusion:
Chlorhexidine and AgNPs mouthwash effectively reduced the cariogenic microbial count and dental plaque and improved the salivary pH values. AgNPs mouthwash may be used as an adjunctive measure to prevent dental caries.
Collapse
|
2
|
Droubi L, Laflouf M, Tolibah YA, Comisi JC. Apert Syndrome: Dental management considerations and objectives. J Oral Biol Craniofac Res 2022; 12:370-375. [DOI: 10.1016/j.jobcr.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/16/2021] [Accepted: 04/09/2022] [Indexed: 10/18/2022] Open
|
3
|
Alam MK, Alfawzan AA, Srivastava KC, Shrivastava D, Ganji KK, Manay SM. Craniofacial morphology in Apert syndrome: a systematic review and meta-analysis. Sci Rep 2022; 12:5708. [PMID: 35383244 PMCID: PMC8983770 DOI: 10.1038/s41598-022-09764-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
This meta-analysis aims to compare Apert syndrome (AS) patients with non-AS populations (not clinically or genetically diagnosed) on craniofacial cephalometric characteristics (CCC) to combine publicly available scientific information while also improving the validity of primary study findings. A comprehensive search was performed in the following databases: PubMed, Google Scholar, Scopus, Medline, and Web of Science, an article published between 1st January 2000 to October 17th, 2021. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to carry out this systematic review. We used the PECO system to classify people with AS based on whether or not they had distinctive CCC compared to the non-AS population. Following are some examples of how PECO has been used: People with AS are labeled P; clinical or genetic diagnosis of AS is labeled E; individuals without AS are labeled C; CCC of AS are labeled O. Using the Newcastle-Ottawa Quality-Assessment-Scale, independent reviewers assessed the articles' methodological quality and extracted data. 13 studies were included in the systematic review. 8 out of 13 studies were score 7-8 in NOS scale, which indicated that most of the studies were medium to high qualities. Six case-control studies were analyzed for meta-analysis. Due to the wide range of variability in CCC, we were only able to include data from at least three previous studies. There was a statistically significant difference in N-S-PP (I2: 76.56%; P = 0.014; CI 1.27 to - 0.28) and Greater wing angle (I2: 79.07%; P = 0.008; CI 3.07-1.17) between AS and control subjects. Cleft palate, anterior open bite, crowding in the upper jaw, and hypodontia occurred more frequently among AS patients. Significant shortening of the mandibular width, height and length is the most reported feature in AS patients. CT scans can help patients with AS decide whether to pursue orthodontic treatment alone or to have their mouth surgically expanded. The role of well-informed orthodontic and maxillofacial practitioners is critical in preventing and rehabilitating oral health issues.
Collapse
Affiliation(s)
- Mohammad Khursheed Alam
- Orthodontics, Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka, Saudi Arabia.
| | - Ahmed Ali Alfawzan
- Department of Preventive Dentistry, College of Dentistry in Ar Rass, Qassim University, Ar Rass, Saudi Arabia
| | - Kumar Chandan Srivastava
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Deepti Shrivastava
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | - Kiran Kumar Ganji
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka, Saudi Arabia
| | | |
Collapse
|
4
|
Giraldo–Barrero YP, Carrillo–Mendigaño N, Peña–Vega CP, Yezioro–Rubinsky S. Síndrome de Apert: alternativas de tratamiento ortodóntico - quirúrgico y tiempos de ejecución. Una revisión de la literatura. ACTA ODONTOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/aoc.v12n1.97958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objetivo: realizar una revisión de la literatura acerca de los tratamientos ortodónticos y quirúrgicos del síndrome de Apert durante las diferentes etapas de crecimiento y desarrollo. Métodos: se llevó a cabo una búsqueda en las bases de datos MedLine (PubMed), Science Direct, Scopus y Wiley Online Library con la combinación de los siguientes términos: Syndromic craniosynostosis, Dental treatment, orthodontic treatment, Apert Syndrome, surgical treatment, dental care. Se incluyeron revisiones sistemáticas y de literatura, estudios retrospectivos, longitudinales y de cohorte, series y revisiones de caso publicados entre 1990 y 2020 en español o inglés; se excluyeron artículos relacionados con otros síndromes, así como estudios en animales. Los artículos fueron seleccionados según su pertinencia y disponibilidad de texto completo; hallazgos repetidos fueron eliminados; adicionalmente, se utilizó el sistema bola de nieve en los artículos seleccionados; la calidad de la evidencia fue evaluada mediante el sistema GRADE. Resultados: 34 artículos fueron incluidos (calidad alta: 2, moderada: 1, baja: 19 y muy baja: 12). Entre estos, se identificaron discusiones relacionadas con la etapa de crecimiento a la que se recomienda realizar los procedimientos quirúrgicos requeridos para minimizar sus impactos negativos. La mayoría de los artículos apoyan el manejo terapéutico ejecutado por equipos multidisciplinarios. Conclusiones: un plan de tratamiento combinado de ortodoncia y cirugía ortognática se presentó como la mejor opción para obtener los mejores resultados funcionales y estéticos para la población en cuestión. El momento adecuado durante el crecimiento y desarrollo de los individuos para implementar cada fase de tratamiento fue decidido por cada equipo multidisciplinario.
Collapse
|
5
|
Kobayashi Y, Ogura K, Hikita R, Tsuji M, Moriyama K. Craniofacial, oral, and cervical morphological characteristics in Japanese patients with Apert syndrome or Crouzon syndrome. Eur J Orthod 2021; 43:36-44. [PMID: 32144423 DOI: 10.1093/ejo/cjaa015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Mutations in the fibroblast growth factor receptor 2 (FGFR2) gene are responsible for both Apert syndrome (AS) and Crouzon syndrome (CS). These diseases share phenotypic characteristics, including midfacial hypoplasia and premature fusion of the calvarial suture(s). Given the extensive range of craniofacial growth and developmental abnormalities, management of these patients requires a multidisciplinary approach. This study aimed to compare craniofacial, oral, and cervical morphological characteristics in Japanese orthodontic patients with AS or CS. SUBJECTS AND METHODS Lateral cephalograms, orthopantomograms, dental casts, medical interview records, facial photographs, and intraoral photographs of 7 AS patients and 12 CS patients on initial visits were used in this study. Cephalometric analyses were performed, and standard scores were calculated based on age- and sex-matched Japanese standard values. RESULTS Cephalometric analysis revealed that AS patients had significantly more severe maxillary hypoplasia in two dimensions and increased clockwise mandibular rotation. Additionally, cleft of the soft palate, anterior open bite, severe crowding in the maxillary dental arch, and congenitally missing teeth occurred more frequently among AS patients. Multiple fusions between cervical vertebrae C2, C3, C5, and C6 were observed in the AS patients. LIMITATIONS Small sample size. CONCLUSIONS/IMPLICATIONS Our study shows that AS patients have more severe craniofacial and maxillofacial deformities than CS patients.
Collapse
Affiliation(s)
- Yukiho Kobayashi
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ogura
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Hikita
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Tsuji
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Moriyama
- Department of Maxillofacial Orthognathics, Division of Maxillofacial and Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Nguyen TN, Hoang HD. Exome sequencing revealed the potential causal mutation in a Vietnamese patient with Apert syndrome. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2020.100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
López-Estudillo AS, Rosales-Bérber MA, Ruiz-Rodríguez S, Pozos-Guillén A, Noyola-Frías MÁ, Garrocho-Rangel A. Dental approach for Apert syndrome in children: a systematic review. Med Oral Patol Oral Cir Bucal 2017; 22:e660-e668. [PMID: 29053644 PMCID: PMC5813983 DOI: 10.4317/medoral.21628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/06/2016] [Indexed: 12/13/2022] Open
Abstract
Background Apert Syndrome (AS), or type I acrocephalosyndactyly, is a rare, congenital craniosynostosis condition resulting from missense mutations in the gene encoding fibroblast growth factor receptor 2. It is characterized by three specific clinical features: brachycephalic skull; midface hypoplasia, and limb abnormalities (syndactyly of hands and feet). The disorder exhibits variable presentations in bones, brain, skin, internal organs, and in the oral/maxillofacial region. The aim of the present paper was to show the main results from a systematic review of AS. Material and Methods A search of the literature was performed from April to June 2016 in five electronic databases. Clinical interventional or observational studies, reviews, and case reports were included. The present systematic review was carried out strictly following PRISMA and Cochrane Collaboration criteria. Results A total of 129 potential references were identified. After reviewing titles and abstracts, 77 of these did not meet the desired criteria and were discarded. The full text of the remaining 52 manuscripts was critically screened. Finally, 35 relevant papers were identified for inclusion in the present systematic review and classified according to topic type. Conclusions According to the information gathered, dentistry practitioners must be able to supply an early diagnosis through the recognition of AS clinical features and provide correct oral management. Additionally, they should be integrated in a multidisciplinary medical care team in order to improve the quality of life of the affected patients. Key words:Apert syndrome, acrocephalosyndactyly, craniosynostosis, skeletal dysplasias, systematic review.
Collapse
Affiliation(s)
- A-S López-Estudillo
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava #2, Zona Universitaria, C.P. 78290; San Luis Potosí, S.L.P. México,
| | | | | | | | | | | |
Collapse
|
8
|
Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. NPJ Biofilms Microbiomes 2017; 3:23. [PMID: 28979798 PMCID: PMC5624903 DOI: 10.1038/s41522-017-0031-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022] Open
Abstract
The taxonomic composition of the salivary microbiota has been reported to differentiate between oral health and disease. However, information on bacterial activity and gene expression of the salivary microbiota is limited. The purpose of this study was to perform metagenomic and metatranscriptomic characterization of the salivary microbiota and test the hypothesis that salivary microbial presence and activity could be an indicator of the oral health status. Stimulated saliva samples were collected from 30 individuals (periodontitis: n = 10, dental caries: n = 10, oral health: n = 10). Salivary microbiota was characterized using metagenomics and metatranscriptomics in order to compare community composition and the gene expression between the three groups. Streptococcus was the predominant bacterial genus constituting approx. 25 and 50% of all DNA and RNA reads, respectively. A significant disease-associated higher relative abundance of traditional periodontal pathogens such as Porphyromonas gingivalis and Filifactor alocis and salivary microbial activity of F. alocis was associated with periodontitis. Significantly higher relative abundance of caries-associated bacteria such as Streptococcus mutans and Lactobacillus fermentum was identified in saliva from patients with dental caries. Multiple genes involved in carbohydrate metabolism were significantly more expressed in healthy controls compared to periodontitis patients. Using metagenomics and metatranscriptomics we show that relative abundance of specific oral bacterial species and bacterial gene expression in saliva associates with periodontitis and dental caries. Further longitudinal studies are warranted to evaluate if screening of salivary microbial activity of specific oral bacterial species and metabolic gene expression can identify periodontitis and dental caries at preclinical stages. Genetic analysis of saliva reveals the activity of bacteria linked to gum disease and tooth decay and may prove useful in early diagnosis. Daniel Belstrøm and colleagues at the University of Copenhagen, Denmark, with co-workers at Nanyang Technological University in Singapore, analyzed saliva from 10 patients with periodontitis gum disease, 10 with dental caries and 10 with good oral health. DNA analysis revealed which bacteria were present, while examining RNA revealed which bacterial genes were most active. The procedure identified greater abundance and activity of bacteria linked to each specific oral condition in the oral disease groups, and also found distinctive bacterial activity in those people with good oral health. Further studies should investigate the possibility of testing bacterial gene activity in saliva to identify oral diseases before they become clinically evident.
Collapse
|
9
|
Belstrøm D, Paster BJ, Fiehn NE, Bardow A, Holmstrup P. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique. J Oral Microbiol 2016; 8:30170. [PMID: 26782357 PMCID: PMC4717152 DOI: 10.3402/jom.v8.30170] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/01/2022] Open
Abstract
Background and objective The composition of the salivary microbiota, as determined using various molecular methods, has been reported to differentiate oral health from diseases. Thus, the purpose of this study was to utilize the newly developed molecular technique HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing) for comparison of the salivary microbiota in patients with periodontitis, patients with dental caries, and orally healthy individuals. The hypothesis was that this method could add on to the existing knowledge on salivary bacterial profiles in oral health and disease. Design Stimulated saliva samples (n=30) were collected from 10 patients with untreated periodontitis, 10 patients with untreated dental caries, and 10 orally healthy individuals. Salivary microbiota was analyzed using HOMINGS and statistical analysis was performed using Kruskal–Wallis test with Benjamini–Hochberg's correction. Results From a total of 30 saliva samples, a mean number of probe targets of 205 (range 120–353) were identified, and a statistically significant higher mean number of targets was registered in samples from patients with periodontitis (mean 220, range 143–306) and dental caries (mean 221, range 165–353) as compared to orally healthy individuals (mean 174, range 120–260) (p=0.04 and p=0.04). Nine probe targets were identified with a different relative abundance between groups (p<0.05). Conclusions Cross-sectional comparison of salivary bacterial profiles by means of HOMINGS analysis showed that different salivary bacterial profiles were associated with oral health and disease. Future large-scale prospective studies are needed to evaluate if saliva-based screening for disease-associated oral bacterial profiles may be used for identification of patients at risk of acquiring periodontitis and dental caries.
Collapse
Affiliation(s)
- Daniel Belstrøm
- Section of Periodontology and Microbiology, School of Dentistry, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark;
| | - Bruce J Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA.,Department of Oral Medicine, Infection & Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nils-Erik Fiehn
- Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Allan Bardow
- Department of Oral Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Palle Holmstrup
- Section of Periodontology and Microbiology, School of Dentistry, Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Molding of top skull in the treatment of Apert syndrome. J Craniofac Surg 2015; 26:516-7. [PMID: 25699533 DOI: 10.1097/scs.0000000000001457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Patients with Apert syndrome have bilateral coronal craniosynostosis, along with a distinguishing feature of their many deformity, called tower skull. Surgical correction of this deformity is the mainstay of treatment. We describe 3 patients molded top skull after front bone osteotomy orbital bar advancement. This successfully restricted growth of their top skull while allowing growth in other dimensions. Utilization of top-skull molding after cranial surgery shows promise of satisfaction in this setting.
Collapse
|