1
|
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New Insights into the Role of Ferroptosis in Cardiovascular Diseases. Cells 2023; 12:cells12060867. [PMID: 36980208 PMCID: PMC10047059 DOI: 10.3390/cells12060867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the principal cause of disease burden and death worldwide. Ferroptosis is a new form of regulated cell death mainly characterized by altered iron metabolism, increased polyunsaturated fatty acid peroxidation by reactive oxygen species, depletion of glutathione and inactivation of glutathione peroxidase 4. Recently, a series of studies have indicated that ferroptosis is involved in the death of cardiac and vascular cells and has a key impact on the mechanisms leading to CVDs such as ischemic heart disease, ischemia/reperfusion injury, cardiomyopathies, and heart failure. In this article, we reviewed the molecular mechanism of ferroptosis and the current understanding of the pathophysiological role of ferroptosis in ischemic heart disease and in some cardiomyopathies. Moreover, the comprehension of the machinery governing ferroptosis in vascular cells and cardiomyocytes may provide new insights into preventive and therapeutic strategies in CVDs.
Collapse
|
2
|
Copeland H, Knezevic I, Baran DA, Rao V, Pham M, Gustafsson F, Pinney S, Lima B, Masetti M, Ciarka A, Rajagopalan N, Torres A, Hsich E, Patel JK, Goldraich LA, Colvin M, Segovia J, Ross H, Ginwalla M, Sharif-Kashani B, Farr MA, Potena L, Kobashigawa J, Crespo-Leiro MG, Altman N, Wagner F, Cook J, Stosor V, Grossi PA, Khush K, Yagdi T, Restaino S, Tsui S, Absi D, Sokos G, Zuckermann A, Wayda B, Felius J, Hall SA. Donor heart selection: Evidence-based guidelines for providers. J Heart Lung Transplant 2023; 42:7-29. [PMID: 36357275 PMCID: PMC10284152 DOI: 10.1016/j.healun.2022.08.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
The proposed donor heart selection guidelines provide evidence-based and expert-consensus recommendations for the selection of donor hearts following brain death. These recommendations were compiled by an international panel of experts based on an extensive literature review.
Collapse
Affiliation(s)
- Hannah Copeland
- Department of Cardiovascular and Thoracic Surgery Lutheran Hospital, Fort Wayne, Indiana; Indiana University School of Medicine-Fort Wayne, Fort Wayne, Indiana.
| | - Ivan Knezevic
- Transplantation Centre, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - David A Baran
- Department of Medicine, Division of Cardiology, Sentara Heart Hospital, Norfolk, Virginia
| | - Vivek Rao
- Peter Munk Cardiac Centre Toronto General Hospital, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Michael Pham
- Sutter Health California Pacific Medical Center, San Francisco, California
| | - Finn Gustafsson
- Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sean Pinney
- University of Chicago Medicine, Chicago, Illinois
| | - Brian Lima
- Medical City Heart Hospital, Dallas, Texas
| | - Marco Masetti
- Heart Failure and Heart Transplant Unit IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Agnieszka Ciarka
- Department of Cardiovascular Diseases, Katholieke Universiteit Leuven, Leuven, Belgium; Institute of Civilisation Diseases and Regenerative Medicine, University of Information Technology and Management, Rzeszow, Poland
| | | | - Adriana Torres
- Los Cobos Medical Center, Universidad El Bosque, Bogota, Colombia
| | | | | | | | | | - Javier Segovia
- Cardiology Department, Hospital Universitario Puerta de Hierro, Universidad Autónoma de Madrid, Madrid, Spain
| | - Heather Ross
- University of Toronto, Toronto, Ontario, Canada; Sutter Health California Pacific Medical Center, San Francisco, California
| | - Mahazarin Ginwalla
- Cardiovascular Division, Palo Alto Medical Foundation/Sutter Health, Burlingame, California
| | - Babak Sharif-Kashani
- Department of Cardiology, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - MaryJane A Farr
- Department of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Luciano Potena
- Heart Failure and Heart Transplant Unit IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | | | | | | | | | | | - Valentina Stosor
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Kiran Khush
- Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Tahir Yagdi
- Department of Cardiovascular Surgery, Ege University School of Medicine, Izmir, Turkey
| | - Susan Restaino
- Division of Cardiology Columbia University, New York, New York; New York Presbyterian Hospital, New York, New York
| | - Steven Tsui
- Department of Cardiothoracic Surgery Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Daniel Absi
- Department of Cardiothoracic and Transplant Surgery, University Hospital Favaloro Foundation, Buenos Aires, Argentina
| | - George Sokos
- Heart and Vascular Institute, West Virginia University, Morgantown, West Virginia
| | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Brian Wayda
- Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Joost Felius
- Baylor Scott & White Research Institute, Dallas, Texas; Texas A&M University Health Science Center, Dallas, Texas
| | - Shelley A Hall
- Texas A&M University Health Science Center, Dallas, Texas; Division of Transplant Cardiology, Mechanical Circulatory Support and Advanced Heart Failure, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Masarone D, Kittleson M, Gravino R, Valente F, Petraio A, Pacileo G. The Role of Echocardiography in the Management of Heart Transplant Recipients. Diagnostics (Basel) 2021; 11:2338. [PMID: 34943575 PMCID: PMC8699946 DOI: 10.3390/diagnostics11122338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 01/30/2023] Open
Abstract
Transthoracic echocardiography is the primary non-invasive modality for the investigation of heart transplant recipients. It is a versatile tool that provides comprehensive information on cardiac structure and function. Echocardiography is also helpful in diagnosing primary graft dysfunction and evaluating the effectiveness of therapeutic approaches for this condition. In acute rejection, echocardiography is useful with suspected cellular or antibody-mediated rejection, with findings confirmed and quantified by endomyocardial biopsy. For identifying chronic rejection, ultrasound has a more significant role and, in some specific patients (e.g., patients with renal failure), it may offer a role comparable to coronary angiography to identify cardiac allograft vasculopathy. This review highlights the usefulness of echocardiography in evaluating normal graft function and its role in the management of heart transplant recipients.
Collapse
Affiliation(s)
- Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (R.G.); (F.V.); (G.P.)
| | - Michelle Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai, Los Angeles, CA 90048, USA;
| | - Rita Gravino
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (R.G.); (F.V.); (G.P.)
| | - Fabio Valente
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (R.G.); (F.V.); (G.P.)
| | - Andrea Petraio
- Heart Transplant Unit, Department of Cardiac Surgery and Transplantology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy;
| | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital, 80131 Naples, Italy; (R.G.); (F.V.); (G.P.)
| |
Collapse
|
4
|
Al-Adhami A, Avtaar Singh SS, De SD, Singh R, Panjrath G, Shah A, Dalzell JR, Schroder J, Al-Attar N. Primary Graft Dysfunction after Heart Transplantation - Unravelling the Enigma. Curr Probl Cardiol 2021; 47:100941. [PMID: 34404551 DOI: 10.1016/j.cpcardiol.2021.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/03/2022]
Abstract
Primary graft dysfunction (PGD) remains the main cause of early mortality following heart transplantation despite several advances in donor preservation techniques and therapeutic strategies for PGD. With that aim of establishing the aetiopathogenesis of PGD and the preferred management strategies, the new consensus definition has paved the way for multiple contemporaneous studies to be undertaken and accurately compared. This review aims to provide a broad-based understanding of the pathophysiology, clinical presentation and management of PGD.
Collapse
Affiliation(s)
- Ahmed Al-Adhami
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK; Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow.
| | - Sudeep Das De
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Ramesh Singh
- Mechanical Circulatory Support, Inova Health System, Falls Church, Virginia
| | - Gurusher Panjrath
- Heart Failure and Mechanical Circulatory Support Program, George Washington University Hospital, Washington, DC
| | - Amit Shah
- Advanced Heart Failure and Cardiac Transplant Unit, Fiona Stanley Hospital, Perth, Australia
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, UK
| | - Jacob Schroder
- Heart Transplantation Program, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK; Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow
| |
Collapse
|
5
|
Giangreco NP, Lebreton G, Restaino S, Jane Farr M, Zorn E, Colombo PC, Patel J, Levine R, Truby L, Soni RK, Leprince P, Kobashigawa J, Tatonetti NP, Fine BM. Plasma kallikrein predicts primary graft dysfunction after heart transplant. J Heart Lung Transplant 2021; 40:1199-1211. [PMID: 34330603 DOI: 10.1016/j.healun.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Primary graft dysfunction (PGD) is the leading cause of early mortality after heart transplant. Pre-transplant predictors of PGD remain elusive and its etiology remains unclear. METHODS Microvesicles were isolated from 88 pre-transplant serum samples and underwent proteomic evaluation using TMT mass spectrometry. Monte Carlo cross validation (MCCV) was used to predict the occurrence of severe PGD after transplant using recipient pre-transplant clinical characteristics and serum microvesicle proteomic data. Putative biological functions and pathways were assessed using gene set enrichment analysis (GSEA) within the MCCV prediction methodology. RESULTS Using our MCCV prediction methodology, decreased levels of plasma kallikrein (KLKB1), a critical regulator of the kinin-kallikrein system, was the most predictive factor identified for PGD (AUROC 0.6444 [0.6293, 0.6655]; odds 0.1959 [0.0592, 0.3663]. Furthermore, a predictive panel combining KLKB1 with inotrope therapy achieved peak performance (AUROC 0.7181 [0.7020, 0.7372]) across and within (AUROCs of 0.66-0.78) each cohort. A classifier utilizing KLKB1 and inotrope therapy outperforms existing composite scores by more than 50 percent. The diagnostic utility of the classifier was validated on 65 consecutive transplant patients, resulting in an AUROC of 0.71 and a negative predictive value of 0.92-0.96. Differential expression analysis revealed a enrichment in inflammatory and immune pathways prior to PGD. CONCLUSIONS Pre-transplant level of KLKB1 is a robust predictor of post-transplant PGD. The combination with pre-transplant inotrope therapy enhances the prediction of PGD compared to pre-transplant KLKB1 levels alone and the resulting classifier equation validates within a prospective validation cohort. Inflammation and immune pathway enrichment characterize the pre-transplant proteomic signature predictive of PGD.
Collapse
Affiliation(s)
- Nicholas P Giangreco
- Departments of Systems Biology, Biomedical Informatics, and Medicine, Columbia University, New York, New York
| | - Guillaume Lebreton
- Chirurgie Thoracique et Cardiovasculaire, Pitiíe-Salpetriere University Hospital, Paris, France
| | - Susan Restaino
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Mary Jane Farr
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Emmanuel Zorn
- Center for Translational Immunology, Columbia University Irving Medical Center, New York, New York
| | - Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Jignesh Patel
- Cedars-Sinai Heart Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Ryan Levine
- Cedars-Sinai Heart Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Lauren Truby
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Pascal Leprince
- Chirurgie Thoracique et Cardiovasculaire, Pitiíe-Salpetriere University Hospital, Paris, France
| | - Jon Kobashigawa
- Cedars-Sinai Heart Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Nicholas P Tatonetti
- Departments of Systems Biology, Biomedical Informatics, and Medicine, Columbia University, New York, New York; Institute for Genomic Medicine, Columbia University, New York, New York
| | - Barry M Fine
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
6
|
Galeone A, Lebreton G, Coutance G, Demondion P, Schmidt M, Amour J, Varnous S, Leprince P. A single‐center long‐term experience with marginal donor utilization for heart transplantation. Clin Transplant 2020; 34:e14057. [DOI: 10.1111/ctr.14057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Antonella Galeone
- Department of Thoracic and Cardiovascular Surgery Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Guillaume Lebreton
- Department of Thoracic and Cardiovascular Surgery Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Guillaume Coutance
- Department of Thoracic and Cardiovascular Surgery Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Pierre Demondion
- Department of Thoracic and Cardiovascular Surgery Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Matthieu Schmidt
- Medical Intensive Care Unit Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Julien Amour
- Department of Anesthesiology Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Shaida Varnous
- Department of Thoracic and Cardiovascular Surgery Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| | - Pascal Leprince
- Department of Thoracic and Cardiovascular Surgery Groupe Hospitalier Pitié‐Salpêtrière APHP Sorbonne Université Paris France
| |
Collapse
|
7
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
8
|
Patel PA. A New Tool for Timely Rescue of Heart Transplant Patients with Severe Primary Graft Dysfunction. J Cardiothorac Vasc Anesth 2020; 35:404-405. [PMID: 32891523 DOI: 10.1053/j.jvca.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Prakash A Patel
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
9
|
Long-term Outcome in Severe Left Ventricular Primary Graft Dysfunction Post Cardiac Transplantation Supported by Early Use of Extracorporeal Membrane Oxygenation. Transplantation 2019; 104:2189-2195. [DOI: 10.1097/tp.0000000000003094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Abstract
Primary graft dysfunction (PGD) remains the leading cause of early mortality post-heart transplantation. Despite improvements in mechanical circulatory support and critical care measures, the rate of PGD remains significant. A recent consensus statement by the International Society of Heart and Lung Transplantation (ISHLT) has formulated a definition for PGD. Five years on, we look at current concepts and future directions of PGD in the current era of transplantation.
Collapse
Affiliation(s)
- Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland.
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland.
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland.
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
| | - Colin Berry
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
11
|
Subramani S, Aldrich A, Dwarakanath S, Sugawara A, Hanada S. Early Graft Dysfunction Following Heart Transplant: Prevention and Management. Semin Cardiothorac Vasc Anesth 2019; 24:24-33. [DOI: 10.1177/1089253219867694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heart transplant can be considered as the “gold standard” treatment for end-stage heart failure, with nearly 5.7 million adults in the United States carrying a diagnosis of heart failure. According to the International Society for Heart and Lung Transplantation registry, nearly 3300 orthotopic heart transplants were performed in 2016 in North America. In spite of significant improvements in overall perioperative care of heart transplant recipients for the past few decades, the risk of 30-day mortality remains 5% to 10%, primarily related to early failure of the allograft. Early graft dysfunction (EGD) occurs within 24 hours after transplant, manifesting as left ventricular dysfunction, right ventricular dysfunction, or biventricular dysfunction. EGD is further classified into primary and secondary graft dysfunction. This review focus on describing overall incidences of EGD, potential risk factors associated with EGD, perioperative preventive measures, and various management options.
Collapse
|
12
|
Romeo F, Varela C, Vulcano N, Pizarro R, Greloni G, Posatini R, Marenchino R, Rosa-Diez G, Belziti C. Acute Kidney Injury After Cardiac Transplantation: Foe or Common Innocent Bystander? Transplant Proc 2018; 50:1489-1495. [DOI: 10.1016/j.transproceed.2018.03.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
|
13
|
Abe R, Shibata SC, Saito S, Tsukamoto Y, Toda K, Uchiyama A, Sakata Y, Sawa Y, Tomono K, Fujino Y. Factors Related to the Severity of Early Postoperative Infection After Heart Transplantation in Patients Surviving Prolonged Mechanical Support Periods: Experience at a Single University. J Cardiothorac Vasc Anesth 2018; 32:53-59. [DOI: 10.1053/j.jvca.2017.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Indexed: 11/11/2022]
|
14
|
Farmer BE, Zhukov IO. Anesthesia for Heart and Lung Transplantation. Anesthesiology 2018. [DOI: 10.1007/978-3-319-74766-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Takeda K, Li B, Garan AR, Topkara VK, Han J, Colombo PC, Farr MA, Naka Y, Takayama H. Improved outcomes from extracorporeal membrane oxygenation versus ventricular assist device temporary support of primary graft dysfunction in heart transplant. J Heart Lung Transplant 2017; 36:650-656. [DOI: 10.1016/j.healun.2016.12.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
|
16
|
Targeting the Innate Immune Response to Improve Cardiac Graft Recovery after Heart Transplantation: Implications for the Donation after Cardiac Death. Int J Mol Sci 2016; 17:ijms17060958. [PMID: 27322252 PMCID: PMC4926491 DOI: 10.3390/ijms17060958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Heart transplantation (HTx) is the ultimate treatment for end-stage heart failure. The number of patients on waiting lists for heart transplants, however, is much higher than the number of available organs. The shortage of donor hearts is a serious concern since the population affected by heart failure is constantly increasing. Furthermore, the long-term success of HTx poses some challenges despite the improvement in the management of the short-term complications and in the methods to limit graft rejection. Myocardial injury occurs during transplantation. Injury initiated in the donor as result of brain or cardiac death is exacerbated by organ procurement and storage, and is ultimately amplified by reperfusion injury at the time of transplantation. The innate immune system is a mechanism of first-line defense against pathogens and cell injury. Innate immunity is activated during myocardial injury and produces deleterious effects on the heart structure and function. Here, we briefly discuss the role of the innate immunity in the initiation of myocardial injury, with particular focus on the Toll-like receptors and inflammasome, and how to potentially expand the donor population by targeting the innate immune response.
Collapse
|