1
|
De Paolis ML, Paoletti I, Zaccone C, Capone F, D'Amelio M, Krashia P. Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease. Transl Neurodegener 2024; 13:33. [PMID: 38926897 PMCID: PMC11210106 DOI: 10.1186/s40035-024-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
Collapse
Affiliation(s)
- Maria Luisa De Paolis
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Ilaria Paoletti
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Claudio Zaccone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Marcello D'Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy.
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy.
| | - Paraskevi Krashia
- Department of Experimental Neurosciences, IRCCS Santa Lucia Foundation, Via del Fosso Di Fiorano, 64 - 00143, Rome, Italy
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico Di Roma, Via Alvaro del Portillo, 21 - 00128, Rome, Italy
| |
Collapse
|
2
|
Sánchez-León CA, Campos GSG, Fernández M, Sánchez-López A, Medina JF, Márquez-Ruiz J. Somatodendritic orientation determines tDCS-induced neuromodulation of Purkinje cell activity in awake mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.18.529047. [PMID: 36824866 PMCID: PMC9949160 DOI: 10.1101/2023.02.18.529047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Transcranial direct-current stimulation (tDCS) of the cerebellum is a promising non-invasive neuromodulatory technique being proposed for the treatment of neurological and neuropsychiatric disorders. However, there is a lack of knowledge about how externally applied currents affect neuronal spiking activity in cerebellar circuits in vivo. We investigated how Cb-tDCS affects the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex to understand the underlying mechanisms behind the polarity-dependent modulation of neuronal activity induced by tDCS. Mice (n = 9) were prepared for the chronic recording of LFPs to assess the actual electric field gradient imposed by Cb-tDCS in our experimental design. Single-neuron extracellular recording of PCs in awake (n = 24) and anesthetized (n = 27) mice was combined with juxtacellular recordings and subsequent staining of PC with neurobiotin under anesthesia (n = 8) to correlate their neuronal orientation with their response to Cb-tDCS. Finally, a high-density Neuropixels recording system was used to demonstrate the relevance of neuronal orientation during the application of Cb-tDCS in awake mice (n = 6). In this study, we observe that Cb-tDCS induces a heterogeneous polarity-dependent modulation of the firing rate of Purkinje cells (PC) and non-PC in the mouse cerebellar cortex. We demonstrate that the apparently heterogeneous effects of tDCS on PC activity can be explained by taking into account the somatodendritic orientation relative to the electric field. Our findings highlight the need to consider neuronal orientation and morphology to improve tDCS computational models, enhance stimulation protocol reliability, and optimize effects in both basic and clinical applications.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
- Department of Neurology and Neurobiology, University of California Los Angeles, Los Angeles 90095, USA
| | | | - Marta Fernández
- Department of Psychiatry, University of California Los Angeles, Los Angeles 90095, USA
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | | | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013, Seville, Spain
| |
Collapse
|
3
|
González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, Verkhratsky A, Tremblay MÈ, Akcora CG, Hernández-Reynoso AG, Ecker M, Coates J, Vincent KL, Ma B. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci 2024; 18:1321872. [PMID: 38440417 PMCID: PMC10911101 DOI: 10.3389/fnint.2024.1321872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/10/2024] [Indexed: 03/06/2024] Open
Abstract
Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.
Collapse
Affiliation(s)
- María Alejandra González-González
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatric Neurology, Baylor College of Medicine, Houston, TX, United States
| | - Silvia V. Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NOVA University, Lisbon, Portugal
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Stéphanie C. Thébault
- Laboratorio de Investigación Traslacional en salud visual (D-13), Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Marta Pratelli
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Nicholas C. Spitzer
- Neurobiology Department, Kavli Institute for Brain and Mind, UC San Diego, La Jolla, CA, United States
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Cuneyt G. Akcora
- Department of Computer Science, University of Central Florida, Orlando, FL, United States
| | | | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, Denton, TX, United States
| | | | - Kathleen L. Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, United States
| | - Brandy Ma
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
4
|
He Y, Liu S, Chen L, Ke Y, Ming D. Neurophysiological mechanisms of transcranial alternating current stimulation. Front Neurosci 2023; 17:1091925. [PMID: 37090788 PMCID: PMC10117687 DOI: 10.3389/fnins.2023.1091925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Neuronal oscillations are the primary basis for precise temporal coordination of neuronal processing and are linked to different brain functions. Transcranial alternating current stimulation (tACS) has demonstrated promising potential in improving cognition by entraining neural oscillations. Despite positive findings in recent decades, the results obtained are sometimes rife with variance and replicability problems, and the findings translation to humans is quite challenging. A thorough understanding of the mechanisms underlying tACS is necessitated for accurate interpretation of experimental results. Animal models are useful for understanding tACS mechanisms, optimizing parameter administration, and improving rational design for broad horizons of tACS. Here, we review recent electrophysiological advances in tACS from animal models, as well as discuss some critical issues for results coordination and translation. We hope to provide an overview of neurophysiological mechanisms and recommendations for future consideration to improve its validity, specificity, and reproducibility.
Collapse
Affiliation(s)
- Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin International Joint Research Center for Neural Engineering, Tianjin, China
| |
Collapse
|
5
|
Sánchez-León CA, Cordones I, Ammann C, Ausín JM, Gómez-Climent MA, Carretero-Guillén A, Sánchez-Garrido Campos G, Gruart A, Delgado-García JM, Cheron G, Medina JF, Márquez-Ruiz J. Immediate and after effects of transcranial direct-current stimulation in the mouse primary somatosensory cortex. Sci Rep 2021; 11:3123. [PMID: 33542338 PMCID: PMC7862679 DOI: 10.1038/s41598-021-82364-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/24/2020] [Indexed: 01/30/2023] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a non-invasive brain stimulation technique consisting in the application of weak electric currents on the scalp. Although previous studies have demonstrated the clinical value of tDCS for modulating sensory, motor, and cognitive functions, there are still huge gaps in the knowledge of the underlying physiological mechanisms. To define the immediate impact as well as the after effects of tDCS on sensory processing, we first performed electrophysiological recordings in primary somatosensory cortex (S1) of alert mice during and after administration of S1-tDCS, and followed up with immunohistochemical analysis of the stimulated brain regions. During the application of cathodal and anodal transcranial currents we observed polarity-specific bidirectional changes in the N1 component of the sensory-evoked potentials (SEPs) and associated gamma oscillations. On the other hand, 20 min of cathodal stimulation produced significant after-effects including a decreased SEP amplitude for up to 30 min, a power reduction in the 20-80 Hz range and a decrease in gamma event related synchronization (ERS). In contrast, no significant changes in SEP amplitude or power analysis were observed after anodal stimulation except for a significant increase in gamma ERS after tDCS cessation. The polarity-specific differences of these after effects were corroborated by immunohistochemical analysis, which revealed an unbalance of GAD 65-67 immunoreactivity between the stimulated versus non-stimulated S1 region only after cathodal tDCS. These results highlight the differences between immediate and after effects of tDCS, as well as the asymmetric after effects induced by anodal and cathodal stimulation.
Collapse
Affiliation(s)
- Carlos A. Sánchez-León
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Isabel Cordones
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Claudia Ammann
- grid.428486.40000 0004 5894 9315HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
| | - José M. Ausín
- grid.157927.f0000 0004 1770 5832Instituto de Investigación E Innovación en Bioingeniería, Universidad Politécnica de Valencia, Valencia, Spain
| | - María A. Gómez-Climent
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Alejandro Carretero-Guillén
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guillermo Sánchez-Garrido Campos
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Agnès Gruart
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - José M. Delgado-García
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Guy Cheron
- grid.8364.90000 0001 2184 581XLaboratory of Electrophysiology, Université de Mons, Mons, Belgium ,grid.4989.c0000 0001 2348 0746Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Javier F. Medina
- grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Javier Márquez-Ruiz
- grid.15449.3d0000 0001 2200 2355Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| |
Collapse
|
6
|
Sánchez-León CA, Sánchez-López Á, Gómez-Climent MA, Cordones I, Cohen Kadosh R, Márquez-Ruiz J. Impact of chronic transcranial random noise stimulation (tRNS) on GABAergic and glutamatergic activity markers in the prefrontal cortex of juvenile mice. PROGRESS IN BRAIN RESEARCH 2021; 264:323-341. [PMID: 34167661 DOI: 10.1016/bs.pbr.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcranial random noise stimulation (tRNS), a non-invasive neuromodulatory technique capable of altering cortical activity, has been proposed to improve the signal-to-noise ratio at the neuronal level and the sensitivity of the neurons following an inverted U-function. The aim of this study was to examine the effects of tRNS on vGLUT1 and GAD 65-67 and its safety in terms of pathological changes. For that, juvenile mice were randomly distributed in three different groups: "tRNS 1×" receiving tRNS at the density current used in humans (0.3A/m2, 20min), "tRNS 100×" receiving tRNS at two orders of magnitude higher (30.0A/m2, 20min) and "sham" (0.3A/m2, 15s). Nine tRNS sessions during 5 weeks were administered to the prefrontal cortex of awake animals. No detectable tissue macroscopic lesions were observed after tRNS sessions. Post-stimulation immunohistochemical analysis of GAD 65-67 and vGLUT1 immunoreactivity showed reduced GAD 65-67 immunoreactivity levels in the region directly beneath the electrode for tRNS 1× group with no significant effects in the tRNS 100× nor sham group. The observed results suggest an excitatory effect associated with a decrease in GABA levels in absence of major histopathological alterations providing a novel mechanistic explanation for tRNS effects.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Álvaro Sánchez-López
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - María A Gómez-Climent
- Educational Psychology and Psychobiology Area, Faculty of Education, International University of La Rioja, Logroño, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
7
|
Chen TX, Yang CY, Willson G, Lin CC, Kuo SH. The Efficacy and Safety of Transcranial Direct Current Stimulation for Cerebellar Ataxia: a Systematic Review and Meta-Analysis. THE CEREBELLUM 2020; 20:124-133. [PMID: 32833224 PMCID: PMC7864859 DOI: 10.1007/s12311-020-01181-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background – A promising new approach, transcranial direct current stimulation (tDCS) has recently been used as a therapeutic modality for cerebellar ataxia. However, the strength of the conclusions drawn from individual studies in the current literature may be constrained by the small sample size of each trial. Methods – Following a systematic literature retrieval of studies, meta-analyses were conducted by pooling the standardized mean differences (SMDs) using random-effects models to assess the efficacy of tDCS on cerebellar ataxia, measured by standard clinical rating scales. Domain-specific effects of tDCS on gait and hand function were further evaluated based on 8-meter walk and 9-hole peg test performance times, respectively. To determine the safety of tDCS, the incidences of adverse effects were analyzed using risk differences. Results – Out of 293 citations, 5 randomized controlled trials involving a total of 72 participants with cerebellar ataxia were included. Meta-analysis indicated a 26.1% (p = 0.003) improvement in ataxia immediately after tDCS with sustained efficacy over months (28.2% improvement after 3 months, p = 0.04) when compared to sham stimulation. tDCS seems to be domain-specific as the current analysis suggested a positive effect on gait (16.3% improvement, p = 0.04), however failed to reveal differences for hand function (p = 0.10) with respect to sham. The incidence of adverse events in tDCS and sham groups was similar. Conclusion – tDCS is an effective intervention for mitigating ataxia symptoms with lasting results that can be sustained for months. This treatment shows preferential effects on gait ataxia and is relatively safe.
Collapse
Affiliation(s)
- Tiffany X Chen
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Neurology, College of Physicians and Surgeons, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA
| | - Chen-Ya Yang
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.,Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Chiayi and Wanqiao Branch, Chiayi, Taiwan
| | - Gloria Willson
- Augustus C. Long Health Sciences Library, Columbia University New York, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 650 West 168th Street, Room 305, New York, NY, 10032, USA. .,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Sánchez-León CA, Sánchez-López Á, Ammann C, Cordones I, Carretero-Guillén A, Márquez-Ruiz J. Exploring new transcranial electrical stimulation strategies to modulate brain function in animal models. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 8:7-13. [PMID: 30272042 DOI: 10.1016/j.cobme.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transcranial electrical stimulation (tES) refers to a group of non-invasive brain stimulation techniques to induce changes in the excitability of cortical neurons in humans. In recent years, studies in animal models have been shown to be essential for disentangling the neuromodulatory effects of tES, defining safety limits, and exploring potential therapeutic applications in neurological and neuropsychiatric disorders. Testing in animal models is valuable for the development of new unconventional protocols intended to improve tES administration and optimize the desired effects by increasing its focality and enabling deep-brain stimulation. Successful and controlled application of tES in humans relies on the knowledge acquired from studies meticulously performed in animal models.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | - Álvaro Sánchez-López
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | - Claudia Ammann
- CINAC, University Hospital HM Puerta del Sur, CEU - San Pablo University, 28938-Móstoles, Madrid, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| | | | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, 41013-Seville, Spain
| |
Collapse
|